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Abstract: Spatial information about disturbance driven patterns of forest structure and ages across
landscapes provide a valuable resource for all land management efforts including cross-ownership
collaborative forest treatments and restoration. While disturbance events in general are known to
impact stand characteristics, the agent of change may also influence recovery and the supply of
ecosystem services. Our study utilizes the full extent of the Landsat archive to identify the timing,
extent, magnitude, and agent, of the most recent fast disturbance event for all forested lands within
Minnesota, USA. To account for the differences in the Landsat sensors through time, specifically
the coarser spatial, spectral, and radiometric resolutions of the early MSS sensors, we employed a
two-step approach, first harmonizing spectral indices across the Landsat sensors, then applying a
segmentation algorithm to fit temporal trends to the time series to identify abrupt forest disturbance
events. We further incorporated spectral, topographic, and land protection information in our
classification of the agent of change for all disturbance patches. After allowing two years for the time
series to stabilize, we were able to identify the most recent fast disturbance events across Minnesota
from 1974-2018 with a change versus no-change validation accuracy of 97.2% =+ 1.9%, and higher
omission (14.9% =+ 9.3%) than commission errors (1.6% =+ 1.9%) for the identification of change patches.
Our classification of the agent of change exhibited an overall accuracy of 96.5% + 1.9% with classes
including non-disturbed forest, land conversion, fire, flooding, harvest, wind/weather, and other rare
natural events. Individual class errors varied, but all class user and producer accuracies were above
78%. The unmatched nature of the Landsat archive for providing comparable forest attribute and
change information across more than four decades highlights the value of the totality of the Landsat
program to the larger geospatial, ecological research, and forest management communities.

Keywords: Landsat time series; forest; change detection; agent attribution; Minnesota

1. Introduction

Spatially explicit information about stand-level forest attributes across land ownerships are
valuable for regional forest assessments, coordinated forest management, and policy development.
Landscape-level patterns of forest structure and stand age are largely driven by disturbance regimes [1].
Characteristics of forest disturbance events, including the duration, severity, and causal agent, will
affect the residual forest structure and potential recovery trajectories [2], both of which are vital to
forest management planning and restoration actions. Additionally, the agent of disturbance (e.g.,
harvest, fire, insects) has varying impacts on forest ecosystem services such as soil productivity [3],
water quality [4], support of biodiversity [5], and carbon sequestration [6]. Thus, understanding
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and identifying the causal agents of disturbance events in a spatially explicit manner, may aid in
forest management planning across multiple ownerships and large extents. This is especially true as
management becomes increasingly focused on the “all lands approach” [7,8], requiring contiguous
spatial information about forest structure, age, and disturbance histories to support planning for
multi-ownership collaborations. The all lands approach, also referred to as an “all lands management”,
which has gained momentum in the last decade as an approach to forest management planning and
restoration, promotes cross-ownership collaborations to share resources, knowledge, and consider
mosaics of forest stands at more appropriate landscape scales for ecosystem management and climate
change mitigation [7,9]. While the underlying mechanisms for successful all lands management are
collaborative projects and management prescriptions across ownership boundaries [7,8], contiguous
spatial and temporal information about forest disturbance patterns at landscape scales provides support
for the planning and execution of such collaborative efforts.

Temporally dense remote sensing data sets, such as those from the Landsat satellite program,
provide a unique opportunity to identify the timing and magnitudes of disturbance events across large
spatial and temporal scales [2,10]. The Landsat program, which provides freely accessible imagery,
represents over 40 years of spectral information at spatial and temporal resolutions appropriate
for stand to landscape level forest attribute modeling and trend assessments. Many studies have
highlighted the value of this long time series, which provides more stable assessments of forest attribute
trends [11] and disturbance and recovery patterns [2,12] compared to single date to date comparisons.
Several algorithms have emerged for fitting Landsat spectral trends and delineating areas of abrupt
change, slow declines, and characterizing recovery trajectories (e.g., [12-14]). LandTrendr, a frequently
employed Landsat temporal trend fitting algorithm, segments the time series data into vertices, reduces
year to year noise by refitting spectral indices to the vertices, and ultimately aids in the identification
of abrupt disturbance events, as well as slower declines and recovery patterns [12]. Abrupt, or fast
events, are those that typically occur within a single year such as harvest, wildfire, and storm events,
and are often significant in shaping current forest stand age and associated structures. For instance,
the time since the last stand replacing event, such as a clear-cut harvest, may serve as the driving factor
for the majority age of that stand as well as providing information related to the current structural
class (e.g., early seral vs. mature forest).

While the value of Landsat time series data for identifying areas of change is well established,
an increasing number of studies are finding additional value in utilizing Landsat data to classify
the agent of change [10,15,16]. Indeed, the cause of a disturbance event can have major impacts on
post-disturbance forest structure, recovery patterns, and ultimately future structural legacies. Thus,
the identification of the agent of a given disturbance will further enhance change detection datasets
intended for forest assessment and associated management planning. For example, natural fire events
often result in higher levels of residual wood (e.g., as standing live legacies, snags, or as downed
coarse woody debris) as compared to clear-cutting harvest activities [17]. While the amount of residual
standing or downed wood resources may vary greatly depending on the intensity and severity of
the disturbance event regardless of the causal agent [18], it is possible to make general predictions
regarding the likelihood of structural legacies once the agent and magnitude of change for a disturbance
patch has been identified [19].

Landsat change detection and agent attribution studies often initiate time series analyses with
Landsat sensors from 1984 onward; however, an additional 12 years of imagery were collected prior
to 1984 with Landsat multispectral scanner (MSS) sensors. MSS data are at coarser spatial, spectral,
and radiometric resolutions as compared to other Landsat sensors (e.g., Thematic Mapper (TM),
Enhanced Thematic Mapper (ETM+), and Operational Land Imager (OLI)), creating difficulties when
attempting to harmonize imagery from different sensors across the entire Landsat archive. However,
processing steps have been developed to address these sensor inconsistencies [20]. For example, the
R package, LandsatLinkr (LLR) [21], incorporates the necessary pre-processing and harmonization
steps [20,22-24] into a single code package, facilitating cross-sensor imagery harmonization for the
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creation of annual cloud-free spectral indices from 1972 to present. Studies that have incorporated MSS
imagery into a complete time series analyses have mostly focused on predicting current forest structure
and biomass [20], stand structural stages and canopy cover through time [11,25], or disturbances within
relatively small geographic areas [26]. The efficacy of using this complete time series for disturbance
mapping and agent attributions across a large area, such as the forested region of an entire state,
remains untested.

Quantification of disturbance and associated agent attribution across over four decades may
provide valuable information for forest managers who are frequently tasked with managing their land
bases to sustain multiple ecosystem services (e.g., timber production, water quality, wildlife habitat,
carbon sequestration) across large spatial extents and temporal domains. The objectives of this study
were to: (1) utilize the complete Landsat archive (1972-2019) to identify the timing, magnitude of
change, and extent of the most recent fast disturbance events across a state-wide extent, utilizing
Minnesota forested lands as a case study area; (2) classify all stand-altering change events by the major
disturbance agents of the region and assess sources of classification errors; and (3) identify spatial and
temporal patterns of disturbance agents and their magnitudes of change by ecological regions and
land ownerships to inform all lands management efforts.

2. Materials and Methods

2.1. Study Area

We focused our case study on the forested lands of Minnesota, USA, which encompasses a variety
of ownerships that are approximately evenly split between private and public entities (Figure 1).
Forests cover approximately 1/3 of the land area in Minnesota and are predominantly located in the
northern-northeastern portion of the state (Figure 1). A variety of cover types occur in the region,
with aspen—birch (Populus spp.—Betula spp.) and spruce—fir (Picea mariana—Abies balsamea) types
dominant, and to a lesser extent pine (Pinus resinosa, Pinus strobus, Pinus banksiana), oak (Quercus
spp.), and northern hardwoods [27]. Wetlands, including forested bogs, peatlands, and swamps,
are found extensively throughout the forested region of the state. A variety of land uses occur in
Minnesota forests including timber production, mining operations, and recreation. The four ecological
provinces of Minnesota (Figure 1), which are defined by their climate, geologic history, soils, hydrology,
and associated vegetation, include: Eastern Broadleaf Forest Province (4.9 million ha); Laurentian
Mixed Forest Province (9.3 million ha); Prairie Parkland Province (6.5 million ha); and Tallgrass Aspen
Parklands Province (1.2 million ha) [28].

For the purpose of our study, we focused on fast forest change events, which we define as those
that occur within three years or less, which result in immediate changes in spectral indices that are often
associated with canopy mortality. Several types of fast forest disturbances occur across the Great Lakes
states including land use conversion, timber harvest, wildfire, flooding, extreme weather events, in
addition to other natural agents that occur somewhat infrequently (e.g., outbreaks of insect defoliators
with immediate impacts on spectral indices). While three years may seem like a long duration for
characterizing what we are considering “fast” disturbances, after initial exploration of change events
in our study region, we identified the prevalence of multi-year harvest and land conversion activities
that we wanted to capture, while the three-year threshold tended to exclude the majority of slower
declines events which were not the focus of our study. Land use conversion may take the form of
transitioning forest to agriculture, urbanization, or the expansion of mining areas. Timber products are
a leading industry in Minnesota, and a range of silvicultural techniques are used that influence harvest
intensity, treatment area, duration of activity, and post-harvest site preparation management practices.
Harvesting occurs on most lands outside the protected Boundary Waters Canoe Wilderness Area and
the Voyagers National Park, with the majority occurring on combined public ownerships compared to
private lands. Harvest levels increased substantially from 1970-1995, peaking from 1995-2005, and then
decreased to a stable level of approximately 2.8-3.0 million cords annually [29], which represents
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less than 1% of timberland in the state. Wildfires are most common in the northern part of the state,
with prescribed burn events more geographically generalized. Large wind blowdown events are also
common in the northern Great Lakes Basin region along with other extreme weather events such as
less frequent tornados [1]. Flooding may lead to canopy mortality as a result of prolonged inundation
of forested wetland areas, impacts of roadways on drainage, and beaver activity.
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Figure 1. Land ownerships and forest cover across the ecological provinces of the Minnesota study area.
2.2. Landsat Time Series

We compiled a Landsat time series data set from 1972-2019 to facilitate identification of disturbance
events and to aid in the classification of the agent of change. After identifying regional peak growing
season characteristics through a sample of annual Normalized Differential Vegetation Index (NDVI)
curves, we identified and downloaded Landsat images acquired throughout the growing season from
the USGS Earth Explorer website (http://earthexplorer.usgs.gov/) for the years of 1972-2015. Imagery
for the years of 2015-2019 were processed within Google Earth Engine (GEE) [30] as a part of later
updating efforts described below to develop an efficient work flow for periodic updates of our time
series stacks, leveraging recent advances in GEE algorithms and cloud computing. With the high
occurrence of clouds in the northern part of the state during the growing season, we attempted to
balance the representation of a peak growing season date range with imagery coverage in determining
our composite date range, resulting in the time window of 1 July—9 September. We compiled imagery
from all Landsat sensors (MSS, TM, ETM+, and OLI) from 1972-2015 across the entire state of Minnesota,
encompassing 28 Landsat scenes with a total of 6041 images included in the initial time series stack.
To create annual cloud-free composites of spectral indices that were comparable across all sensors,
we utilized LandsatLinkr (LLR) [21] in the R programming environment [31], for all pre-processing
and cross-sensor harmonization. LLR automates the necessary steps to create annual composites
of the spectral tasseled cap indices (brightness, greenness, and wetness) [32] as well as a derivative
of greenness and brightness called the tasseled cap angle [33], harmonized throughout the entire
span of the Landsat archive, and composited across multiple Landsat scenes. Incorporating multiple
images within the annual compositing time window, including images from overlapping scenes where
available, we employed the median compositing method for selecting spectral index values for each
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pixel across the time series. See Vogeler et al. (2018) for additional details on image processing and
LLR steps utilized in this study [11].

Following the implementation of LLR to produce harmonized spectral indices across the different
Landsat sensors, we employed the IDL-based LandTrendr trend fitting algorithm to smooth year to
year spectral noise remaining in the dataset, and to identify spectral trends through time [12]. Fitting
trend vertices through Landsat time series data sets is a common approach used to identify areas of
change, including both fast events (e.g., fire and harvest) and slower declines (e.g., stress and insects),
as well as to characterize recovery trajectories. We employed LandTrendr to fit trends through the
composite stacks of each of the tasseled cap indices independently, although the trends for tasseled cap
wetness (TCW) were ultimately utilized to identify the timing and change magnitude of the most recent
fast disturbance event occurring in a given area. Of the tasseled cap indices, TCW is the most sensitive
to changes in forest canopy structure [34]. We utilized Google Earth Engine (GEE) to update the time
series through 2019, using comparable pre-processing methods and composite date ranges as those
utilized in the processing of the 1972-2015 data base, with the exception of fitting LandTrendr trends
to the reduced time frame of 1984-2019 to leverage the available Landsat imagery and Land Trendr
algorithm [35] on GEE. The fitted tasseled cap indices for 2015-2019 were then exported from GEE and
compiled with the existing 1972-2014 fitted indices time series for the identification of disturbance
events and classification of agents. Previous studies have noted increased instability of the first year
or two of a Landsat time series data base as these early years lack the benefits of previous years for
stabilizing context; similarly, the final year of the time series lacks the context of post-disturbance
years [12], which may inflate disturbance areas and cause increased errors in agent classifications.
Therefore, we allowed the time series two years to stabilize, and removed both of the ending years in
the two time series stacks, 2015 from the initial time series, which was replaced by GEE-based indices
and 2019 from the second time series, resulting in a final stabilized time series stack from 1974-2018.

We identified the most recent change events from the time series across the landscape, noting the
first year post-change as the year associated with each fast event. Since the focus of this study was to
identify patch to stand altering events, where we consider patches as within stand events resulting in
large openings in the canopy, we followed the methods of Kennedy et al. (2015) and set a minimum
mapping unit of 11 Landsat pixels (slightly more than 1 ha) to determine if a patch was retained in
the final change map [15]. The minimum of 11 pixels also serves as a homogeneity check to focus
on canopy opening events while excluding smaller spectral change patches, which have a greater
probability of being related to spatial misregistration issues.

We used a forest mask to remove non-forest lands to limit change patches to just those occurring
within forest. There is potential bias in using a current forest mask to remove non-forest areas in a
study that spans four decades because areas that were historically forested but recently converted to
non-forest would be missed. To minimize this bias, we created an “if-ever-forest-mask” by stacking
annual forest masks from 1973-2018 created by Vogeler et al. (2018) [11] and setting a threshold of three
years within a forest class at any point throughout the time series to be considered forest during the
study period. While this method reduces the bias of removing stands which may have been converted
out of a forest class during the study period, it also represents a liberal classification of “forest” for the
current time period and may result in some non-forest change events to be retained in the final product.

2.3. Change Agent Attribution

Following the identification of the most recent fast change events across the study area, we
extracted information about each of the change areas to create a classification model to predict the
agent of change for each independent event. Classification predictor variables included: Landsat
fitted spectral indices and magnitudes of change, pre- and post-change fitted spectral and canopy
cover values, patch area and shape characteristics, topographic indices extracted from Shuttle Radar
Topography Mission (SRTM), information about the management protection status as classified by the
Gap Analysis Project (GAP) [36] within their Protected Area Data base-US (PAD-US), and key land
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cover classes related to wetland areas from the 2016 National Land Cover Dataset (NLCD; Table 1) [37].
Canopy cover values were extracted from an annual state-wide data base, also created using Landsat
time series methodologies [11]. In addition to basic elevation and slope, we calculated topographic
indices representing local hillslope positions and a topographic landform using the Relief Analysis
add-on tool [38] for ArcGIS 10.3. Utilizing the GAP PAD-US product [36], we assigned each change
patch with a management protection level from 1 to 4 to include as a categorical predictor, with
1 representing the highest level of resource extraction protection such as those found in national
parks and wilderness areas, and 4 indicative of areas with no or unknown management protection.
As anthropogenic disturbances should be minimal in highly protected areas, our hope was that the
inclusion of this categorical variable may help account for these differences in likelihoods of disturbance
agents within the levels of land protection.

We compiled a training database of 2747 patches with known agents of change using a combination
of historic aerial photos, existing spatial databases (e.g., Monitoring Trends in Burn Severity) [39],
and expert knowledge compiled during personal communications with local land managers. Sources
of historical aerial imagery included Google Earth Pro for 1990-present, and the database available
through the Minnesota Historical Aerial Photographs Online website for pre-1990 aerial photos [40].
All photo interpretations were completed by one trained interpreter familiar with the study area
to reduce biases between multiple interpreters. All training patches were classified using a 6-class
designation: land conversion out of a forest class (CONVERISON), forest fire (FIRE), flooding related
spectral and/or canopy changes (FLOOD), timber harvest (HARVEST), wind and weather-related
events (WIND), and other rare or unknown natural events (OTHER). During the identification of
training patches, we noted that some identified change events contained standing water related to
flood events, which may or may not have led to actual canopy mortality. We included both flooding
resulting in spectral changes, as well as events that ended in canopy mortality, within our FLOOD
classification, as spatial information about flooding events, whether they result in immediate canopy
mortality or not, can be of interest to managers.

We created a random forest classification model [41] using the randomForest R package [42]
for the 6-class agent of change designation. After compiling all predictor variables for training
patches, we conducted a variable reduction and model selection procedure employing the rfUtilities R
package [43]. We then applied the final 6-class model to all unknown patches to predict the agent of
change for all most recent fast change events across the study area.

Table 1. Disturbance agent random forest classification model predictors with designations for those
retained in the final model following variable reduction procedures. The top three metrics from random
forest metric importance rankings are marked with an asterisk.

Metric Category Metric Metric Description Final 6-Class Model

TCB-Pre Pre-disturbance tasseled-cap brightness

TCG-Pre Pre-disturbance tasseled-cap greenness X
TCW-Pre Pre-disturbance tasseled-cap wetness X
TCA-Pre Pre-disturbance tasseled-cap angle

TCB-Post Post-disturbance tasseled-cap brightness X
TCG-Post Post-disturbance tasseled-cap greenness X
TCW-Post Post-disturbance tasseled-cap wetness X
TCA-Post Post-disturbance tasseled-cap angle

TCB-Mag TCB magnitude of change X

SPECTRAL TCG-Mag TCG magnitude of change X

TCW-Mag TCW magnitude of change X
TCA-Mag TCA magnitude of change

TCB-Rec TCB post event recovery magnitude

TCG-Rec TCG post event recovery magnitude

TCW-Rec TCW post event recovery magnitude

TCA-Rec TCA post event recovery magnitude

TCB-Cur TCB current value
TCG-Cur * TCG current value X
TCW-Cur TCW current value X
TCA-Cur TCA current value X
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Table 1. Cont.

Metric Category Metric Metric Description Final 6-Class Model
Cover-Pre * Pre-disturbance canopy cover X
Cover-Post Post-disturbance canopy cover X
CANOPY COVER Cover-Mag * Difference between Cover-Post and Cover-Pre X
Cover-Cur Current canopy cover X
Area Area of the disturbance patch (m?)
CH ARE%TF%I;{II STICS Perimeter Perimeter of the disturbance patch (m)
AP-Ratio Ratio of perimeter to area X
Elevation Mean elevation X
Hillslope-250 m Hillslope position index 250 m radii

TOPOGRAPHIC Hillslope-500 m Hillslope position index 500 m radii X

Landscape Landscape position index

MANAGEMENT . e
STATUS PAD-US PAD-US protection classification (1-4) X
Proportion patch within National Land Cover
Wet Dataset (NLCD) classes: open water + emergent X
LANDCOVER herbaceous wetlands
CLASSES Proportion patch within NLCD classes: open
Wet-All water + emergent herbaceous wetlands + woody X
wetlands

2.4. Change Detection Validation

We followed the methods presented by Olofsson et al. (2014) [44] and Stehman (2014) [45] for the
validation of classification maps to quantify area-weighted accuracy measures and confidence intervals
for areas of change vs. no-change as well as for each of the change agent classes. We selected a random
set of 725 validation map pixels stratified by the six agent classes as well as a seventh class representing
areas of forest classified as no-change. We used a combination of the data sources employed in training
interpretations (e.g., historic photos) along with plots of the unfitted spectral index trends to aid in the
assessment of each of the validation pixels. We assigned a designation of change/no-change and the
observed agent of change, which we then compared to the predicted classification to create validation
confusion matrices, calculate class and overall accuracies with confidence intervals, and produce an
area-weighted coefficient for the estimation of all areas presented in our results.

2.5. Spatial and Temporal Summaries

We summarized spatial and temporal trends within forest ownership boundaries as well as within
the four ecological regions of Minnesota: eastern broadleaf forest, Laurentian mixed forest, prairie
parkland, and tallgrass aspen parkland. We compared the distribution of the different agents of change,
magnitudes of agents, as well as time since disturbance classes, across ownerships to identify any
spatial or temporal patterns of disturbances within ownerships. Time since last disturbance, along with
the magnitude of change, is often related to the succession stage of a stand; thus, in addition to assessing
trends in magnitudes of changes by agents, we also utilized the year of onset for each change event to
create the following time since disturbance classes with the assumption that they represent different
stages of forest succession and associated structures: 0-9 years since disturbance, 10-19 years since
disturbance, 20-29 years since disturbance, 3044 years since disturbance. Leveraging the previously
published annual Minnesota canopy cover maps created using the same base Landsat time series
spectral data stacks as those used in our study to identify disturbance patterns [11,46], we translated the
magnitude of change from each disturbance event into change in percent canopy cover by subtracting
the mean pre-disturbance canopy cover from the mean post-disturbance canopy cover, to provide a
management-relevant relative measure of magnitudes across agents and ownerships.

3. Results

The Landsat time series methodology utilized in this study was successful in identifying the
most recent fast disturbance events across Minnesota from 1974-2018 with a change vs. no-change
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validation accuracy of 97.2% + 1.9% (Table 2). The change detection algorithm exhibited higher
omission (14.9% + 9.3%) than commission errors (1.6% + 1.9%) for the identification of change patches.
Omission errors within the validation efforts were often related to the size and intensity of the change
event. Change patches close to the minimum size threshold were less likely to be identified, along with
patchy natural events where the disturbance impacts were more spread out and barely constituted a
contiguous 11 pixels of change. Similarly, lower intensity events also contributed to omission errors,
including sivilcultural-thinning activities, which resulted in only minor reductions in canopy. We did
not observe any significant differences in error structures of the change and no-change classification if
we removed MSS-related change years, supporting its inclusion to extend the time series stack for the
identification of fast patch to stand impacting change events.

Table 2. Error matrix of estimated proportions of area for change detection assessment and accuracy
estimates from independent validation of 725 pixels of the Minnesota disturbance map for the
period 1974-2018. Accuracy uncertainty was calculated as 95% confidence intervals and is reported
in parenthesis.

Error Matrix Accuracy

Non-Disturbed Disturbed User’s Producer’s Overall

Non-Disturbed 0.827 0.025 97.0 (2.2) 99.7 (0.3) 97.2 (1.9)
Disturbed 0.002 0.145 98.4 (1.9) 85.1 (9.3)

We further classified disturbance patches by their agents of change (Table 3) with an overall
accuracy of 96.5% + 1.9% (Table 4). Individual disturbance class user and producer errors varied,
but all class accuracies were above 78% (Table 4), with HARVEST and CONVERSION exhibiting the
highest user accuracies (95.6% + 3.8% and 92.9% + 6.2%, respectively) and FIRE and CONVERSION
with the highest producer accuracies (98.8% + 2.4% and 92.6% + 8.9%, respectively). The lowest
user and producer accuracies were observed for the WIND (80.0% + 9.0%) and HARVEST classes
(78.6% =+ 10.9%), respectively. Detailed depictions of example patterns of disturbance ages and the
classified agents are presented in Figure 2. One of the most prevalent misclassifications were lower
intensity harvest patches, such as those that were thinned through strip harvests or localized selective
harvests, incorrectly predicted as wind events. There were also some cases where harvests were
predicted as flooding and vice versa, which may be due to simultaneous disturbance events (i.e.,
increase in minor flooding or other moisture related spectral changes immediately following harvest
activities) [47] or were a byproduct of post-harvest site-preparation techniques.

Table 3. The error matrix for disturbance class attribution populated by estimated proportions of area
for the Minnesota disturbance map for the period 1974-2018.

Observed

Non-Disturbed Conversion Fire Flood Harvest Wind Other
Non-Disturbed 0.827 0 0 0 0.025 0 0
CONVERSION 0 0.004 <0.001 <0.001 <0.001 0 0
FIRE 0 <0.001 0.005 0 <0.001 <0.001 0

Predicted FLOOD <0.001 <0.001 0 0.011 0.001 0 <0.001
HARVEST 0.002 0 0 0.001 0.107 0.002 0
WIND <0.001 0 0 0 0.002 0.010 0

OTHER <0.001 0 0 0 <0.001 0 0.001
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Table 4. Accuracy assessment results for non-disturbed forest and attributed disturbance classes for
the Minnesota most recent fast disturbance map (1974-2018). Accuracy uncertainty was calculated as
95% confidence intervals and is reported in parenthesis.

Accuracy

User’s Producer’s Overall

Non-Disturbed 97.0 (2.2) 99.7 (0.3) 96.5 (1.9)
CONVERSION 92.9 (6.2) 92.6 (8.9)
FIRE 90.2 (6.6) 98.8 (2.4)
FLOOD 89.7 (7.4) 91.3 (15.0)
HARVEST 95.6 (3.8) 78.6 (10.9)
WIND 80.0 (9.0) 83.1 (19.2)
OTHER 89.6 (7.0) 87.5 (21.8)

100 200 Kfometers

Change Agent Year
[ ] CONVERSION 1975-1980
B s RE | 1981-1985
B sL.ooD P 1986-1990
[T HARVEST [l 1991-1995
I WND B 19962000
OTHER I 2001-2005
I 2006-2010
I 20112018

Figure 2. Example insets of most recent fast disturbances within Minnesota by disturbance agent
classifications and time since disturbance classes. Inset (A) falls within a mosaic of public land
ownership, (B) is located within the Boundary Waters Canoe Wilderness Area, and (C) is within the
twin cities developed area of Minneapolis and St. Paul.

During the time period of the study, 17% of forested lands experienced a stand-altering event,
although this proportion was calculated using our liberal if-ever-forest-mask, which may bias this
estimate through the overestimation of current forested areas; thus, underestimation of proportion of
current forested area that experienced a fast change event. Across all regions, harvest was the most
prevalent stand replacing causal agent (80% of total disturbed area) followed by wind and flooding,
each representing approximately 7% of total disturbance area. Patterns of change agents across the
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study region show variations in the dominant disturbance events for major stand alterations within
the four ecological regions of Minnesota (Figure 3). The Laurentian Mixed Forest ecoregion, which
has the largest proportion of public lands including the Chippewa and Superior National Forests,
Boundary Waters Canoe Wilderness Area, and Voyagers National Park, had the most variation in
agents of change with the highest proportion of area impacted by wind and fire events compared to
the other regions (Figure 3). The Laurentian Mixed Forest ecoregion also had the highest proportion
of forested land and disturbed area in general (95% of the disturbed forest). The Eastern Broadleaf
Forest ecoregion, home to the densely populated metropolitan area of the Twin Cities, has the largest
proportion of private ownership in the state and the highest proportion of land conversion across the
study time period (Figure 3).
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Figure 3. Proportion of area for the period of 1974-2018 by agent classes within Minnesota
ecological regions.

Land ownerships exhibited varying patterns of likelihood of disturbance across the different
change agent classes. The highest proportion of most of the natural disturbance classes, including
fire and wind, occurred on federal lands (86% of all fire activity and 50% of all wind activity), which
includes the protected Boundary Waters Canoe Wilderness Area and the Voyagers National Park.
While harvest was the most likely stand altering disturbance agent across all ownerships (Table 5),
the majority of harvest activity in terms of actual land area occurred on private and state managed
lands encompassing 469,198 ha (38% of all harvest activity) and 311,553 ha (25% of all harvest activity),
respectively. It should be noted that the private and state ownership classes also represent the two
largest forest land holdings in the state (Figure 1). Land conversions were most likely to occur on
private lands (84% of all conversion area).
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Table 5. Percent of area by agent classes within Minnesota land ownership categories. Numbers in
bold identifies the most prevalent disturbance agent for each ownership category.

Percent of Disturbance Agents by Ownership Percent of Total

Conversion Fire Flood Harvest Wind Other Disturbed Forest
State 0.57 0.86 9.17 83.61 5.04 0.75 25.19
Federal 0.25 16.87 5.15 52.72 23.46 1.54 9.96
Private 5.72 0.44 7.21 82.10 3.81 0.71 37.93
Tribal 1.51 0.06 11.37 83.20 3.52 0.34 2.24
County 0.68 0.24 5.68 89.16 3.50 0.73 2451
Other Public 10.95 0.36 5.59 79.68 3.27 0.15 0.17
State Wide 2.48 2.94 7.02 79.71 7.02 0.84

Assessments of the relative changes in canopy cover within events of different disturbance
agents and ownerships revealed significantly higher changes in cover as a result of harvests and
land conversions over the other agents, and a tendency for generally higher impacts of events on
canopy cover within the “county” ownership class (Figure 4). When we focused on harvest events
specifically, the trend for cover magnitudes were similar as those from combined disturbance events,
with “county” lands exhibiting significantly higher changes in canopy cover from harvest events (e.g.,
more clear-cuts) followed by “other public” and “state” managed lands, although harvests within
all ownerships spanned a range of sivilcultural techniques and harvest intensities. We acknowledge
that the canopy cover maps represent all functional woody vegetation cover over two meters [11],
including large woody shrubs common to Minnesota forests, and therefore is not just a measure of
canopy removal from the disturbance event, although we believe that it is appropriate as a relative
measure of change across the disturbance events. In general, magnitudes of cover changes appeared
low, even within canopy clearing events such as clear-cuts, which could be a product of revealed
understory trees, a quick release in growth of tall woody understory shrubs, or overestimation of
base cover within the annual cover maps. We also calculated change in canopy cover as the mean
pre-disturbance cover subtracted from the mean post-disturbance cover within each individual change
event; therefore, the resulting change value is impacted by minimal cover change along edges and in
areas of retained trees, as well as smoothing over individual pixels within the change patch that may
have experienced significantly higher changes in percent cover.
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Figure 4. Mean patch-level change in canopy cover by (A) agent and (B) ownership for disturbances
represented by the Minnesota most recent fast disturbance maps for the period 1974-2018. The error
bars represent the 95% confidence interval around the mean. Note: change in canopy cover is calculated
as the mean pre-disturbance canopy cover subtracted from the mean post-disturbance canopy cover.

Within the time since disturbance classes assessed in this study (<44 years since disturbance),
the majority of forest lands across all land ownerships fall within the two youngest time since
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disturbance age bins (0-9 and 10-19 years since disturbance; Figure 5). County and state-owned lands
exhibited higher proportions of areas within the youngest time since disturbance class, while the
second youngest class represented the highest proportion of area within federal, tribal, and private
lands (Figure 5). Due to the small forest area within the “other public” category, we did not further
evaluate age class distributions within this ownership. Harvest was the driving agent for all time since
disturbance classes, with the largest proportion of harvested area within the second youngest class
(10-19 years since disturbance; Figure 6). Fire and conversion were more frequent within the youngest
class (0-9 years since disturbance), while wind and the other class exhibited their highest influence
within the second youngest time since disturbance class (Figure 6).
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Figure 5. Time since last disturbance class areas summarized by land ownerships.
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4. Discussion

As forest management agencies increasingly engage in all lands management, spatial information
about forest age, condition, and disturbance histories across the landscape may provide a valuable
tool for cross-ownership planning. Currently in the western USA, all lands management efforts
are becoming more common for fuel reduction treatments in the mitigation of wildfire risks and/or
restoration efforts to promote forest resilience to fire events [7], where forest structural stage and
disturbance history information may aid in project planning. On a more global stage, studies have
begun to explore the utility of cross-ownership assessments for greenhouse accounting frameworks
requiring spatially explicit information about forest change, specifically anthropogenic management
activities and land conversions, to serve as important accounting and monitoring inputs [48]. More
specific to Minnesota, a recent report released by the Minnesota Forest Resources Council identified a
key research priority for multi-ownership management related to determining relationships between
the spatial arrangement of forest conditions (age class structure, cover types, patch size distribution)
and forest resources such as fiber availability, water quality, and wildlife habitat, among others [49].
The approach we have presented here directly addresses information needs of all lands management
efforts, and our results show promise for statewide assessments of forest structure and change and
its influence on forest resources. With contiguous coverage across the state, independent of land
ownership, spatial and temporal information about disturbance patterns presented in our study will
help fill information gaps for support of collaborative management and restoration efforts across
ownership boundaries within Minnesota, as well as providing a methodological framework, which
could be applied to produce similar spatial products in other regions.

In our study, we harmonized imagery across all Landsat sensors, including the early MSS years,
which are rarely incorporated into recent Landsat time series change detection analyses. This approach
allowed us to identify and classify an extra decade of events compared to many of the other change
detection studies [2,15,16,50], resulting in the characterization of forest disturbances across the state
of Minnesota for a time period spanning forty-four years. While we did not detect any variations
in accuracy structures across the time periods of the different Landsat sensors within our study, we
acknowledge that there still may be some sources of limitations and biases in the incorporation of the
MSS era not reflected in the validation accuracies alone. While the pre-processing and harmonization
procedures facilitated by LLR may have helped alleviate difficulties faced by the coarser resolutions,
reduced spectral information, and increased geo-registration errors of the MSS data (see Vogeler et al.
2018 for details on MSS processing steps) [11], there was still the need for extensive quality assessments
and periodic manual intervention throughout the processing steps to ensure the creation of comparable
products to that of the later sensors. These interventions included the identification and removal
of individual MSS images, which caused artifacts in initial spectral composites, as well as manual
geo-registration efforts for an additional 96 MSS images (L1G products) to fill in spatial and temporal
gaps due to limited higher quality level 1 products, for which LLR is set up to ingest, for some years
and Landsat scenes [11]. In addition, the black and white historic photographs from the MSS era
used for validation often had larger time gaps between images and coarser resolutions than more
recent aerial photography archives, resulting in lower confidence calls during validation assessments.
This means that there is a chance that there were additional small lower intensity disturbances that
were missed in the MSS years of our disturbance mapping that we were unable to be detected from
the available reference data during map validation, which would result in slightly inflated MSS era
related accuracies. Other constraints in using MSS imagery include (1) limited availability of MSS
imagery and methodologies in GEE, requiring more local computing resources and processing times,
and (2) limited coverage of MSS imagery (as readily useable level 1 products) in many areas outside of
the U.S., which restricts international opportunities to construct longer time series with MSS data.

Previous studies evaluating time series change detection from 1984-forward utilizing various
trend fitting algorithms exhibited similar accuracies to our overall change detection accuracy of
97.2% +1.9% [16,50]. Nguyen et al. (2018) utilized a similar LandTrendr segmentation change
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detection methodology to us, but relied on trends across the normalized burn ratio (NBR) index as
opposed to our tasseled cap wetness index for change detection [16]. They reported an accuracy of
87.5% for primary change events across four Landsat scenes within the state of Victoria, Australia [16].
Focusing on the entirety of the province Saskatchewan, Canada, Hermosilla et al. (2015) utilized a
Landsat time series break-point detection approach with an overall accuracy of 92.2% for identifying
forest change events [50]. In our study, we found higher omission than commission errors for detecting
areas of forest change (14.9% = 9.3% and 1.6% + 1.9%, respectively), with many of the omission
errors attributed to either small (e.g., close to the 11-pixel minimum mapping unit) or lower intensity
disturbances (e.g., thinning harvests with high levels of retained canopy). While an underestimation of
disturbed area is assumed due to higher omission than commission errors, further validation of the
size of individual mapped events could be conducted by digitizing disturbance patches using high
resolution reference imagery, if such data exist. Managers and other users of disturbance mapping
products may benefit from more detailed validation analyses related to sizes of, and sensitivities to,
individual events; thus future work should continue to explore the potential bias of change detection
approaches for underestimation in sizes of individual change events and methodological sensitivities
to various levels of disturbance intensities (e.g., a range of sivilcultural techniques).

Attributing the causal agent or pattern of change has become a common theme in Landsat time
series change detection studies [2,15,16,50] and provides valuable information for land managers and
for additional ecological assessments of disturbance regimes and impacts on ecological services. Despite
variations in disturbance agent and temporal regimes across regions and forest types, we were able to
predict causal agents with class accuracies above 78%, with the majority above 90%, and an overall
7-class (six disturbance classes and one non-change class) accuracy of 96.5% + 1.9% across the diverse
forest systems of Minnesota. When relying on spectral trends for change detection and classification of
agents, there are some potential limitations of the data to differentiate between disturbance classes
when they result in similar post change structures. For example, patches that experienced lower
intensity silvicultural practices such as thinning and selection harvests were occasionally misclassified
as wind or missed in disturbance detection altogether. Further, we chose to focus our identification of
disturbance areas on relatively fast moderate-high magnitude change events; thus, our maps do not
reflect areas impacted by forest changes related to slower declines, which may be the product of insects
and disease, although these evaluations are also possible through Landsat time series approaches [51].

Forest harvest represented significantly higher mean changes in canopy cover compared to the
other disturbance agents, with the highest mean cover changes occurring on “county”, “other public”,
and “state” managed forest lands. Land ownership can have large impacts on forest disturbance
regimes, including sivilcultural intensities, rotation lengths, fire suppression, and salvage harvesting
of natural events. For instance, natural events, including fire and wind, were most likely to occur
on federal lands. This may be in part due to the historical disturbance patterns of ecological regions,
where the majority of federal lands, as well as historic occurrences of large fire events, occur within
the Laurentian Mixed Forest Province of Minnesota. The higher likelihood of the most recent change
being a wind or fire event on federal lands may also be attributed to the federally owned Boundary
Waters Canoe Wilderness Area and the Voyagers National Park, which are protected from harvest and
land conversion activities. While wind and fire activities within this ecoregion of Minnesota may also
occur on private, state, and county lands, they also have a higher probability of experiencing salvage
logging after the natural disturbance event, which would then be reported as the most recent change
event within our disturbance map.

By delineating the agent(s) of forest change, we are able to provide greater insight into the residual
forest structures, recovery patterns, and potential impacts on ecosystem services. For example, in
some instances fire and wind may result in similar canopy mortality as harvest activities, but that
reduction in live biomass is likely retained at some level as standing or downed dead wood as opposed
to the reduction in canopy being the result of timber removal during silvicultural practices. Those
residual standing or downed dead wood legacies within fire or wind impacted stands may provide
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valuable habitat resources to a variety of wildlife species [52,53] and contribute to the overall structural
diversity of the stand. In addition to providing direct insights into residual structures through the
identification of change agents, our methodologies may also aid additional modeling and mapping
efforts of more detailed structural patterns and stand boundaries through the fusion of remote sensing
data sources [19,20]. Combining the historic Landsat time series products with the structural sensitivity
of active remote sensing (e.g., lidar) may assist in characterizing difficult to map forest attributes such
as biomass [20] and standing dead wood habitat resources [19], which provides value for carbon
accounting [54] and monitoring of wildlife habitat for species of conservation interest [53]. Recovery
trajectories may also be impacted by the agent of forest change [2]. A study utilizing Landsat spectral
trends to assess short- and long-term recovery patterns following fire and harvest events across
Canadian forests found that harvest areas recovered more consistently and quickly than fire impacted
forests when normalized for magnitudes of change [2]. Through the identification of the timing, extent,
magnitude, and agent of disturbance events, we can provide insight into potential recovery trajectories
and aid in further research as to the varying impacts of change agents on residual structures and
recovery patterns across different forest systems.

5. Conclusions

As access to affordable remote sensing imagery and cloud computing resources improve, and the
temporal records of field and remote sensing-based data bases continue to lengthen, opportunities are
increasing to provide spatial records of forest change and recovery patterns across large extents. The
findings we presented here demonstrate an approach to quantify most recent fast disturbances over
long time periods to provide spatial and temporal information about forest change events and their
associated causal agents. These types of data may facilitate cross-ownership monitoring, planning, and
restoration efforts to better address the scale of forest ecosystem processes, and improve the efficiency
of efforts to address the complicated nature of stressors that forest currently face. The potential of
altered disturbance regimes as well as intensities and extents of natural change events with climate
change, require drawing on new technologies, management approaches, and large-scale planning
efforts to maintain general forest health and functioning across the landscape and the vital ecosystem
services that forests provide. The disturbance map presented in this study is freely available on the
Minnesota Geospatial Commons (https://gisdata.mn.gov/dataset/env-fast-forest-disturbances).

The unmatched nature of the Landsat archive for providing comparable forest attribute and
change information across more than four decades highlights the value of the totality of the Landsat
program to the larger geospatial, ecological research, and forest management communities. Our study
demonstrates an approach for the harmonization of all Landsat sensors and the identification of
change events across the Landsat archive. However, the incorporation of MSS imagery to extend
the time series analyses required extensive time and effort, and spatial applicability of our methods
are restricted to geographic regions with adequate temporal and spatial coverage of MSS imagery
available as terrain corrected level 1 products, which may be limited in some international locations.
Further studies should continue to evaluate the values and potential limitations for applications of the
extended Landsat time series data set.
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