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Abstract: The mass planting of mangroves has been proposed as a mitigation strategy to compensate
for mangrove loss. However, the effects of mangrove vegetation on the abundance and community
composition of macrobenthos remain controversial. The macrobenthic communities in four intact
mangrove forests with different conditions and the adjacent nonvegetated mudflats of two mangrove
species with distinct stand structures on the western coast of Taiwan were examined. Some mac-
robenthic taxa occurred only in the mangroves, suggesting macrobenthic critical habitats. Seasonal
shift in community composition was more pronounced in the mudflats than in the mangroves,
possibly due to the rich food supply, low temperature, and shelter function provided by mangrove
forests. However, crab density was always lower in the mangroves than in the mudflats. There was a
negative relationship between the stem density of Kandelia obovata (S., L.) and infaunal density. The
pneumatophore density of Avicennia marina (Forsk.) correlated negatively with epifaunal density. Our
results show that the response of macrobenthic abundance and community composition to mangrove
vegetation was inconsistent. We reason that mangroves are critical habitats for the macrobenthos in
the mudflats. However, if mangrove tree density is high, we predict that the macrobenthic density
will decrease. This suggests that at some intermediate level of mangrove tree density, where there are
enough mangrove trees to harbor a macrobenthic community but not enough trees to significantly
reduce this density, mangroves management can be optimally achieved to promote the presence of a
diverse and dense macrobenthic community.
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1. Introduction

Mangroves are marine nurseries for juvenile fish [1,2] and habitats for a variety of
benthic [3] and economically important species [4]. Unfortunately, mangroves are among
the most threatened tropical ecosystems in the world due to human disturbance, coastal
construction [5,6], and climate change [7–10]. The loss of mangrove area globally was
estimated to be 0.22% year−1 [11].

Macrobenthos are benthic animals retained by a 0.5-mm sieve, either living on the
surface of a substrate (epifauna) or buried or burrowing in the sediment (infauna), accord-
ing to their habitat [12]. Mangrove macrobenthos not only may serve as an important link
between recalcitrant detritus and consumers at higher trophic levels [1] but also indirectly
affect the biogeochemical cycle through changing soil permeability, oxidation, and water
content [13–15]. Furthermore, they are also a critical connection along the aquatic con-
tinuum between streams and oceans [16] and may bioaccumulate or biomagnify metals
through food chain [17]. However, the effects of mangrove vegetation on the macrobenthic
community remain controversial. The roots and pneumatophores of trees can improve
the aeration of mangrove sediments [18] and intercept detritus and litterfall, which can
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increase the organic content in sediments [19]. A higher organic content in the sediments
generally leads to a higher abundance and richness of macrobenthos in mangroves [20,21].
The stand structure of mangroves may enhance habitat complexity, provide hard substrates
for epifauna [22], and reduce the risk of washout by outgoing tidal currents [23]. Epiphytes
growing on the surface of a stand structure may become food sources for epifauna [24].
The belowground structure can provide shelter for infauna, allowing them to hide from
predators [23]. The oxic layer surrounding mangrove roots can increase the abundance
of microbes, which may become a food source for polychaetes [25]. A higher density of
crabs is associated with a higher mangrove stem density [26]. The species diversity of the
macrobenthic community is higher in mangroves than in adjacent mudflats [27].

However, mangrove stand structure may compact the sediment and cause a reduction
in water and oxygen contents [28]. The increased bulk density of sediment may become
a barrier to the burrowing, movement, and feeding of infauna [19,29], which may also
increase their predation risk [30]. Mangrove vegetation may hinder the displays and
lekking behavior of fiddler crabs [31]. Dense mangrove canopies can reduce the irradiance
that reaches the sediments under mangroves, which may decrease the production of benthic
algae and feeding by grazers [32,33]. It is expected that mangrove vegetation can result
in a distinct microhabitat from nonvegetated intertidal flats, which may result in a shift
in the abundance and community composition of macrobenthos. This is more relevant
than ever, as the mass planting of mangroves has been proposed as a mitigation strategy to
compensate for mangrove loss globally [34].

Different mangrove species may possess distinct stand structures, which may impose
different effects on macrobenthos. For example, Kandelia obovata (S., L.) possesses prop
roots, whereas Avicennia marina (Forsk.) is surrounded by pneumatophores. The main
objectives in this study are to (1) characterize the sediment features and the abundance
and community composition of macrobenthos in the mangroves of two species (K. obovata
and A. marina) and adjacent nonvegetated mudflats and (2) compare the sediment features
and the abundance and community composition of macrobenthos between mangroves
and nonvegetated mudflats. We hypothesized that the sediment organic content and the
density and species richness of macrobenthos are higher in the mangroves of both species
than in the adjacent nonvegetated mudflats.

2. Materials and Methods
2.1. Study Sites

Mangroves are widely distributed on the western coast of Taiwan. While Kandelia
obovata is dominant on the northern (subtropical) coast, Avicennia marina is dominant on the
southern (tropical) coast [35]. There were four study sites in this study: two (Xinfeng, XF
and Zhunan, ZN) were located in K. obovata mangroves, and two (Budai, BD and Beimen,
BM) were located in A. marina mangroves (Supplementary Figure S1). These mangroves
generally experience a semidiurnal tide with a tidal range of approximately 2 m [13]. From
2018 to 2019, the mean air temperature was 15 ◦C in winter and 30 ◦C in summer; the
annual precipitation was approximately 1700 mm (Central Weather Bureau, Taiwan)

The age of these riverine forests ranged from 40 to 120 years (Table 1), and all of them
were introduced or planted. Mangroves cover ranged from 8.25 ha in XF to 19.5 ha in BD.
The forest still expands in ZN and BD. While the forest in XF is shrinking due to sediment
erosion, the forest in BM is threatened by fishery and agriculture activity. The distance to
the sea was relatively far in ZN (1.68 km) and short in BD (0.40 km). The submersion time
during high tide was shortest in ZN, indicating that the elevation in ZN was higher than
that in the other sites. The sediment salinity was lower (0.93 psu) at XF than at the other
sites, possibly due to the frequent flooding of stream water.
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Table 1. Forest structure and sediment features (mean ± SD) of the four mangrove sites on the western coast of Taiwan.
The different superscripted letters indicate significant differences (p < 0.05), as determined by one-way ANOVA or the
Kruskal–Wallis test. NA: data not available.

Site XF ZN BD BM

Latitude 24◦54′ N 24◦40′ N 23◦21′ N 23◦17′ N
Longitude 120◦58′ E 120◦50′ E 120◦07′ E 120◦06′ E

Dominant tree species Kandelia obovata (S., L.) Kandelia obovata Avicennia marina (Forsk.) Avicennia marina
Forest age (year) 70 40 120 100
Forest condition Intact, eroded Intact, expanded Intact, expanded Intact, threatened
Cover area (ha) 8.25 14.5 19.5 18.9

Distance to the sea (km) 0.70 1.68 0.40 0.62
Submersion time during a high tide in

June 2020 (minutes) 145 35 502 452

NO2
− + NO3

− (µM) # 320 ± 66 c 28.3 ± 5.8 b 6.36 ± 1.50 a 15.3 ± 3.6 b

NH4
+ (µM) # 66.3 ± 14.1 b 100 ± 22 b 6.80 ± 1.38 a 16.1 ± 3.9 a

PO4
−3 (µM) # 30.4 ± 7.4 b 24.5 ± 9.8 b 2.83 ± 0.56 a 2.92 ± 0.65 a

Tree height (m) 5.20 ± 2.09 c 5.04 ± 1.58 c 4.02 ± 2.86 b 3.21 ± 1.95 a

Diameter at breast height (DBH, cm) 6.00 ± 0.10 b 6.13 ± 0.07 b 5.36 ± 0.05 a 7.16 ± 0.08 b

Tree density (ind. m−2) 2.30 ± 0.27 b 1.80 ± 0.11 b 0.60 ± 0.16 a 0.33 ± 0.07 a

Pneumatophore density
(ind. m−2) NA NA 119.11 ± 13.83 a 244.81 ± 30.44 b

Sediment light intensity
(µmol photon m−2 s−1) 65.2 ± 82.6 a 124.2 ± 109.8 b 185.6 ± 260.3 b 189.6 ± 104.6 b

Sediment salinity 0.93 ± 0.17 a 2.64 ± 0.26 b 3.43 ± 0.47 c 4.25 ± 0.61 c

Sediment water content (%) 28.99 ± 5.21 a 26.08 ± 5.32 a 50.38 ± 8.03 c 34.60 ± 3.22 b

Sediment organic content (%) 4.78 ± 0.76 c 4.08 ± 0.13 b 7.60 ± 0.66 d 3.49 ± 0.37 a

Sediment median grain size (mm) 0.061 ± 0.013 c 0.024 ± 0.003 a 0.032 ± 0.003 b 0.037 ± 0.009 b

Sediment sorting coefficient 1.90 ± 0.10 c 1.40 ± 0.05 a 2.25 ± 0.06 d 1.58 ± 0.12 b

Sediment bulk density (g cm−3) 1.03 ± 0.08 b 1.28 ± 0.09 c 0.57 ± 0.15 a 0.96 ± 0.13 b

Sediment silt/clay content (%) 41.69 ± 6.74 a 88.72 ± 2.66 d 61.73 ± 1.26 b 66.68 ± 5.78 c

Sediment ORP (mV) 174.9 ± 73.9 b 69.3 ± 83.6 b −258.5 ± 68.4 a −162.1 ± 45.1 a

Benthic chlorophyll a concentration (mg m−2) 65.60 ± 5.40 b 30.28 ± 14.61 a 131.19 ± 54.48 c 68.08 ± 21.25 b

# Water nutrient data were derived from Wu (2020) [36].

2.2. Macrobenthic Sampling

Macrobenthos in vegetated mangroves (V) were sampled in February (winter), April
(spring), July (summer), and October (autumn) from 2018 to 2019 for two complete seasonal
cycles. There were three random plots (5 m× 5 m for each plot) in each mangrove and three
replicate samples in each plot for each season. Sampling in the adjacent nonvegetated (NV)
mudflats was also conducted in three random plots for each season during the daytime
at low tide in 2019 only. These plots within each site were separated by at least 3 m. To
reduce edge effects, the distance of the plots to the forest edge was >100 m.

Infauna in the sediments were collected by pushing a sampling core (LY082.1500,
Zhen-Yong Industrial Co., Ltd., Taichung, Taiwan) with a diameter of 10 cm into the
sediment to a depth of 10 cm in each plot. All infaunal samples were sieved through a
0.5-mm screen. All epifauna on the surface of the sediment in each plot were also collected.
Both the epifauna and infauna samples were fixed with 95% alcohol and a few drops of
menthol and brought back to the laboratory for identification and counting.

The infauna and epifauna were identified to the lowest possible taxonomic level
according to Chinese Polychaetes [37], Guide to Polychaetes (Annelida) in Qatar Marine
Sediments [38], the Crustacean Fauna of Taiwan [39], Mangroves of Taiwan [40], and the
Guide to Taiwanese Shells [41]. To avoid overestimating the abundance of macrobenthos,
only those mollusks with soft body parts were quantified. Arthropoda, Oligochaeta,
Polychaeta, and Sipuncula were counted only when the cephalic portion was preserved.
All the abundance data were standardized and transformed into density data by dividing
the count number by the sampling surface area and are expressed in terms of individual
number per m2.

The density of crabs was also estimated before each macrobenthic sampling by the
visual counting method of Skov and Hartnoll [42]. At least two individual researchers
stood 3.5 m away from each plot and counted the number of crabs in the plots (1 × 1 m,
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n = 3 squares per site for each season and a 10-min observation period for each square)
within the mangroves or mudflats with binoculars (50 × 12 mm, Nikon, Japan). The
density of crabs was counted at spring low tide during the daytime to ensure maximum
crab activities.

2.3. Sediment Features

After collecting samples of the macrobenthos, the photosynthetically active radiation
(PAR, 400–700 nm) under the mangrove canopy (n = 6) and on the mudflats (n = 3) was
determined by a quantum meter (Li-1400, LI-COR, Lincoln, NE, USA). Duplicate sediment
samples were randomly collected from the top 5 cm in each plot in a plastic tube with a
diameter of 2.9 cm and pooled to form a single sample for each plot for further analyses in
the laboratory. A portion of the sediments was dried at 60 ◦C to a constant weight, and the
percentage of water loss was calculated as the water content and the bulk density [43]. The
dried sediments were further combusted at 500 ◦C for 4 h, and the percentage of weight
loss was calculated as the organic matter content. For granulometric analysis, the median
grain size, silt/clay content, and sorting coefficient of the sediments were determined
following the modified pipette method [44]. A sediment sample from the top 10 cm was
also taken from each plot with a sampling corer (LY082.1500, Zhen-Yong Industrial Co.,
Ltd., Taichung, Taiwan) with a diameter of 10 cm, and the sediment temperature and
oxidation-reduction potential (ORP) in the center of the core (i.e., at a depth of 5 cm) were
immediately measured with an ORP meter (ORP30, CLEAN L’eau Instruments Co., Ltd.,
Taoyuan, Taiwan).

For collecting benthic microalgae, plastic cores (inner diameter of 1 cm, n = 9, in
each plot in the mangroves and mudflats) were pushed into the sediments to a depth
of 1 cm, where benthic microalgae are mainly located. The benthic chlorophyll a (Chl a)
concentration was determined by the acetone method [45] in the laboratory and was used
as an index of the biomass of the benthic microalgae.

2.4. Mangrove Forest Structure

After collecting the macrobenthic samples and determining the sediment features,
the number of stems was counted, and the diameter at breast height (DBH, cm) of all
the stems of A. marina and K. obovata was measured in the three plots at each site. The
number of pneumatophores of A. marina was also counted in triplicate squares (each square:
1 m × 1 m) randomly placed in each plot.

2.5. Statistical Analyses

Prior to statistical analysis, all the data were analyzed by a Shapiro–Wilk test to
assess whether they were normally distributed and by Levene’s test to assess whether
the variances were homogeneous. If the data were not normally distributed, they were
transformed according to the suggestions of Clarke and Warwick [46]. Transformations
were necessary for the following data: (a) tree density, DBH, light intensity, and crab density
(square root); (b) organic matter content, median grain size, sediment temperature, benthic
Chl a concentration, and the Shannon–Wiener diversity of the macrobenthic community
(fourth root); and (c) pneumatophore density, sediment water content, and macrobenthic
density (log). Either Student’s t-test or the Wilcoxon rank-sum test (if the data still showed
heterogeneity of variance after transformation) was applied to examine the difference in
macrobenthic variables between the mangroves and mudflats at each site. Either two-way
ANOVA or the Kruskal–Wallis test (if the data still showed heterogeneity of variance after
transformation) was applied to examine whether there were seasonal and site variations in
macrobenthic variables in the mangroves. Tukey’s HSD (honestly significant difference)
test was further applied for multiple comparisons if ANOVA showed significant differences.
Dunn’s multiple comparison test was applied for multiple comparisons if the Kruskal–
Wallis test showed a significant difference. The analyses described above were conducted
in SigmaPlot version 12.5.
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The most influential factors in the sediments of the four mangroves and adjacent
mudflats were determined by principal component analysis (PCA). The macrobenthic
community data were log-transformed to downweight the influence of the dominant taxa
before analysis [47]. Bray–Curtis similarity analysis was used to generate a resemblance
matrix of the log-transformed community data, and pairwise tests were used to determine
the differences between sites and among habitats and seasons. Resemblance matrices were
used to display the similarity of the communities in the different mangroves in different
seasons by nonmetric multidimensional scaling (MDS). Similarity of percentage (SIMPER)
was applied to determine the most common taxa in the macrobenthic samples at each
site. PERMDISP was used to test the difference in dispersion between the macrobenthic
community sampled in the mangroves and adjacent mudflats at each site. The relationship
between the macrobenthic community and sediment features was further analyzed by a
distance-based linear model (DistLM). A distance-based redundancy analysis (dbRDA)
ordination diagram was then used to visualize the fitted models. The abovementioned
statistical analyses were conducted using PRIMER 6.1.13 and PERMANOVA+ [48,49].

3. Results
3.1. Mangrove Forest Structure

The average height of K. obovata was approximately 5 m, while that of A. marina
was 3–4 m (Table 1). The DBH of the mangrove trees ranged from 5–7 cm. Tree density
was significantly higher in the K. obovata mangroves than in the A. marina mangroves.
The pneumatophore density of A. marina was two times higher in BM than in BD. Light
intensity was significantly lower in the mangroves than in mudflats across all the sites
(Kruskal–Wallis test, p < 0.001). Light intensity and sediment temperature were significantly
lower in mangroves in XF than in the other mangroves, possibly due to the relatively high
tree density.

3.2. Sites Response

A total of 66 taxa, including Actiniaria, Amphipoda, Bivalvia, Decapoda, Diptera,
Gastropoda, Isopoda, Nemertea, Oligochaeta, Perciformes, Polychaeta, Sessilia, Sipuncula,
Tanaidacea, and Xiphosurida, were identified (Supplementary Table S1). In BM, the taxon
richness sampled in the mangrove forests was significantly higher than that in the mudflats
(Supplementary Table S2); however, in ZN, the taxon richness was significantly lower
in the mangrove forests than in the mudflats. The Shannon–Weiner diversity (H′) of the
macrobenthic communities collected in the mangroves averaged from 0.48 to 2.30. The
spatial pattern of H′ was consistent with the pattern of macrobenthos taxon richness in
ZN and BM. There was no significant difference in the taxon richness and H′ between the
mangrove forests and mudflats in XF and BD. The taxon richness and H′ in the mangrove
forests in BM were significantly higher than the richness and H′ in the other mangrove
forests (Supplementary Table S3). Nevertheless, no significant differences in the richness
and H′ were detected among the mudflats (Supplementary Table S4).

The density of macrobenthos in the mangrove forests averaged from 226 to 6830 ind. m−2,
whereas the density of macrobenthos in the mudflats averaged from 466 to 9821 ind. m−2.
The density of macrobenthos in the mangrove forests was significantly different from that
in the mudflats in ZN and BM but not in XF or BD (Supplementary Table S2). In ZN,
the density of macrobenthos was significantly lower in the mangrove forests than in the
mudflats (Figure 1); however, in BM, the density was higher in the mangrove forests than
in the mudflats (Figure 2).
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Figure 1. Seasonal variations in the density (mean ± SE) and macrobenthic community composition in the Kandelia obovata (S., L.) mangroves in (a,c) XF and (b,d) ZN. v, mangroves; nv,
nonvegetated mudflats; win, winter; spr, spring; sum, summer; aut, autumn. Within each site, different letters above columns denote significant (p < 0.05) differences among seasons with
the Tukey’s post-hoc test.
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Figure 2. Seasonal variations in the density (mean ± SE) and macrobenthic community composition in the Avicennia marina mangroves in (a,c) BD and (b,d) BM. v, mangroves; nv,
nonvegetated mudflats; win, winter; spr, spring; sum, summer; aut, autumn. Within each site, different letters above columns denote significant (p < 0.05) differences among seasons with
the Tukey’s post-hoc test.



Forests 2021, 12, 1403 8 of 21

There was a significant site effect on the density of macrobenthos in the mangrove
forests and mudflats (Supplementary Tables S3 and S4). The density was lowest in the
frequently flooded site (XF), where the community was dominated by Oligochaeta and
Amphipoda (Figure 1); the density was highest in the mangrove forests and mudflats
of BM, where the dominant taxon was Polychaeta (Figure 2). While the macrobenthic
community at the higher elevation site (ZN) was dominated by Sipuncula and Decapoda,
Gastropoda and Polychaeta were the dominant taxa at the lower elevation site (BD).

The crab density in the mangroves averaged from 0.0 to 4.3 ind. m−2, whereas
the crab density in the mudflats averaged from 0.0 to 56.3 ind. m−2 (Figure 3). The
crab density was significantly lower in all the mangrove forests than in the mudflats
(Supplementary Table S2).

Figure 3. Crab density (mean ± SE) in the (a) mangroves and (b) nonvegetated mudflats of the four
sites on the western coast of Taiwan in different seasons. win, winter; spr, spring; sum, summer; aut,
autumn. Within each site, different letters above columns denote significant (p < 0.05) differences
among seasons with the Tukey’s post-hoc test.
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3.3. Seasonal Response

The seasonal patterns of the macrobenthic community composition in the mangrove
forests were more consistent than those in the mudflats across all the sites. While the
polychaetes Lumbrineridae; the bivalves Potamocorbula laevis, Cyrenidae, and Glauconome
chinensis; the gastropods Iravadia quadrasi and Hyala bella; tanaids (Tanaidacea); and the
amphipod Aoridae existed only in the mangrove forests, the gastropods Batillaria zonalis
and Pirenella cingulata were present only in the mudflats (Table 2).

Table 2. SIMPER analysis of the macrobenthic communities collected from mangrove forests and
nonvegetated mudflats on the western coast of Taiwan. The top 5 common and dominant taxa in
each habitat were ranked by a contribution > 5% to the percentage similarity within each community.

XF ZN BD BM

Mangrove forests

Oligochaeta Phascolosoma arcuatum Stenothyridae Capitellidae
29.16% 85.28% 43.27% 21.62%

Decapoda juveniles Assimineidae Iravadia quadrasi Ampharetidae
25.36% 8.98% 26.84% 16.89%

Dolichopodidae larvae Ampharetidae Nemertina
20.39% 7.91% 16.64%

Corophiidae Oligochaeta Iravadia quadrasi
7.84% 6.44% 12.67%

Capitellidae Dolichopodidae larvae Oligochaeta
6.76% 5.56% 10.76%

Nonvegetated mudflats

Corophiidae Capitellidae Mictyris brevidactylus Capitellidae
25.10% 21.21% 20.77% 37.66%

Capitellidae Assimineidae Pirenella cingulata Naticidae
24.52% 20.57% 19.91% 14.75%

Assimineidae Metaplax longipes Oligochaeta Nemertina
18.78% 13.43% 15.79% 11.59%

Dolichopodidae larvae Phascolosoma arcuatum Pirenella alata Cossuridae
12.76% 9.52% 14.79% 10.91%

Oligochaeta Corophiidae Decapoda juveniles Spionidae
5.87% 9.13% 10.50% 8.25%

The crab density (Table 3) in the mangrove forests was significantly lower in spring
but was higher in summer and autumn (Supplementary Table S3). There was no significant
difference in crab density among the mangrove forests. In the mudflats, there was a
significant interaction effect of site and season on crab density (Supplementary Table S4).

Table 3. Density of crab species (ind. m−2) in the mangrove forests (v) and nonvegetated mudflats
(nv) at the four sites on the western coast of Taiwan. The bold values indicate the most 2–3 dominant
species in each habitat.

Species
XF ZN BD BM

v nv v nv v nv v nv

Mictyris brevidactylus 0.00 0.00 0.00 0.00 0.00 4.36 0.00 0.00
Sesarmidae 1.75 1.36 1.75 1.00 0.58 0.00 0.50 0.09

Helice formosensis 0.00 0.64 0.00 0.00 0.00 0.00 0.00 0.00
Macrophthalmus sp. 0.00 1.09 0.00 14.36 0.00 0.00 0.17 18.00

Austruca lactea 0.33 17.82 0.08 0.55 0.00 8.64 0.00 0.00
Austruca triangularis 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00

Austruca perplexa 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
Gelasimus borealis 0.00 0.00 0.00 0.00 0.00 1.09 0.00 0.00

Tubuca arcuata 0.50 3.45 0.08 1.00 0.00 1.82 0.00 0.00
Xeruca formosensis 0.08 0.18 0.17 0.00 0.00 0.00 0.00 0.00

Ilyoplax sp. 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00
Scopimera sp. 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00

Tmethypocoelis ceratophora 0.00 0.00 0.00 7.09 0.00 0.45 0.00 0.00
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3.4. Environmental Variables Response

The sediment water content was associated with substrate elevation (Table 1). It was
higher in BD due to its lower elevation and longer submersion time and lower in ZN
due to the higher elevation and shorter submersion time. Correspondingly, the sediment
bulk density was higher in ZN but was lower in BD. The sediment sorting coefficient
was higher (very poorly sorted) in BD and lower (poorly sorted) in ZN. The benthic Chl
a concentration was also associated with the water content and was higher in BD and
lower in ZN. The median grain size in the mangrove sediments averaged 0.024~0.061 mm,
indicating that the sediments varied from silt to very fine sand. The grain size was smaller
at the high-elevation site (ZN) and larger at the frequently flooded site (XF). The silt/clay
content was also higher in ZN and lower in XF. The sediment organic content was higher
in BD and lower in BM.

PCA was used to distinguish the sediment features of the four mangrove forests and
mudflats. The results of PCA showed that the first and second axes together explained
63.5% of the variance in the data (Figure 4). The first axis accounted for 41.1% of the
variance; bulk density, water content, organic content, grain size, and slit/clay content
were the most correlated variables along this axis. The second axis accounted for the
remaining 22.4% of the variance; light intensity, sediment temperature, benthic Chl a
concentration, and ORP were the most correlated variables along this axis. The sediment
features in the mangrove forests and mudflats can be separated on the combined first
and second axes. While all the mangrove forests had higher organic matter and silt/clay
contents, all the mudflats had higher light intensity and sediment temperature and larger
grain size. In addition, the sediment ORP and bulk density were higher in the K. obovata
mangroves, but the water content and benthic Chl a concentration were higher in the
A. marina mangroves. There was no clear seasonal pattern that could be detected in the
sediment features across the study sites.

Figure 4. PCA of the sediment features in mangroves (V) and nonvegetated mudflats (NV) on the western coast of Taiwan
in different seasons. Black: mangroves, gray: mudflats, N: XF, �: ZN, 3: BD, •: BM. win, winter; spr, spring; sum, summer;
aut, autumn.
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To better understand the factors regulating the macrobenthic communities in the
K. obovata and A. marina mangroves, the data collected in this study were combined with
those of the macrobenthic communities in other mangroves in Taiwan and analyzed with a
DistLM and by dbRDA. The data included were collected from the macrobenthic communi-
ties in the K. obovata mangroves in Zhuwei (ZW) [50] and Wazihwei (WZ) [51] in northern
Taiwan and Fangyuan (FY) [52] in central Taiwan and from the A. marina mangroves in
Fangyuan (FY) [52] and Chiku (CK) [53] in southern Taiwan (Supplementary Figure S1).

The results of the DistLM and dbRDA showed that the first two axes can explain
33.5% of the total variation in the macrobenthic communities in the K. obovata mangroves
(Figure 5a). The macrobenthic communities collected in ZW were similar to those collected
in WZ and FY. The first axis, which correlated most strongly with the silt/clay content
(r = −0.898) and grain size (r = −0.243), explained 25.2% of the variation; the second axis,
which correlated most strongly with tree density (r = 0.716) and water content (r = −0.596),
explained 8.3% of the total variation. Superimposing the clustering results of forest struc-
ture, sediment features, and macrobenthic communities showed that the relatively higher
tree density and lower silt/clay content in the frequently flooded site (XF) were correlated
with juvenile crab, shellfish larva, Dolichopodidae larva, Corophiidae, and Oligochaeta
abundance; the higher tree density and silt/clay content in the high-elevation site (ZN)
were correlated with Phascolosoma arcuatum, Assimineidae, and Hyala bella abundance; and
the lower tree density in ZW, WZ, and FY was correlated most strongly with Capitellidae,
Orbiniidae, Talitridae, and Grapsidae abundance. In summary, tree density and sediment
silt/clay content were the main factors structuring the macrobenthic community in the
K. obovata mangroves.

The results of the DistLM and dbRDA showed that the macrobenthic communities
in the A. marina mangroves in BM and CK were very similar and mixed. The two axes
explained 17.8% of the total variation in the macrobenthic communities in the A. marina
mangroves (Figure 5b). The first axis, which correlated most strongly with organic content
(r = 0.608) and the density of pneumatophores (r =−0.645), explained 11.6% of the variation;
the second axis, which correlated most strongly with water content (r = 0.830) and grain
size (r = 0.410), explained 6.2% of the total variation. Superimposing the clustering results
of forest structure and sediment features with those for the macrobenthic communities
showed that a lower pneumatophore density and higher organic and water content in
the low-elevation site (BD) correlated most strongly with Stenothyridae, Iravadia quadrasi,
and Acteocina koyasensis abundance; the higher pneumatophore density and greater grain
size in FY correlated with Naticidae abundance; the higher pneumatophore density and
lower water content in BM and CK correlated most strongly with Phascolosoma arcuatum,
Nereididae, Hyala bella, Nemertea, Capitellidae, Amphipoda, and Ampharetidae abun-
dance. In summary, pneumatophore density and sediment grain size were the main factors
structuring the macrobenthic community in the A. marina mangroves.
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Figure 5. DistLM and dbRDA plots showing the relationships between stand structure, sediment features, and taxon density in the macrobenthic communities collected from (a) Kandelia
obovata and (b) Avicennia marina mangroves of the four sites (XF, ZN, BD, and BM) sampled in this study. ZW, Huang (2017) [50]; WZ, Huang (2018) [51]; FY, Kuo (2016) [52]; CK, Yu and
Lin (2015) [53]; FY, Kuo (2016) [52]. The locations of these study sites are shown in Supplementary Figure S1.
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4. Discussion
4.1. Comparison between Mangrove Forests and Mudflats

In this study, crab density was significantly lower in all the mangrove forests than
in the mudflats. A similar pattern was also observed by Chen et al. [54] in the Siangshan
mangrove ecosystem in Taiwan. Sesarmidae crabs were the most and almost the only
dominant crab species in all the mangrove forests. This crab species was also observed
in most of the mudflats. In XF and ZN, the density of Sesarmidae crabs in the mangrove
forests and mudflats was comparable. In the mudflats, however, the dominant crab species
varied from site to site. The lower density of crab species in mangrove forests can be
attributed to the preference of most crab species for mudflats over mangrove forests [55]. A
greater density of Sesarmidae crabs was observed in K. obovata mangroves than in A. marina
mangroves, as they generally feed on propagules of K. obovata [56].

Similar to the crab community composition, the community composition of mac-
robenthos other than crabs in the mudflats appears to be more dispersed than those in the
adjacent mangrove forests. However, the macrobenthic communities in the mudflats were
not richer in taxa or more diverse than those in the mangrove forests. Our results were con-
trary to some prior studies [57,58] but consistent with the observations of Checon et al. [59].
In this study, a variety of taxa, such as polychaetes, bivalves, gastropods, tanaids, and
amphipods, existed only in mangrove forests. However, two species of gastropods were
observed only in the mudflats. This suggests that the mangrove forests were a restricted
habitat for some macrobenthic taxa, as indicated by Lin et al. [60], so that the macrobenthic
community was more constrained to the mangrove forests than to the mudflats. The more
constrained macrobenthic community composition in the mangrove forests than in the
mudflats possibly resulted from the higher organic matter and lower sediment temperature
and shelter provided by mangrove stand structure [23,61]. The epifauna living on the ex-
posed mudflats are more vulnerable to the direct impacts of tidal waves or flooding streams,
which might cause a higher risk of washout [62] and a rapid shift in the composition of the
macrobenthic community. Nishijima et al. [63] indicated that flooding can erode the top
12 cm of sediments. As most infauna inhabit the top 5 cm of sediments [64], the infauna in
the sediments of mudflats might be frequently affected by stronger hydrodynamic forces.

In contrast to the crab density, however, the density of other macrobenthos in the
mangrove forests was not necessarily higher or lower than that in the adjacent mudflats.
This lack of significance was unlikely to be caused by seasonal variation, as there was
no seasonal variation in the macrobenthic density in the mangrove forests or mudflats.
In only two of the four sites (ZN and BM) was the density of other macrobenthos in the
mangrove forests significantly different from that in the mudflats. However, the results
were inconsistent. In ZN, the density of other macrobenthos was significantly higher in
the mudflats, whereas the density in BM was higher in the mangrove forests. Although
there were distinct sediment features between the mangrove forests and the mudflats, our
results suggest that not only sediment features [20,21] but also other factors discussed later
might be involved in regulating the macrobenthic density in the forest mangroves.

The potential factors structuring macrobenthic communities in mangroves can be
revealed by MDS grouping of all the communities in the adjacent mudflats and mangrove
forests together (Figure 6). The MDS results showed that there were distinct macroben-
thic communities at each site, although the macrobenthic communities could be further
separated into the groups of K. obovata and A. marina mangroves and into mangrove and
mudflat groups. This suggests that the local environment was the primary determinant
in structuring the macrobenthic community at each site. For example, the density was
lowest in the frequently flooded XF, where both communities in the mangrove forests
and mudflats were dominated by Oligochaeta due to the very low water salinity (0.93)
in this area [65]. Larvae of Dolichopodidae were also abundant in XF, as they prey upon
oligochaetes [66]. The low water salinity may restrict the distribution of some macrobenthic
taxa in XF. The dominance of Sipuncula Phascolosoma arcuatum in both mangrove forests and
mudflats of high-elevation ZN suggests that Phascolosoma arcuatum prefers a high-elevation
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habitat with relatively low water content and sediments with a small grain size. Snails
(Stenothyridae and Iravadia quadrasi) were the dominant taxa in the mangrove forests of
BD, which can reflect the high benthic Chl a concentration and longer submersion time of
the sediments [67].

Figure 6. The MDS ordination of the macrobenthic communities collected from the four mangroves
(K, K. obovata; A, A. marina) and nonvegetated mudflats (NV) of the four sites (XF, ZN, BD, and BM)
on the western coast of Taiwan.

4.2. Comparison among Mangrove Forests

Thilagavathi et al. [68] suggested that the diversity of macrobenthic communities
can be used to assess the health of mangrove ecosystems. In the K. obovata mangroves,
the macrobenthos were more diverse in XF than in ZN, although the density was higher
in ZN than in XF. In the A. marina mangroves, the taxon richness, diversity, and density
of macrobenthos were higher in BM than in BD. Our results show that the diversity of
macrobenthic communities primarily reflects the local conditions of sediment features or
stand structure. The DistLM and dbRDA results show that more diverse macrobenthic
communities in K. obovata mangroves (XF) occurred in sediments with smaller grain sizes
and lower silt/clay contents, while the tree density was high. For A. marina mangroves,
more diverse macrobenthic communities (BM) were observed in the mangroves with higher
pneumatophore densities. Combined with the results of more constrained macrobenthic
community composition in the mangrove forests than in the mudflats, it is clear that stand
structure (i.e., tree or pneumatophore density) was a main factor structuring the diverse
macrobenthic communities in the mangroves of both species.

Data on the macrobenthic density from other K. obovata (Supplementary Table S5)
and A. marina (Supplementary Table S6) mangroves in Taiwan and the Indo-Pacific were
combined to assess the relationships between forest stand density and macrobenthic density.
For K. obovata, there were significantly negative relationships between tree density and
total macrobenthic and infaunal densities (Figure 7a,b). There was no clear relationship
between tree density and epifaunal density (Figure 7c). This suggests that the tree density
of K. obovata had more negative impacts on infauna, particularly polychaetes (Figure 7d),
than on epifauna. The macrobenthic density in the mangrove forests of XF and ZN was
low compared to the density of other sites. One possible explanation for this phenomenon
might be the high tree density at both sites. The greater the tree density is, the greater the
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root biomass is, which may reduce the drilling behavior of infauna [19]. The decreased
light intensity caused by the higher tree density and canopy shading might also result in a
lower benthic Chl a concentration in the sediments, which may reduce the availability of
food sources of herbivores. This may be the reason that the herbivore Assimineidae was
more abundant in the mudflats than in the mangrove forests of XF and ZN.

In A. marina mangroves, there was no significant relationship between tree density and
macrobenthic density. However, there was a significantly negative relationship between
pneumatophore density and the density of epifauna, particularly gastropods (Figure 8).
Penha-Lopes et al. [67] also observed a decreasing trend in the density of the gastropod
Terebralia palustris with increasing mangrove tree density after the tree density reached
a threshold. Prior studies have indicated the beneficial effects of pneumatophores on
epifauna [23,24]. However, Bishop et al. [69] indicated that pneumatophore density did
not have any impact on macrobenthos density, possibly because only samples of large
epifauna >5 mm were collected in their study. In this study, no clear relationship between
pneumatophore density and total macrobenthic density and infaunal density was detected
(Figure 8a,b). However, there was a significantly negative relationship between pneu-
matophore density and epifaunal density (Figure 8c). It appears that a higher density of
pneumatophores caused stress to epifauna, particularly gastropods (Figure 8d). While
the pneumatophore density of A. marina mangroves was higher in BM than in BD, the
sediment silt/clay content was higher, but the benthic Chl a concentration was lower in
BM than in BD (Table 1). It is likely that a higher density of pneumatophores enhanced the
deposition of suspended matter [70] and reduced the biomass of benthic microalgae [71],
which are a food source for herbivores. Consequently, the density of Acteocina koyasensis
and Stenothyridae feeding on benthic microalgae was higher in BD than in BM.

It has been shown that sea-level rise caused by climate change may affect the growth
and distribution of mangroves [72–74]. Large-scale planting of mangroves has been applied
as a mitigation strategy for mangrove loss [34]. The change in mangrove vegetation would
directly affect the abundance and community composition of macrobenthos in the tidal flats
and indirectly change the coastal biogeochemical cycles through the function of macroben-
thos as ecological engineers [75,76]. However, the response of macrobenthic abundance
and community composition to mangrove vegetation was inconsistent. In addition, local
environment was the primary determinant in structuring the macrobenthic community.
Therefore, the use of macrobenthic community as a health index for mangrove ecosystems
or the prediction of the shift of macrobenthic community in response to mangrove loss or
planting should take local conditions into consideration.
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Figure 7. Relationships between the densities of (a) macrobenthos, (b) infauna, (c) epifauna, and (d) polychaetes and the tree density of Kandelia obovata. White dots: this study; black dots:
prior studies.
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Figure 8. Relationships between the densities of (a) macrobenthos, (b) infauna, (c) epifauna, and (d) gastropods and Avicennia marina pneumatophore density. White dots: this study; black
dots: prior studies.
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5. Conclusions

Our results showed that mangroves are critical habitats for coastal macrobenthic
communities. There were distinct macrobenthic communities in each sampled mangrove
forest and adjacent nonvegetated mudflat. Although the crab density was always lower in
the mangrove forests than in the mudflats, some polychaetes, bivalves, gastropods, tanaids,
and amphipods existed only in the mangrove forests. In addition, the macrobenthic
communities in the mudflats tended to fluctuate more than those in the mangrove forests,
possibly due to the higher organic matter and lower sediment temperature and shelter
provided by the stand structure. This suggests that stand structure was a main factor
structuring the macrobenthic communities in the mangrove forests.

However, the response of macrobenthic density in the mangrove forest to stand
structure differed from that of the macrobenthic community. High stand density may
reduce the density of the macrobenthic community in mangrove forests. Together, the
data from the present study and the relevant literature show that there were negative
relationships between stand density and macrobenthic density. We further found that the
effects of different stand structures of mangrove species on macrobenthic taxa differed.
K. obovata possesses prop roots, so the tree density had more negative impacts on infauna,
such as polychaetes. However, the density of pneumatophores of A. marina was found to
be negatively correlated with the density of epifauna, such as gastropods.

In total, the response of macrobenthic abundance and community composition to
mangrove vegetation was inconsistent. We reason that mangrove forests are critical habitats
for the macrobenthos in the mudflats. However, if mangrove tree density is high, we predict
that macrobenthic density will decrease. This suggests that at some intermediate level of
mangrove tree density, where there are enough mangrove trees to harbor macrobenthic
community but not enough trees to reduce density greatly, the management of mangroves
can be achieved in an optimal way for macrobenthic community.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12101403/s1, Table S1: List of taxa in the macrobenthic community identified in the four
sites on the western coast of Taiwan and their corresponding living and feeding habits based on
Cai [1] and the World Register of Marine Species (WoRMS) [2]., Table S2: Analysis of the difference in
macrobenthic variables between the mangrove forests and nonvegetated mudflats at the four sites
on the western coast of Taiwan by Student’s t-test (t-test) or the Wilcoxon rank-sum test (Wilcoxon).
The bold values indicate significant differences (p < 0.05), Table S3: Analysis of the seasonal and site
effects on the macrobenthic variables in the mangrove forests on the western coast of Taiwan by the
Kruskal-Wallis test. Dunn’s test was used to determine which season or site showed a significant
difference. The bold values indicate significant differences (p < 0.05), Table S4: Analysis of the
seasonal and site effects on the macrobenthic variables in the nonvegetated mudflats on the western
coast of Taiwan by two-way ANOVA (F value) or the Kruskal-Wallis test (H value). Tukey’s or
Dunn’s test was used to determine which season or site showed a significant difference. The bold
values indicate significant differences (p < 0.05), Table S5: Comparisons of the densities of Kandelia
obovata and macrobenthos observed in this study and other studies. FY: Fangyuan, ZN: Zhunan, XF:
Xinfeng, GD: Guandu, ZW: Zhuwei, and WZ: Wazihwei. The locations of the study sites in Taiwan
are shown in Fig. S1, Table S6: Comparisons of Avicennia marina tree and pneumatophore density
and the density of macrobenthos in this study and other studies. CK: Chiku, BM: Beimen, BD: Budai,
and FY: Fangyuan. The locations of the study sites in Taiwan are shown in Figure S1, Figure S1:
Locations of the study sites on the western coast of Taiwan. From north to south: WZ, Wazihwei; ZW,
Zhuwei; XF, Xinfeng; ZN, Zhunan; FY, Fangyuan; BD, Budai; BM, Beimen; CK, Chiku. GD (Guandu)
overlaps with ZW. Among these sites, XF, ZN, BD and BM were sampled in this study.
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