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Abstract: Forest monitoring is critical to the management and successful evaluation of ecological
restoration in mined areas. However, in the past, available monitoring has mainly focused on
traditional parameters and lacked estimation of the spatial structural parameters (SSPs) of forests.
The SSPs are important indicators of forest health and resilience. The purpose of this study was
to assess the feasibility of estimating the SSPs of restored forest in semi-arid mine dumps using
Worldview-2 imagery. We used the random forest to extract the dominant feature factor subset; then,
a regression model and mind evolutionary algorithm-back propagation (MEA-BP) neural network
model were established to estimate the forest SSP. The results show that the textural features found
using 3 X 3 window have a relatively high importance score in the random forest model. This indicates
that the 3 x 3 texture factors have a relatively strong ability to explain the restored forest SSPs when
compared with spectral factors. The optimal regression model has an R? of 0.6174 and an MSRE
of 0.1001. The optimal MEA-BP neural network model has an R? of 0.6975 and an MSRE of 0.0906,
which shows that the MEA-BP neural network has greater accuracy than the regression model.
The estimation shows that the tree-shrub-grass mode with an average of 0.7351 has the highest SSP,
irrespective of the restoration age. In addition, the SSP of each forest configuration type increases with
the increase in restoration age except for the single grass configuration. The increase range of SSP
across all modes was 0.0047-0.1471 after more than ten years of restoration. In conclusion, the spatial
structure of a mixed forest mode is relatively complex. Application cases show that Worldview-2
imagery and the MEA-BP neural network method can support the effective evaluation of the spatial
structure of restored forest in semi-arid mine dumps.

Keywords: forest spatial structure; Worldview-2; MEA-BP neural network; semi-arid mine dumps;
ecological restoration

1. Introduction

The species planted for reforestation in mine dumps of semi-arid areas have been planted based
on local conditions such as environmental suitability, after which natural succession occurs. This gives
forests in these areas the characteristics of having a simple spatial structure and weak heterogeneity;,
which is different from natural forests. The spatial structural parameters (SSPs) of these restored
forests in semi-arid mine dumps are important indicators used for evaluating the quality of ecological
restoration at post-mining sites and are of great significance for the monitoring and management of
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ecological restoration projects. The estimation of forest SSPs is important when testing the effectiveness
of forest restoration measures and reducing the risk of future degradation of restored forest land.

Currently, research on the spatial structure of forests is lacking related to the evaluation of
ecological restoration success in mine areas [1]. The rapid and accurate estimation of large-scale
forest structural parameters is an important basis for formulating sustainable forest management
measures [2], especially plantation management [3]. It has huge application potential in forest resource
management planning [4]. Existing studies explored the stability of forest structure [5] and evaluated
the economic and ecological benefits of forestry [6] through forest structure parameters. Two main
methods currently exist for obtaining the parameters of the forest spatial structure. Traditional methods
used to acquire information on forest spatial structure parameters usually rely on ecological field
surveys, and the common method of investigating forests is per wooden locator. The survey parameters
include: number of trees, basal area, stem volume [7], location [8], height [9], base perimeter, canopy
size, and so on [10]. Ecological field surveys are expensive, inefficient, and make full coverage of
the study site difficult to achieve. At present, high-resolution remote sensing technology has the
advantages of producing results rapidly, having a wide range, low cost, and high accuracy to provide
rich forest spectral and textural information [11-13]. By transforming the spectra [14,15] and using
spatial analysis [16], a great amount of forest information can be mined from this data source. However,
few studies have investigated the ability of Worldview in inverting the spatial structure of forests.

Remote sensing has been widely introduced into the study of forest parameters. Generally, forest
parameters such as vegetation coverage [1,17], vegetation index [18-21], and leaf area index [22] are
obtained using medium-resolution satellite images, such as imagery from Landsat [23,24] and Sentinel-2
satellites [25]. Researchers have extracted the Normalized Difference Vegetation Index (NDVI) [26],
Soil Adjusted Vegetation Index (SAVI) [27], leaf area index [28], chlorophyll [29], Net Primary
Production [30], and forest water content [31] from remote sensing images. These parameters become
connections between observed forest parameters and soil structure, ecosystems [32-34], climate
environment [35], and so on, which are employed for evaluating the success of ecological restoration.
However, medium-resolution satellite imagery provides only a limited amount of information, and
fine structures are difficult to extract. This limits the quantitative extraction of forest parameters and
the evaluation of the success of ecological restoration. Further research has proven that high spatial
resolution images provide more detailed forest information [36-38], which can greatly improve the
accuracy of estimation results.

The purpose of this paper is to use a readily available multispectral sensor (Worldview-2) to
estimate the restored forest spatial structure parameters in semi-arid mine dumps, especially for:
(1) determining the dominant feature factor subset of forest SSP; (2) establishing a forest SSP estimation
model based on field sampling data; and (3) discussing the variability of spatial structure for different
forest allocation techniques during different restoration years.

2. Materials and Methods

2.1. Study Area

The study area is located in the Heidaigou open-pit coal mine of the Shenhua Zhungeer Energy
Co. Ltd., Inner Mongolia, China, at 39°38’-52’ N, 110°06’-111°24" E and about 125 km northeast of
Ordos (Figure 1). The terrain is mainly hilly, with an elevation of 1025-1302 m. The semi-arid climate of
the middle temperate zone has an average annual precipitation and temperature of about 350-450 mm
and 7.2 °C, respectively.
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Figure 1. (a) Map of Inner Mongolia, China showing the location of the study area; and (b) Worldview-2
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image of the study area acquired in 2018, showing the layout of the four mine dumps.

Since the construction and production of Heidaigou Coal Mine started in 1990, the surface forest
ecosystem has been severely damaged due to the large-scale excavation of infrastructure and mine
production projects. Forests promote soil structure restoration and fertility, while also providing
protection from soil and water erosion. Therefore, the plantation and growth of forests is the primary
aspect of ecological restoration. Land restoration work started in 1992. Six mine dumps exist in the
mining area. Here, four of them were selected for research. The dump site had a steep slope and a
thin soil layer, which was very unfavorable to water retention and plant seed settlement. Therefore,
the dump site needed to be leveled and covered before planting. During vegetation selection, native
plants and pioneer plants that can naturally become established in industrial wastelands were preferred.
In dumps, slopes were mainly planted with a tree—shrub-grass combination of plants to prevent soil
erosion and the terraces where planted with legumes and sea buckthorn to provide soil maturation.
The row spacing of trees was about 2—4 m, and shrubs was about 1.5-2 m. The main types of forest
in the north dump are Hippophae rhamnoides, Caragana korshinskii, Pinus tabulaeformis, and Populus
euphratica; the forest reached full coverage of the landscape in 2010. The east dump was mainly
planted with Glycyrrhiza uralensis, Leymus secalinus, and P. euphratica; the forest coverage reached 80%
in 2008. The forest of the west dump site is populated by Calamagrostis epigejos and Populus spp., which
covers the surrounding area. The forest in the inner dump is covered by C. epigejos and forb meadow;
the coverage peaked in 2010. Native remnant forest species included Stipa bungeana, Thymus serpyllum,
and Heteropappus altaicus, which were scattered with a coverage of <30%.

2.2. Forest Spatial Structure

The organization of forest structure can reflect the species of forest communities and their
interrelationships. It can also represent the complexity and diversity of forest structures. Numerous
studies have shown that the organizational structure of forest communities includes not only species
diversity, but also the diversity of spatial structure, such as differences in tree diameter at breast
height (DBH) and height. An ideal forest community structure can be simply described as stratified,
uneven-aged, and mixed. The higher the structural diversity becomes, the more stable the stand
structure will be [39].

2.2.1. Definition of Spatial Structure Units

This study focused on the spatial matching relationship of the measured objects. We set up a survey
unit of the spatial structure of the forest community on the quadrat scale to extract the information of
the SSPs of forest land. The specific principle was the comparison of feature measurement between
any tree object in the unit and the four nearest trees. At the level of structural data measurement,
the SSPs of the forest community were constructed to be characterized by their horizontal and vertical
structural feature.
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We constructed six indices to characterize the spatial structure of forest (Table 1): tree species
mixture (M), differentiation of forest layer (D), density (C), angle (W), DBH size ratio (U), and height

size ratio (H) indices.

Table 1. Forest spatial structure index system.
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Tree species mixture (M) was calculated as M; using Equation (1):
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where Wj; is a discrete variable.

This index (M) reflects the complexity of tree species configuration in the structural unit and is
defined by the proportion of the number of tree species differing from the reference number.

Differentiation of forest layer (D): D; was calculated using Equation (2):

D=2 @
where N; is the number of different attribute types in the spatial structural unit formed by the iy,
reference tree, with values ranging from 1 to 5.

This index (D;) is defined based on the attribute difference between the reference tree and its
neighboring tree categories in the spatial structure unit. The difference index was obtained by counting
the number of different attribute categories of trees in the spatial structure unit; the value of D; ranges
between 0 and 1.

Density (C): C; was measured using Equation (3):

1 1,c>d

where Yj; is a discrete variable.

This index (C;) was measured based on the crown and horizontal distance between the reference
tree and the nearest neighboring trees. The exact definition is the comparison of the sum of the
crown radius (c) and tree spacing (d). When ¢ > d, crowns are overlapping, while ¢ < d means crowns
are separate.

Angle index (W): Equation (4) was used for calculating Wj:

4
1 1,a>ap
Wi = Z}Z{ZU Zij = {O,a < ap @)
where « is the angle between any two adjacent trees with the reference tree as the vertex and ap = 72°.
The angle index (W;) calculates the ratio of the number of angle « greater than or equal to standard
angle ap. It is used to determine the horizontal spatial distribution pattern of forest.
DBH size ratio (U): U; was measured using Equation (5):

v 1, adjacent tree < reference tree

Ui = Z; Kij Kij = {O, adjacent tree > re ference tree ©)
where Kij is a discrete variable, which is the number of reference trees with a DBH greater than that of
adjacent trees.

The size ratio (U;) reflects the degree of size difference between forests or other forest parameters.
This is achieved by comparing the parameter size of the reference tree with surrounding trees of the
same species as the reference tree. It was calculated as the proportion of adjacent trees that are smaller
than the reference tree. Here, we specifically examined the DBH, height, and crown.

The height size ratio (H) is the same expression as the DBH size ratio.

Here, we selected as many reference trees as possible in each plot to maintain data accuracy.
The mean of index ((MI) (Equation (6)) was calculated in each plot; then, the final SSP was calculated
from the mean of six indices (Equation (7)).

n
MI = %Z I 6)
i=1
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1 6

SSP = EZ MI; @)
=1
where n is the number of the reference trees in the plot and I is the value of the index in the unit where
each reference tree is located; it can represent M, D, C, W, U, and H, respectively.

2.3. Field Measurements

On 2 July 2018, 52 sampling points were uniformly established in each of the four dump areas.
The distribution of the sampling points is shown in Figure 2. A large plot (10 m X 10 m) was established
for each sample point with four medium-sized plots (5 m X 5 m) established in each large plot, and a
small plot (1 m x 1 m) established in each of the four medium-sized plots (Figure 2b). In total, 208
plots were established and investigated. We recorded the position of each large plot and measured the
tree height, crown width, DBH, distance to adjacent trees, bush layer height, crown width and other
indicators by using rulers, tape measures, and a Haglof ECII electronic altimeter (Sweden).

j sample points
0 05 1

10m

Kilometers
= =

(a) (b)

Figure 2. (a) Worldview-2 image showing the location of sampling points in Heidaigou open-pit coal
mine; and (b) illustration of plot sampling strategy at each point.

2.4. Remote Sensing Data and Pre-Processing

The study used a Worldview-2 image with eight multispectral bands acquired on 30 June 2018.
In addition to the four standard bands (blue, 450-510 nm; green, 510-580 nm; red, 630-690 nm; and
near infrared, 770-895 nm), bands also included the coast (400-450 nm), yellow (585-625 nm), red edge
(705-745 nm), and near-infrared 2 (860-1040 nm) bands. The data quality was good and the cloud
volume was 0%. The image was pre-processed with geometric, radiation, and atmospheric correction
as well as with image fusion. The panchromatic and multispectral bands of the Worldview-2 image
were fused by the NDDifuse Pan Sharping algorithm. The resolution of the image after fusion can
reach 0.5 m, which can provide rich forest spectral and texture information.

2.5. Image Feature Extraction

Plant leaves have strong absorption characteristics in the visible red band and strong reflection
characteristics in the near-infrared band [40], which causes different types of forest to have different
degrees of spectral response [41,42]. Past research shows a vegetation index derived from a combination
of different spectral bands has been widely used in the fields of forest type identification [43], physical
parameter [44,45], and biochemical parameter [46,47] inversion. Fused Worldview-2 imagery can reach
a resolution of 0.5 m, providing rich spectral and texture information. Therefore, this study extracted
forest spectral and textural features in the images to construct a feature factor library of the forest
spatial structure.
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2.5.1. Construction of Feature Factor Library

The Worldview-2 satellite provides high-resolution remote sensing imagery containing eight-band
spectral data. To estimate the SSPs of forest habitat, here we considered eight -band images using
average values of each band. In addition, six vegetation indices were considered (Table 2): the Soil
Adjusted Vegetation Index (SAVI), Ratio Vegetation Index (RVI), Enhanced Vegetation Index (EVI),
Difference Vegetation Index (DVI), Normalized Difference Vegetation Index (NDVI), and Modified Soil
Adjusted Vegetation Index (MSAVI).

Table 2. Selected six vegetation indices and their mathematical expressions.

Vegetation Index Expression
Soil Adjusted Vegetation Index (SAVI) %
Ratio Vegetation Index (RVI) NIR/R
Enhanced Vegetation Index (EVI) N1R+8’ ;( J(VI}IIIQIi_CIELB+C3
Difference Vegetation Index (DVI) NIR -R
Normalized Difference Vegetation Index (NDVI) (NIR-R)/(NIR 4+ R)

o . . . (2NIR+1)— +/(2NIR+1)*~8(NIR-R)
Modified Soil Adjusted Vegetation Index (MSAVTI) >

NIR, R, and B are near-infrared, red, and blue light bands, respectively. L, Cp, C1, C2, and Cj are constants taking the
values 0.5, 2.5, 6.0, 7.5, and 1, respectively.

Objects commonly have textural features on their surfaces; these are represented by the
grey distribution of pixels and the surrounding spatial neighborhood of the object. The inherent
characteristics of the object and its relationship with the surrounding environment cause obvious
differences between the textural features of different objects. High spatial resolution optical images
have rich textural features, which provide strong support for the extraction of textural features in the
estimation of forest spatial structure.

Here, the second-order probability statistics filtering method was used to extract the textural
features of typical forest and forest communities; multiple specification windows (3 X 3,7 X 7,9 x 9,
11 x 11,13 x 13, 15 x 15, or 17 x 17 pixels) were selected for calculation. The eight-channel data of
the Worldview-2 image participated in the calculation of the mean (M), variance (V), uniformity (U),
contrast (C), dissimilarity (D), entropy (E), second-order angular moments (S), and correlation (R)
of pixels in the image. The textural feature factor was composed of eight channels (eight spectral
bands), seven windows (texture calculation windows), and eight texture parameters (band parameter
calculation values) for a total of 448 measurements.

2.5.2. Screening of Feature Factor Library

The number of forest spectral and textural feature factors is very large in the primary feature factor
library. In addition, many noise factors cause data redundancy. Therefore, correlation analysis [48]
and random forest (RF) [49] were employed to select the dominant feature factors which make up the
feature factor subset as the model input parameters.

Here, correlation analysis was carried out by SPSS to screen the feature factors for regression
model. The feature factors for the mind evolutionary algorithm-back propagation (MEA-BP) neural
network model was screened by the random forest variable importance scoring method. In the present
study, a random forest variable importance scoring method was used to rank and filter the feature
factor library. This algorithm was proposed by Breiman; the principle involves replacing the extracted
samples from the original data to generate a new training sample set [49]. A classification tree is
composed of the sample set from a random forest. The voting score of the classification tree was used
to obtain the classification result. The random forest method has been widely used in various fields.
It has the characteristics of high accuracy and good stability. In the processing of high-dimensional
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arrays, random forest has a high tolerance for outliers giving it an importance score during array
processing. Highly explanatory independent variable factors for dependent variables were filtered
out based on this score. Here, we used out-of-bag data [50] as the optimal feature ordering condition;
the optimal feature ordering of the spatial structure feature factors of the forest was performed.

2.6. Modeling

2.6.1. MEA-BP Neural Network Estimation Model

The MEA-BP neural network method is based on a back propagation network [51]. It adds
“genetics,” “evolution,” “convergence,” and “alienation” to a multi-layer feedforward network based
on an error back propagation operation. This algorithm can allow the avoiding of artificially defining
the weight of each characteristic factor, thereby improving the reliability of the evaluation results.
It can also inherit and popularize the winners’ existing empirical ideas [52].

Design of a forest spatial structure MEA-BP neural network

7o

I  Intermediate layer selection
Choosing the appropriate number of intermediate layers for the neural network can improve the
prediction accuracy of the network and reduce the number of prediction errors. Here, a neural
network structure with one intermediate layer was established based on the network convergence
speed and data volume.

II  Inputlayer nodes
According to the filtering result of the feature factor library, the number of input layer nodes was
set to ten, and the specific input parameters were the parameter factors of the feature factor set
after screening. One output layer was employed, which contains the SSPs to be extracted.

I  Determination of the number of nodes in the hidden layer
The hidden layer nodes were determined according to an empirical formula, and the initial
structural group was constructed using Equation (8):

h=\n+m+a ®)

where 1, n, and m are the number of nodes in the hidden, input, and output layers, respectively,
and a is a constant in the range of [1,10]. The optimal number of nodes in the hidden layer was
determined to be 12 by trial-and-error.

IV Activation function
Aiming at the three-layer network structure of this study, with one output layer, the Sigmoid
function (Equation (9)) was selected as the intermediate layer activation function:

1

=15

©)
V  MEA parameter setting and data pre-processing
The initial population size was set to 200, and both the superior and temporary subpopulations
were five. The normalized data were input into the model to reduce network errors.

2.6.2. Regression Estimation Model

Regression models are commonly used to estimate ecological parameters of forest habitats [53,54].
Because the forest SSPs are affected by multiple indicators, the following multiple regression model
was introduced for parameter estimation. The optimal multivariate linear relationship expression
between the spatial structure parameters and each characteristic factor was determined. The stability
and accuracy of the regression model were verified using the sample test set in Equation (10):

y=ax; +bxo+cxz3+...+zxy, (10)
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where y is the estimated value of the SSPs, x; is the feature factor, and # is the number of the factors
with high correlation with the SSPs.

2.7. Evaluation of Accuracy

Here, the coefficient of determination (R?) and root mean square error (RMSE) were used to
evaluate the accuracy of the model, as shown in Equations (11) and (12):

R2=1-Y" 5=/ () (-7 (11)
i=1

i=1

RMSE = (12)

where y; and {j; are the observations and predictions of the test set, respectively; ¥ is the average of the
training set; and n is the number of training sets.

3. Results

3.1. Descriptive Statistics of Sample Points

The sampling points were divided into two groups, a group of 35 samples used as a training set
and another set of 17 samples used as a test set. Basic statistical analysis of samples was carried out by
computing the maximum, minimum, mean, standard deviation, and coefficient of variation (Table 3).
The SSP range of the training set is 0.375-0.792 (mean = 0.538; standard deviation = 0.139). The SSP
range of the test set is 0.333-0.750 (mean = 0.522; standard deviation = 0.136).

Table 3. Descriptive statistics of forest spatial structural parameters from 52 sampling points.

Data Set N1 Maximum Minimum Mean Standard Deviation Coefficient of Variation

Training set 35 0.792 0.375 0.538 0.139 0.258
Test set 17 0.750 0.333 0.522 0.136 0.260

! N is the number of samples.

3.2. The Feature Factors for Models

3.2.1. Feature Factors for Regression Model

The correlation analysis results show that textural features were the dominant parameters of the
spatial structure of forest data (Table 4). Four feature factors were used in the selected feature factor set,
among which three textural factors were all obtained by the 3 x 3 calculation window. As an exception,
a significant positive correlation was observed between the mean value of spectral band 7 and the
SSPs (p < 0.001); all other factors were significant (p < 0.05). The factor B7T3M (x2) had the highest
correlation with a correlation coefficient of 0.624. Note that the naming rule of textural feature factors
(such as B7T3M) is: band number + texture calculation window + band parameters.

Table 4. Correlation between feature factors and spatial structural parameters.

Feature Factors B8T3R (x;) B7T3M (xp) B5T3S (x3) NIR1 (x4)
Correlation coefficient 0.535 0.624 0.567 0.540
Significance level 0.05 0.001 0.05 0.05

3.2.2. Feature Factors for MEA-BP Neural Network Model

Here, we have eight feature factor subsets. Among them, the Spvi only considers the spectral
features which includes vegetation indices and image bands, while T3-T17 consider both spectral
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features and textural features. T3, T7, T9, T11, T13, T15, and T17 represent the feature factors subsets
obtained under 3 X 3,7 x 7,9 x 9,11 x 11, 13 x 13, 15 x 15, and 17 X 17 calculation windows,
respectively. Finally, ten feature factors were retained that make up the feature factor subset as the
model input parameters.

In ordering the importance of the forest spatial structure feature factors, the textural feature factors
occupy an absolute advantage in feature ranking (Table 5). The relevant textural parameters generated
by image bands 3 and 6 are of high importance; these are mainly based on textural parameters such as
dissimilarity, correlation, and variance. This coincides with the fact that each textural parameter is a
feature describing the grey spatial distribution index.

Table 5. Feature factor subsets for mind evolutionary algorithm-back propagation neural

network model.

Spvi T3 T7 T9 T11 T13 T15 T17
NDVI B3T3D B3T7R B3T9R B3T11R B3T13R B3T15R B3T17R
RVI B6T3E B6T7E  B5ST9E  BST11E  B6T13R  B6T15R  B2T17R
SAVI RVI B5T7E  B5T9C B2T11R B7T13V ~ B2T15R  B6T17R
MASVI NDVI  B6T7R B2T9V  B7T11V  B5T13V  B7T15H  B4T17R
EVI SAVI B5T7S B5T9V  B5T11V  B7T13E  B5T15V  B7T17H
Blue EVI BST7C  B2T9S B6T11R B4T13R B4T15R  B7T17E
Coastblue B3T3R B5T7V  B6T9R  B2T11S B7T13S B6T15S  B7T17S
DVI B6T3S B2T7S B5T9H B8T11V  B5T13C B7T15V  B7T17D
Nir2 BST3E B2T7E B5T9E B2T11V  B7T13D B7T15E  B6T17E
Red B8T3S B5T7H B2T9C B7T11S BSTI3E B6T15E  BSTI7E

Naming rule of textural feature factors (such as B3T3D) is: band number + texture calculation window + band
parameters; NDVI, normalized difference vegetation index; RVI, ratio vegetation index; SAVI, soil adjusted
vegetation index; MSAVI, modified soil adjusted vegetation index; EVI, enhanced vegetation index; DVI, difference
vegetation index.

3.3. The Performance of Estimation

3.3.1. Regression Model

Correlation analysis shows that, among the feature factors, four SSPs had correlation coefficients
greater than 0.5: BST3R, B7T3M, B5T3S, and NIR1 (Table 4). It can be seen that the texture parameter
was the main explanatory factor of the SSPs of the forests. Regression analysis of the relationship
between the spatial structure parameters of forests and several optimal features:

y = 0.08x1 —0.008x2 — 0.111x3 — 0.19x4 4 0.709

The model accuracy verification results are as follows: The model has an R value of 0.695, an R?
of 0.553, a standard estimation error of 0.11452, an F value of 3.938, and p < 0.005 (Table 6). The F (4,30)
value is 2.69, which is less than 3.938, indicating that the model is statistically significant. Then, we
applied a multiple linear regression model to the test set and obtained the relationship between the
estimated and observed values (Figure 3). For this model, R? = 0.6174 and RMSE = 0.1001.

Table 6. The statistical parameters of variance analysis.

Sum of Squares df Variance F P
Regression 0.206 4 0.058 3.938 0.011
Residual 0.214 30 0.015

Sum 0.420 34
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Figure 3. Relationship between the observed (OSSP) and estimated spatial structural parameters
(ESSP) of restored forests in semi-arid mine dumps for validation analyses using a regression model
(* represents multiplication).

3.3.2. MEA-BP Neural Network

The selected feature factor subsets were input into the MEA-BP neural network model to obtain
the relationship between the observed values and the SSPs; the network values were subjected to
inverse normalization to obtain the final estimates forest spatial structure. Table 7 summarizes the
model accuracy of the estimation results of each feature factor subset. The results show that the
estimation results of the forest SSP considering the image textural feature factor were significantly
better than the simple spectral feature factor modeling. The feature factor subset of T3 had the highest
accuracy and the strongest correlation was in each factor subset (Figure 4). The R? was highest (0.6975)
and RMSE was smallest (0.0906).

Table 7. Accuracy of spatial structure parameter estimation with different feature factor subsets.

Spvi T3 T7 T9 T11 T13 T15 T17

R? -0.4679 0.6235 -0.0667 0.4621 0.2389 0.3972 0.4507 0.3913
RMSE 0.1461 0.0906  0.5265 0.1698 0.2140 0.1803 0.1452 0.1461

T T T T T T T T
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R*=0.6975 . . /{ 1
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Figure 4. Relationship between simulated values and observed values of the mind evolutionary
algorithm-back propagation neural network model based on the T3 feature factor subset. The T3 is a
subset of textural feature factors based on the 3 x 3 calculation window. Note: observed (OSSP) and
estimated spatial structural parameters (ESSP) (* represents multiplication).
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3.4. Estimated Spatial Structure

The results of regression model and MEA-BP neural network show that the MEA-BP neural
network method had a better inversion effect than the regression model method. The model calculated
with the 3 x 3 texture window had the highest interpretability of the SSPs and was the most stable.
We use an MEA-BP neural network model with a 3 X 3 texture windows to estimate forest SSPs.
A trained neural network model was applied to the entire image. Each grey image was extracted as
the model input object according to the optimal feature factor set. The network traverses the image
and outputs the final forest SSP of each area of dumps (Figure 5).

- east dump inner dump

S N ;
< ; 0.8255
0 0.25 05 Gnopoey .

Kilometers

Kilometers i -0.1243
west dump
)
/'f/,
2 g SSP
, SSP o cis 2 -08132
0 0.25 0.5 = 0 0.25 0.5
Kilometers g -0.1351 Kilometers -0.1351

Figure 5. Spatial distribution of forest spatial structure in Heidaigou open-pit coal mine in the: east
dump, inner dump, north dump, and west dump.

In vegetation restoration work, forest configuration types include tree (T), shrub (S), grass (G),
tree—shrub (TS), tree—grass (TG), and tree—shrub—grass (TSG). The SSPs of each forest configuration
type were calculated through the estimation results and land reclamation data of the mining area.

Basic statistical analysis of different forest configuration types was carried out by computing the mean
and difference (Table 8).

Table 8. Descriptive statistics of forest spatial structural parameters (SSPs) in different reclamation
years from different forest configuration types.

Reclamation Years

SSP Year Mean Difference
1995 2000 2008

T 0.3453 0.4135 0.4366 0.39844 0.09133

S 0.3241 0.3654 0.3815 0.35702 0.05744

G 0.1484 0.1451 0.1531 0.14887 0.00470
TS 0.6398 0.7166 0.7265 0.69428 0.08670
TG 0.2541 0.2975 0.3315 0.29435 0.07740
TSG 0.6475 0.7632 0.7946 0.73509 0.14708
NR 0.1534 0.1721 0.1654 0.16363 0.01200

Forest configuration types: tree (T), shrub (S), grass (G), tree-shrub (TS), tree-grass (TG),
and tree-shrub—grass (TSG).
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The value ranges of the SSPs in the east, north, west, and inner areas of dumps were 0.1534-0.8422
(mean 0.4574), 0.1351-0.8152 (0.4670), 0.1351-0.8152 (0.4471), and 0.1243-0.8255 (0.4660), respectively
(Figure 5). The greater spatial structure was found in the east dump, while the larger SSPs of the east
dump were obviously larger than the other three areas of mine dumps. The images show that the
forest SSPs were generally higher on the sides of roads and the edges of woodlands where most of the
SSPs were greater than 0.7. The forest SSPs of the places where the forest configuration was TS and
TSG were higher, generally between 0.60 and 0.85.

The results show that the spatial structural units with complex forest configuration and a high
degree of mixing have higher SSPs. Forest SSPs have a certain indicative significance for the forest
distribution status in the spatial structural unit. Therefore, the estimation of SSPs is more reliable based
on Worldview-2 imagery using the MEA-BP neural network method.

4. Discussion

4.1. Variation of Spatial Structure

Here, we discuss the variability of the spatial structure of Heidaigou forests in combination with
the forest planning data related to ecological restoration. The time nodes of the forest restoration
timeline in the study area are 1995, 2000, and 2008. The SSPs of each forest configuration type were
variable at different restoration years (Table 8).

Under the same restoration period, we sorted the six planted restoration configuration types
according to the spatial structure parameters finding that: TSG > TS > T > 5> TG > Native Remnant
(NR) > G (Figure 6a). The estimation results show that the spatial structure stability of the TSG type
was the highest, averaging 0.7351, while the SSP of the grass was 0.1489 with a spatial structure stability
lower than that of native remnant (average 0.1636). The results indicate that diverse types of forest
configuration are more conducive to the renewal, increase biodiversity, and enhance self-enrichment
of forests.

os b 0.8 . . . . . . . 0.16

07k 07k —0.14

< 0.12

0.6 - 0.6

0.5
- 0.08

SSP

Mean
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Difference

- 0.06
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— 0.04

021 —0.02

0.1 F — 0.00

1 1 1 1 1 1 1 1 1
T S G TS TG TSG NR T S G TS TG TSG NR

Forest Configuration Forest Configuration
(@) (b)

Figure 6. (a) Spatial structural parameters (SSP) of each forest configuration type at different restoration
years, and (b) evaluation of forest spatial structure variability by means and differences. Note: T, tree;
S, shrub; G, grass; TS, tree-shrub; TG, tree—grass; TSG, tree-shrub-grass.

Under the same forest configuration type, the spatial structure of other forest configuration types
showed 1995 < 2000 < 2008 while the performance of simple grass structure was 2000 < 1995 < 2008.
In addition, the spatial structure parameters of each forest configuration type showed an increasing
trend with extending restoration time, which increased by 0.0913 (T), 0.0574 (S), 0.0047 (G), 0.0867 (TS),
0.0774 (TG), and 0.1471 (TSG). The TSG and G types had the largest and smallest growth rates,
respectively (Figure 6b). These results indicate that the overall spatial structure stability of the forest
community in the study area increased over time after restoration, and is generally superior to that of the
native remnant. This indicates that the semi-arid planted and restored forest has shown renewed vigor.
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4.2. Limitations and Future Work

The restored forest in semi-arid mine dumps study area has a sparse structure, so the textural
features are significantly different from other areas, which allows the textural feature factors to be
well-extracted. Additionally, the restored forest was planted and reconstructed based on a restoration
plan, which created a regular distribution pattern of forest trees. The regular distribution makes the
textural features separable through 3 x 3 calculation windows. Therefore, the estimation of forest SSPs
can be achieved in this area of semi-arid mine dumps. However, the feasibility of this method in other
areas still needs to be tested. For example, tropical forests feature a complex space structures [55],
and the SSPs cannot be reflected using only optical imagery. The estimation results of the forest SSPs
using the random forest had an accuracy of only 0.6975, which was affected by the non-forest land
cover such as roads in the area of mine dumps. Future research could try to mask the image to improve
the visual effects. Data related to only one scene image were available for each year in the present
study due to the limitations of time and data. In fact, the SSPs change over time. Therefore, a complete
evaluation of the SSPs will require multiple periods of data.

Currently, scholars use laser light detection and ranging (LiDAR) technology to extract the
three-dimensional structure of forests [56,57]. Many parameters can be obtained using LiDAR, such as
canopy height [58], leaf area distribution [59], leaf area profile [60], and stem size distribution [61].
The laser pulse emitted by the LiDAR can penetrate the forest canopy to obtain the three-dimensional
structure information of forests. Its data are presented in the form of a point cloud. Each discrete point
cloud contains three-dimensional coordinate value and intensity value information. However, it does
not have the spectral and texture information that Worldview-2 images can provide. In the future,
researchers can integrate image and LiDAR [62] data sources to estimate the forest spatial structure
to improve accuracy, but the cost of LIDAR needs to be considered. For example, unmanned aerial
vehicle equipped with LiDAR [63-65] can conduct large-scale ecological evaluation but the cost is
higher. Usually, it is difficult for the closed mines to provide funding to support ecological assessments.
All of the above situations require the techniques to save costs. In addition, future research can focus
on identifying the core driving force of the changes in the forest SSPs by combining a restoration plan
with other forest biochemical parameters. Furthermore, a method for estimating the spatial structure
of forests can be developed.

5. Conclusions

In this study, the MEA-BP neural network model was established to estimate the restored forest
SSP based on Worldview-2 imagery. The random forest method was used to screen out the feature
factors with high explanatory ability to the SSP. Textural feature factors were found to be more closely
correlated with spatial structure than spectral feature factors. High spatial resolution Worldview-2
satellite imagery is feasible for use in parameter estimation of forest spatial structure. In addition, under
different forest configuration modes in different restoration years, the spatial structure of forests varies.
Therefore, forest spatial structure should be considered as an indicator when evaluating ecological
restoration efforts.

In the future, different continuous time-series datasets could be integrated for further experiments.
Through the use of these data, the accuracy of the MEA-BP neural network modeling can be improved,
and dynamic vegetation monitoring in mined areas can be realized. In addition, the correlation between
the spatial structure parameters and other forest parameters can also be studied, which provides
theoretical support for decision-making-based adjustment of ecological restoration management related
to forest configuration.
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