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Abstract: The objective of this research was to study the differences in endogenous hormone levels
and the genes related to reproductive development in Chinese pinenut (Pinus koraiensis) trees of
different ages. The apical buds of P. koraiensis were collected from 2-, 5-, 10-, 15-, and 30-year-old plants
and also from grafted plants. There were three replicates from each group used for transcriptome
sequencing. After assembly and annotation, we identified the differentially expressed genes (DEGs)
and performed enrichment analysis, pathway analysis, and expression analysis of the DEGs in
each sample. The results showed that unigenes related to reproductive development, such as
c64070.graph_c0 and c68641.graph_c0, were expressed at relatively low levels at young ages, and that
the relative expression gradually increased with increasing plant age. In addition the highest
expression levels were reached around 10 and 15 years of age, after which they gradually decreased.
Moreover, some unigenes, such as c61855.graph_c0, were annotated as abscisic acid hydroxylase genes,
and the expression of c61855.graph_c0 gradually declined with increasing age in P. koraiensis.

Keywords: Floral primordia; floral meristem; inflorescence development; ABC model; gene regulation;
Pinus koraiensis

1. Introduction

During the process of reproductive development, plants need to attain a certain size, age, or
level of maturity before they can flower, and this pre-flowering period is called the vegetative stage.
The first step in flower development is the transition from the vegetative stage (producing buds and
leaves) to the reproductive stage (starting to flower) [1]. In most cases, whether or not a plant can
become reproductive after a certain stage of growth is determined by environmental factors such as
light and temperature [2]. Many plants respond to changes in a well-defined range of relative day and
night lengths (photoperiod) and temperature. Under the combined effect of these two factors, plants
can enter the reproductive stage and flower buds differentiate [3]. Once this conversion is complete,
the floral meristem identity genes promote the formation of individual flowers [4]. Many studies
have examined the roles of flower-related genes such as APETALA1 (AP1) [5], APETALA2 (AP2) [6],
CAULIflower (CAL) [5], LEAFY (LFY) [7], FRIGIDA (FRI) [8], Arabidopsis CONSTANS (AtCO) [9],
and UNUSUAL FLORAL ORGANS (UFO) [10]. At least two genes, LFY and AP1, are necessary not only
for flower initiation, but are also sufficient to induce flowering in lateral shoots when overexpressed in
transgenic plants [11]. Soon after floral meristem formation, floral organs began to form in a concentric
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order around the periphery of the meristem. Each floral organ originates from a small number of
progenitor cells. These cells then follow a specific developmental pattern to form a recognizable floral
primordium through cell proliferation, and then develop from the floral primordium into each organ
of the flower [12]. Once all of the primordia are activated, the relative position and the total number of
floral organs, as well as the basic structure, leaf order, and symmetry of the flower, are determined,
and the flower buds open under appropriate conditions [13]. Thus, in the process of floral organ
formation, at the molecular level the transcriptional activity is increased, and the biological pathways
are activated [14]. In addition, plant hormones are involved in the process of flower formation;
for example, the spatial accuracy of organ initiation depends to a large extent on the antagonistic
interaction of the two plant hormones auxin and cytokinin [15]. The auxin maximum is caused by the
biosynthesis and polar transport of auxin, which specifies initiation of the floral organs [16]. Related
research has shown that YUCCA (YUC) [17] and PIN (PIN) [18] play important roles in controlling
auxin biosynthesis and polar transport. In addition, competition between apical and lateral root
auxins (apical buds vs. axillary buds) leads to the inhibition of bud growth [19]. At the same time,
cytokinin (CK) helps to maintain the auxin maxima by forming an inhibitory domain on the organ
primordium [20]. Perturbation of the cytokinin signaling pathway will affect the arrangement of flower
organs [20].

The ABC model [21] of flower organ formation describes the genes and mechanisms that regulate
flower development. In the process of flower formation, the floral organs are generated from the
outside to inside, and this process can be divided into four rounds; sepal (round 1), petal (round 2),
stamen (round 3), and carpel (round 4), controlled by three homologous genes (A, B, C) in which A
controls round 1, A and B control round 2, B and C control round 3, and C controls round 4 [22]. It also
can be explained by saying that sepal formation is controlled by gene A, petal formation is controlled by
genes A and B, stamen formation is controlled by genes B and C, and carpel formation is controlled only
by gene C. This is the classic ABC model [22]. Studies have shown that the ABC genes in Arabidopsis
correspond to AP2, AP3/PI, and AG, respectively. Among them, APETALA1 (AP1) and APETALA2 (AP2)
are functional genes, and APETALA1 (AP1) not only controls the characteristics of the sepals and petals,
but is also related to the floral meristem [23]. In the process of transformation from vegetative growth
to reproductive growth, AP1 is equivalent to the organizer, and its ectopic expression will cause many
plants to advance to flowering [24]. In addition, AP1 is also a transcriptional activator that regulates
AP3 and PI [25,26]. Class B genes such as APETALA3 (AP3) [26] and PISTILLATA (PI) [25] specify the
development of petals and stamens. AGAMOUS (AG) is the only C function gene. Except for AP2,
all of these genes are members of the MADS-box transcription factor family [27]. The MADS-box
gene family plays an important role in the transition from vegetative growth to reproductive growth,
fruit development, and especially in the formation of floral organs [5]. In addition, another group of
MADS-box genes, SEP1, SEP2, and SEP3 [28], were found to be essential for petal, stamen, and carpel
development; in other words, the SEP gene products are required for B and C gene activity. [28].

Pinus is an important genus of conifers in the pine family (Pinaceae) with a total of 109 species
recorded [29]. Pine species are important both ecologically and economically. Pinus koraiensis Siebold
& Zucc. (2n = 2x = 24) [30] is widely distributed in Northeast China, Japan, the Korean Peninsula,
and the Russian Far East [31]. P. koraiensis is also a nationally protected plant in China that has
attracted attention from researchers because it produces economically valuable wood and edible seeds.
However, P. koraiensis grows slowly, reaches sexual maturity late, and is difficult to select early in
breeding. The tree properties that researchers are most interested in require years of growth to be
reliably assessed. Compared to angiosperms, the molecular mechanisms underlying the reproductive
development of gymnosperms are not well known. The MADS-box gene family has been characterized
in Norwegian spruce and P. radiata [32]. Similar to many angiosperms, the “flowering” of P. radiata
starts with the transformation of an indeterminate axillary apex into a determinate reproductive apex,
which forms the male and female strobili (cones) [33]. Some studies have shown that the P. radiata gene
belonging to the meristem-identity family of FLO/LFY-like genes is a true functional homolog of the
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Arabidopsis LFY gene [34]. However, research on the internal molecular mechanism of P. koraiensis is
still not comprehensive. In this study, we examined the changes in expression of flowering-type genes
and hormones at different ages and in different parts of P. koraiensis. Our findings will be of great
significance in understanding reproductive development in pines and will accelerate the breeding
process and shorten selection time in P. koraiensis. The above-mentioned genes were summarized
in Table 1.

Table 1. Genes associated with flower development.

Related Gene Function

APETALA1 (AP1) control the characteristics of sepals and petals, be related to the meristem
of flowers, a transcriptional activator that regulates AP3 and PI

APETALA2 (AP2) class A genes, control the characteristics of sepals and petals
APETALA3 (AP3) class B genes, specify the development of petals and stamens
PISTILLATA (PI) class B genes, specify the development of petals and stamens
AGAMOUS (AG) class C genes, control the characteristics of stamens and carpel

SEP1, SEP2, and SEP3 were found to be essential for petal, stamen, and carpel development,
that is the SEP gene product was required for B and C gene activity

CAULIflower (CAL)

confer floral identity to emerging floral primordia, a paralogous genes of
APETALA1 (AP1), act redundantly to control inflorescence architecture
by affecting the domains of LFY expression as well as the relative levels

of its activities

LEAFY (LFY)

is expressed throughout the flower, participates in the activation of
homeotic genes, are expressed in specific regions of the flower, encodes
a transcription factor that determines a meristem will generate flowers,

is a direct upstream regulator of floral homeotic genes

FRIGIDA (FRI) the flowering time gene, alleles were associated with
accelerated flowering

Arabidopsis CONSTANS (AtCO) regulate flowering time, accelerates flowering in response to long days,
exerts its inhibitory effect on tuber formation by acting in the leaves

UNUSUAL FLORAL ORGANS
(UFO)

controls meristem identity and organ primordia fate, related to
floral-organ type

YUCCA (YUC) spatially and temporally regulated auxin biosynthesis, is essential for
the formation of floral organs and vascular tissues

PIN (PIN) auxin efflux transport proteins, controlling auxin polar transport

2. Materials and Methods

P. koraiensis used in this study was from the Maoershan Forest Farm of Northeast Forestry
University. A total of six samples of P. koraiensis apical buds were collected from 2-, 5-, 10-, 15-,
and 30-year-old trees and also from grafted trees. Each sample consisted of three replicates. Among the
samples, the 2-year-old and 5-year-old trees were at the early vegetative stage, the 10- and 15-year-old
trees were at the transition from vegetative to reproductive growth, while the 30-year-old trees were at
reproductive stage. The scions on the grafted trees were >50 years old.

Total RNA was extracted using the CTAB method [35], and the purity and concentration of
the total RNA samples were determined by absorbance at 260 nm using a NanoDropTM 2000 UV
spectrophotometer. For transcriptome sequencing, an equal amount of total RNA was collected from
each sample.

RNA sequencing libraries were generated using the NEBNext RNA Library Prep Kit for Illumina
(New England Biolabs, USA). Briefly, mRNA was purified from 18 µg of total RNA using poly-T
oligo-attached magnetic beads. The RNA samples were fragmented using divalent cations at elevated
temperature in NEBNext Reaction Buffer (5X), and the short fragments were then converted to
double-stranded cDNA using random hexamer primers and reverse transcriptase. The remaining
overhangs were converted to blunt ends via exonuclease/DNA polymerase enzymes. After adenylation
of the 3′ ends of the DNA fragments, the NEBNext Adaptor with a hairpin loop structure was ligated
to the fragments to prepare for hybridization. The library fragments (240 bp) were purified with the
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AMPure XP system (Beckman Coulter, Beverly, USA) and amplified by PCR to construct the cDNA
library. Finally, the PCR products were purified using the AMPure XP system and the library quality
was assessed on the Agilent Bioanalyzer 2100 system.

The library preparations were sequenced on an Illumina Hiseq 2000 instrument to generate the
raw sequencing reads. The raw reads were then filtered to remove low quality reads, reads consisting
of adapters, and reads containing runs of poly-Ns (unknown bases) to give clean reads. At the same
time, the Q20 and Q30 scores, the GC-contents, and the level of sequence duplication in the clean data
were calculated for each sample. Trinity [36] was used for transcriptome assembly to generate libraries
of non-redundant unigenes.

All non-redundant transcripts were subjected to Basic Local Alignment Search Tool (BLASTx) [37]
searches (E-value < 10−5) against public protein databases, including the NCBI non-redundant
(nr) [38], the Swissprot protein (Swiss-Prot) [39], the Gene Ontology (GO) [40], the Clusters of
Orthologous Groups (COGs) [41], KOG [42] (the database of Clusters of Protein homology), eggNOG4.5
(a database of orthologous groups of genes), [43] and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases [44]. The predicted amino acid sequences of the unigenes were then annotated using
HMMER [45]. GO analysis was used to assign putative gene functions to the uncharacterized sequences.
We used the information from the Nr annotation to categorize the unigenes into many functional
groups using the topGO R package [46].

In order to fully understand the transcriptomic changes in the apical buds at the different
developmental stages, we used DESeq2 [47] to identify DEGs between the apical buds in the different
samples compared to 2-year-old trees. We compared the reads which obtained from sequencing to
the unigene library, and based on the comparison results, combined with RSEM [48] to estimate the
expression level. The expression abundance of the corresponding unigene was expressed by the
FPKM (Fragments Per Kilobase of transcript per Million mapped reads) [49]. The DEGs were also
annotated using the GO (Gene Ontology) database, and the numbers of DEGs in each GO term were
calculated. GO enrichment analysis of the DEGs (DEGs) was implemented by the topGO R package
based on the Kolmogorov-Smirnov test [50]. KEGG pathway analysis of the DEGs was performed to
identify the associated biochemical and signal transduction pathways. We used KOBAS [51] software
to test the statistical enrichment of differentially expressed genes in the KEGG pathways. We used the
STRING database [52] to form protein-protein interactions for the DEGs followed by visualization
with Cytoscape v3.6 [53].

3. Results

3.1. RNA Sequencing and De Novo Transcriptome Assembly

A total of 18 cDNA libraries were sequenced on an Illumina Hiseq2000 instrument, and we
obtained a total of 134.62 Gb of clean reads with an average number of 6,410,479,768 bases in each
library. The average GC content was 45.57%. We obtained a total of 100,585 unigenes using Trinity [36]
with a total length of 83,979,734 bp. The average and N50 lengths of the unigenes were 834.91 bp and
1561 bp, respectively. Of the resulting unigenes, 33,408 (33.21%) were between 200 and 300 bp in length;
24,178 (24.04%) were 300-500 bp; 18,224 (18.12%) were 500–1000 bp; 14,194 (14.11%) were 1000–2000 bp;
and 10,581 (10.52%) were >2000 bp (Figure 1).
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Figure 1. Length distribution of P. koraiensis unigenes. The x-axis shows the length intervals of the
unigenes, and the y-axis shows the number of unigenes.

3.2. Functional Annotation of the P. Koraiensis Unigenes

For the unigene annotation, BLASTX [37] was used to search each database and HMMER was
used to annotate the amino acid sequences. The results show that a total of 58,706 (58.36%) unigenes
were annotated by at least one of the above seven databases.

In the GO annotation, most of the unigenes in the “biological process” category were sub-categorized
into metabolic process, cellular process and single-organism process, followed by localization, biological
regulation and response to stimulus. In the “cellular component” category, the GO terms “cell”, “cell
part”, “membrane, and organelle predominated. While, catalytic activity, binding and transporter
activity were the three most represented GO terms in the “molecular function” category. A total of
33,277 unigenes were annotated in the GO analysis.

In addition to GO annotation, a total of 18,577, 51,957, 19,726, 32,241, 30,528, 52,872, and 38,956
unigenes were annotated by the COG, eggNOG, KEGG, KOG, Swissprot, nr, and Pfam databases,
respectively (Table 2). In terms of E-value distribution, 55.15% of the homologs ranged between 1e−11
and 1e−50, while a fraction of the sequences (44.85%) showed a threshold e-value < 1e−50 indicating
inferior homology (Figure 2a). Among the unigenes annotated using the Nr database, 62.13% had
more than 60% similarity with the corresponding gene sequence (Figure 2b). Overall, the unigene
sequences exhibited most similar BLASTx matches to gene sequences from Picea sitchensis (20.39%),
followed by those from Amborella trichopoda (3.84%), Aureobasidium pullulans (2.27%), Aureobasidium
melanogenum (1.96%), Nelumbo nucifera (1.92%) and Prunus persica (1.77%) genes (Figure 2c).

Table 2. P. koraiensis unigenes annotated using seven protein databases.

Anno_Database Annotated_Number

COG_Annotation 18,577
GO_Annotation 33,277

KEGG_Annotation 19,726
KOG_Annotation 32,241
Pfam_Annotation 38,956

Swissprot_Annotation 30,528
eggNOG_Annotation 51,957

nr_Annotation 52,872
All_Annotated 58,706
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3.3. Identification of Differentially Expressed Genes (DEGs)

The results of the DEG analysis in the five sample comparisons are shown in Table 3 and Figure 3.
Using the 2-year trees as the control, we identified 267 (117 up-regulated, 150 down-regulated),
736 (480 up-regulated, 256 down-regulated), 1485 (725 up-regulated, 760 down-regulated), 1152
(578 up-regulated, 574 down-regulated) and 827 (598 up-regulated, 229 down-regulated) DEGs in the
5-, 10-, 15-, 30- and 50-year-old grafted trees, respectively. A total of 671 DEGs were identified by
comparing RNA samples from the upper and lower apical buds sampled from the 30-year-old trees;
of these DEGs, 378 were up-regulated and 293 were down-regulated.

Table 3. Statistical table of the number of DEGs.

DEG_Comparison All_DEGs Up-Regulated Down-Regulated

Y2_vs_Y5 267 117 150
Y2_vs_Y10 736 480 256
Y2_vs_Y15 1485 725 760
Y2_vs_Y30 1152 578 574

Y2_vs_grafted 827 598 229
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3.4. Gene Ontology (GO) Enrichment of the DEGs

GO enrichment analysis was performed for the DEGs identified in comparisons of RNA samples
between the 2-year-old trees and the five other years using hypergeometric tests [54] (Table S1).
The results indicated that GO terms in “biological process” such as “nucleocytoplasmic transport”,
“ATP hydrolysis coupled proton transport”, “regulation of transcription from RNA polymerase
II promoter”, “proteasomal ubiquitin-independent protein catabolic process”, and “misfolded or
incompletely synthesized protein catabolic process” were significantly enriched in each sample.
The P-values for these GO terms in the 5-year-old trees were the smallest, which means that the
transcription, translation, and energy metabolism activities are strong in the vegetative stage in
P. koraiensis. Also, the P-values of GO terms such as “transmembrane transport”, “protein folding”,
“carbohydrate metabolic process”, and “intracellular protein transport” were lower in the 10- and
15-year-old trees, indicating that utilization of substances and protein post-processing are active in
the transition from vegetative to reproductive growth. In addition, the term “negative regulation
of short-day photoperiodism, flowering” was enriched in the “biological process” category in the
15-year-old samples, which indicates that the transition from vegetative to reproductive growth
occurs at the age of 15 years in P. koraiensis (Table S1). According to the homology-based annotation,
the unigene in this GO term, c68641.graph_c0, may be related to embryogenesis, gibberellin metabolism,
negative regulation of floral organ shedding, auxin stimulation, and seed maturation (Table S2).
In addition, the gene c68641.graph_c0 was annotated in the Swissprot database as the agamous-like
MADS-box protein AGL15. Interestingly, the expression level of this gene in 15-year-old trees is
almost 4-fold higher than the average gene expression level (Table S3), indicating that the 15-year-old
trees are undergoing differentiation of the reproductive structures. At the same time, the GO terms
“maturation of LSU-rRNA from tri-cistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)”and
“reproductive fruiting body development” were enriched in 30-year-old trees. GO enrichment of the
DEGs in the grafted trees compared with 2-year trees also identified an important GO term, “regulation
of flower development” (Table S4). The unigene c64070.graph_c0 for this GO term showed the highest
expression level in the grafted (50-year-old) trees, and expression in the 5-, 10-, 15-, and 30-year-old
trees was relatively stable. The unigene c64070.graph_c0 was annotated by the NR database as the
hypothetical protein GOBAR_AA39818 from Gossypium barbadense. Furthermore, another GO term
“response to abscisic acid” was also enriched, and a unigene (c73235.graph_c0) in this GO term had a
higher expression level in the grafted trees (Table S4). The unigene c73235.graph_c0 was annotated by
the Swissprot database as the CBL-interacting protein kinase 5 from the Oryza sativa.

3.5. KEGG Pathway Enrichment Analysis of the DEGs

Pathway enrichment analysis was performed on the P. koraiensis DEGs using the KEGG
database [44] to determine hormone-related pathways. The results of KEGG enrichment in trees of
various ages is shown in Figure 4, which shows the top 20 pathways with the most significant enrichment
levels. In the 5-year sample, 66 DEGs were associated with 34 KEGG pathways. The most significantly
enriched pathways were “vitamin B6 metabolism”, “flavone and flavonol biosynthesis”, “protein
processing in the endoplasmic reticulum”, “terpenoid backbone biosynthesis”, and “plant-pathogen
interactions”. The pathway containing the most DEGs was found to be “protein processing in the
endoplasmic reticulum” (17 DEGs).

The same analysis showed that, in the 10-year-old trees, 189 DEGs were associated with 58 KEGG
pathways (Figure 4b). Among these, “protein processing in endoplasmic reticulum”, “plant-pathogen
interaction”, “glycosphingolipid biosynthesis”, “carotenoid biosynthesis”, and “brassinosteroid
biosynthesis” were the most prominent. The highest number of DEGs (27) were in the “endoplasmic
reticulum protein processing” pathway. In the 15-year-old sample, 413 DEGs were associated
with 86 KEGG pathways (Figure 4c), of which “betalain biosynthesis”, “diterpenoid biosynthesis”,
“brassinosteroid biosynthesis”, “protein processing in endoplasmic reticulum”, “plant-pathogen
interaction”, and “plant hormone signal transduction” were the most abundant. Similarly, the pathway
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enriched for the most DEGs (38) was also “protein processing in the endoplasmic reticulum”. In the
30-year-old sample, 255 DEGs were associated with 63 KEGG pathways (Figure 4d). Among
them, “carotenoid biosynthesis”, “flavone and flavonol biosynthesis”, “brassinosteroid biosynthesis”,
“plant-pathogen interaction”, “diterpenoid biosynthesis”, and “ABC transporters” were the most
enriched, with “plant-pathogen interaction” containing the most (16) DEGs. Obviously, pathways
such as “plant-pathogen interaction”, “protein processing”, “organic acid synthesis and metabolism”,
“starch and sugar metabolism”, and “plant hormone signal transduction” were enriched in each sample,.
Moreover, it can be seen from the results that the KEGG pathways are biased towards biosyntheses,
such as the biosynthesis of flavonoids and terpenoid skeletons, in the 5-year-old sample. The pigment
and hormone biosynthesis pathways in the 10-year-old samples were enriched for carotenoid synthesis
and brassinosteroid synthesis, respectively. Moreover, both DEGs involved in carotenoid biosynthesis
were up-regulated, indicating that the carotenoid content in the 10-year-old trees is predicted to be
higher than that in the 2-year-old sample. Only one DEG was enriched in the brassinosteroid synthesis
pathway, and it is the down-regulated gene c55558.graph_c0. and the gene c55558.graph_c0 was a
cytochrome P450 gene resembling CYP85A1 from Musa acuminata The relative expression levels of this
gene were 4.36, 1.14, 0.64, 0.41, 0.25 and 0.39 in the 2-, 5-, 10-, 15-, 30- and 50-year-old (grafted) samples,
respectively. We observed that the expression level of this gene decreases with age. The 15-year and
30-year samples are roughly the same as the 10-year-old sample, except that the 15-year-old sample is
more biased towards amino acid metabolism, while “ABC transporter” appears in the 30-year-old
sample. In the grafted tree sample, 193 DEGs were associated with 60 KEGG pathways (Figure 4e),
and the first five pathways with the most significant enrichment are “plant-pathogen interaction”,
“diterpenoid biosynthesis”, “amino sugar and nucleotide sugar metabolism”, “taurine and hypotaurine
metabolism”, and “vitamin B6 metabolism”. The grafted tree appears to be more inclined toward the
metabolism of various substances, such as glucose and taurine. Also, the ABC transporter pathway
appears only in the 30-year-old and grafted tree samples, but the significance of this observation is
unclear and needs further research. Finally, the phytohormone signal transduction pathways in the six
samples were found to be significantly enriched, and the most DEGs (16) were found in the 15-year-old
sample. This indicates that hormone signaling pathways are involved in the regulation of development
at different ages in P. koraiensis.

3.6. The Expression Level of Genes Related to Flowers and Hormones

We found 134 DEGs that are related to the development of reproductive structures or hormones in
the annotation, and their expression levels in each of the tree RNA samples are shown in Table S5. Here,
we selected 30 genes (Figure 5), of which some unigenes, including c65543.graph_c1, c77350.graph_c2 and
c72714.graph_c0, are annotated as encoding MADS-box transcription factors. The expression levels of
these genes in the 2- and 5-year-old trees was low, and the relative expression levels gradually increased
with increasing age. Interestingly, the expression levels peaked in the 10- and 15-year-old trees.
We interpreted this to mean that the genes were more actively transcribed during bud differentiation.
The expression levels of these genes in the grafted trees was also high, and even exceeded that in the
30-year-old trees. In addition, some unigenes, such as c61855.graph_c0, were annotated as abscisic
acid hydroxylase genes. The enzyme encoded by c61855.graph_c0 is related to the decomposition
of abscisic acid, and we found that the expression of this gene gradually declined with increasing
age of the trees. However, the expression level of c61855.graph_c0 was very high in the grafted trees,
almost equal to that in the 2-year-old RNA sample. This shows that the expression of the abscisic acid
hydroxylase gene is higher in younger trees, which leads to a lower abscisic acid content. As the trees
age, the expression level of the abscisic acid hydroxylase gene declines, and the content of abscisic acid
therefore increases significantly. We also found that the abscisic acid content in the grafted tree is low
due to a higher relative expression level of c61855.graph_c0.
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4. Discussion

4.1. Analysis of DEGs that Show Changes in Expression during Reproductive Development

Genes related to flower development have been well studied in model angiosperms. Plants can
regulate flower development through the ABC model, in which the A gene controls sepal formation,
the A and B genes jointly control petal formation, the B and C genes together control stamen formation,
and the C gene controls carpel formation [28]. In this study, DEGs were found at different ages
(2-year-old trees were the control and were compared with 5-, 10-, 15-, and 30-year-old trees and also
grafted trees). Among these, a total of 267, 736, 1485, 1152, and 827 DEGs were identified in the 5-,
10-, 15-, and 30-year-old trees and the grafts, respectively. It is worth noting that the number of DEGs
gradually increased with increasing age, which indicates that growth and development continue for
a long time in P. koraiensis. Among the 5-, 10-, and 15-year-old seedless (non-reproductive) samples,
the number of up-regulated DEGs (480) in the 10-year-old sample was far greater than the number of
the down-regulated DEGs (256), and the number of DEGs peaked in the 15-year-old sample, of which
725 and 760 were up- and down-regulated, respectively. A previous study reported that the age of
reproductive maturity in P. koraiensis is about 12 years [55]. Based on this, we interpreted our results as
showing that the expression level of the same gene is expected to gradually increased with increasing
tree age. Relative gene expression levels are low during vegetative growth and are highest during
differentiation of the reproductive structures.

4.2. Tree Age Affects Flowering Time

It is well known that age is one of the main factors in determining the flowering period of a
plant. It can be seen from the GO and KEGG analyses in this experiment that as age increases in
P. koraiensis, the tree gradually reaches the reproductive stage. Pathways are mainly shifted away from
the metabolism of sugars and organic acids to the metabolism of structural and genetic materials. This
is because the plant needs to accumulate a certain amount of nutrients before it can transition to the
reproductive growth stage in response to the corresponding signal stimulation, and as the plant ages,
the sugar and organic acid contents that are involved in its metabolism increase due to inhibition
in some metabolic pathways. Therefore, the transformation in individual plants is reflected in the
developmental structures that are related to growth and reproduction. At the gene level, the expression
of unigene c64070.graph_c0 increases with increasing age and is related to the regulation of pollen
germination and the development of reproductive structures.

4.3. Plant Hormones Related to Flowering

Previous studies have shown that ABA and cytokinin (CK) play important roles in the flowering
and development of plants, and they are antagonistic to each other [56]. In this study, we found that
the genes c82790.graph_c0 which was related to hormone-mediated signaling pathways resembling
a histidine kinase 5 from Herrania umbratical. The gene c76037.graph_c0 was related to cytokinin
metabolism, and similar to CKX3 from Pinus tabulaeformis. The gene c55708.graph_c0 was related
to ABA-activated signaling pathways, which was resembling the abscisic acid receptor PYL8 from
Arabidopsis thaliana. To the best of our knowledge, the effects of flowering are mainly focused on
three hypotheses; the anthesis hypothesis [57], the nutrition accumulation hypothesis [58], and the
multi-factor hypothesis [59]. At present, the multi-factor hypothesis is widely accepted, and shows
that in the process of plant flower formation, the accumulation of nutrients is as important as are
plant hormones. The GO enrichment analysis of each P. koraiensis RNA sample showed that processes
related to energy metabolism and cell development were significantly enriched. This is because the
development of reproductive structures requires not only the accumulation of nutrients, but also a
direct supply of energy-rich substances such as ATP [60]. The DEGs enriched in organic acid and
pyruvate metabolism pathways are related to this. Also, a large amount of ATP produced during
metabolism is not only related to the energy supply, but is also one of the important raw materials
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for the de novo biosynthesis of CK [61]. In summary, we can conclude that unigenes c82790.graph_c0,
c76037.graph_c0, and c55708.graph_c0 are related to the development of reproductive structures in
P. koraiensis. The gene arrangement mentioned in the article was shown in Table 4.

Table 4. Gene ID and description.

Gene_ID Description

c64070.graph_c0 Hypothetical protein GOBAR_AA39818, related to pollen germination and regulates
flower development

c68641.graph_c0 The SRF-type transcription factor and agamous-like MADS-box protein AGL15, and related to
somatic embryogenesis.

c65543.graph_c1 It has a K-box region and is a SRF-type and MADS-box transcription factor
c77350.graph_c2 It has a K-box region and is a MADS-box transcription factor DAL1 (Picea abies)
c72714.graph_c0 It is SRF-type and MADS-box transcription factor with transcription factor activity

c76037.graph_c0 CKX3 [Pinus tabuliformis], which is involved in the metabolism of cytokinins and has
oxidoreductase activity.

c55708.graph_c0 The abscisic acid receptor PYR/PYL family, involved in the abscisic acid-activated
signaling pathway.

c61855.graph_c0 It participates in abscisic acid catabolic process and has the activity of abscisic acid 8’ hydroxylase
c73235.graph_c0 It is related to the signaling mechanism and responds to abscisic acid
c82790.graph_c0 Related to hormone-mediated signaling pathway, histidine kinase 5 (Herrania umbratica)

c55558.graph_c0 Predicted as CYP85A1(Musa acuminata), which is a brassinosteroid-6-oxidase and involved in
the synthesis of sterol hormones.

5. Conclusions

In this study, high-throughput RNA sequencing was used to generate a P. koraiensis transcriptome
dataset containing 100,585 predicted transcripts, and analysis of differentially expressed genes in trees
of different ages provided clues to the molecular mechanisms underlying the transition from vegetative
to reproductive growth. We conclude from the results of GO and KEGG enrichment analyses that the
vegetative period is more directed towards the accumulation of energy and materials, the “flowering”
pathway is more active during differentiation of the reproductive buds, and the fruit ripening pathway
is more obvious during the reproductive stage. In addition, the molecular mechanisms in the grafted
tree are similar to those in the 30-year-old tree. Dynamic changes in gene expression levels were
observed, and we identified genes encoding hormone signal elements and MADS-box transcription
factors. The results presented here provide a valuable resource for studying the molecular biology of
reproductive development and hormone levels in Pinus species.
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Table S1: GO enrichment analysis using the 2-year-old sample as the control. Each sample comparison was
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differentially expressed gene. Table S3: Expression levels of all DEGs identified in this study. Table S4: KEGG
pathway enrichment and the DEGs contained in it. Table S5: Expression levels of genes involved in reproduction
in P. koraiensis and annotations from each database.
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