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Abstract: The need to rely on accurate information about the wood biomass available in riparian
zones under management, inspired the land reclamation authority of southern Tuscany to develop a
research based on the new remote sensing technologies. With this aim, a series of unmanned aerial
vehicle (UAV) flight campaigns flanked by ground-data collection were carried out on 5 zones and
15 stream reaches belonging to 3 rivers and 7 creeks, being representative of the whole area under
treatment, characterized by a heterogeneous spatial distribution of trees and shrubs of different sizes
and ages, whose species’ mix is typical of this climatic belt. A careful preliminary analysis of the zones
under investigation, based on the available local orthophotos, followed by a quick pilot inspection
of the riverbank segments selected for trials, was crucial for choosing the test sites. The analysis of
a dataset composed of both measured and remotely sensed acquired parameters allowed a system
of four allometric models to be built for estimating the trees’ biomass. All four developed models
showed good results, with the highest correlation found in the fourth model (Model 4, R2 = 0.63),
which also presented the lowest RMSE (0.09 Mg). The biomass values calculated with Model 4 were
in line with those provided by the land reclamation authority for selective thinning, ranging from
38.9 to 70.9 Mg ha−1. Conversely, Model 2 widely overestimated the actual data, while Model 1 and
Model 3 offered intermediate results. The proposed methodology based on these new technologies
enabled an accurate estimation of the wood biomass in a riverbank environment, overcoming the
limits of a traditional ground monitoring and improving management strategies to benefit the river
system and its ecosystems.

Keywords: precision forestry; unmanned aerial vehicle; image analysis; crown detection; biomass;
river analysis

1. Introduction

Riparian zones are dynamic and complex ecosystems because they are shaped by
fluvial geomorphic processes that involve different components including stream channels,
banks, vegetative cover, and floodplains [1,2]. Among these, riparian vegetation located on
waterways has a central position in the river ecosystem. It stands at the interface of terres-
trial and aquatic environments and therefore plays a crucial role both for the ecological
integrity of river courses and for hydrogeological processes [3–5]. Living and dead plants
have a physical impact on water runoff through complex hydraulic interactions during
baseflows as well as overbank flows, besides their impact on water quality and water
uptake, storage, and return to the atmosphere [6–9]. The fact that in Europe about 90% of
riparian zones have disappeared or are degraded shows how much these areas need to
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be monitored more [10]. Unfortunately, some processes localized along the riverbanks are
unpredictable, e.g., the encroachment of invasive riparian species with great reductions of
the spatial extent of water flow [5], and can fluctuate dramatically over time. As a result, the
natural complexity of a riverscape is difficult to quantify [2]. Furthermore, the instability of
these areas is not only due to natural factors, but, in the last decades, human pressures have
severely affected the equilibrium of these zones, making efforts to understand riparian
ecosystems more difficult [5,11]. As a consequence of this scenario, river ecosystems are cur-
rently under the attention of the European legislature, which encourages their safeguarding
through adequate monitoring and management activities [10,12]. Both researchers and
local stakeholders need effective tools to monitor riparian vegetation: the former for a
detailed understanding of riparian ecosystems dynamics and the latter for a quantitative
evaluation of the costs and benefits of the actions to be taken [3]. Within this framework,
accurate information about riparian ecosystems, such as land cover, above-ground biomass
(AGB) and leaf area index (LAI), canopy closure, and vertical canopy structure, are im-
portant parameters for good conservation and management plans [13,14]. Although the
traditional ground approach based on in situ optical and radar measurements has given
good results for many ecological applications, it presents several limitations [15,16]. First
of all, field surveys are labor-intensive, time-consuming, expensive, and sometimes risky
for operators. They cannot be applied to large areas, consequently drastically limiting
the amount of data that can be collected [17], especially in hard to access forested zones.
They also cannot fully represent a three-dimensional spatial pattern of vegetation because
they produce only two-dimensional (x and y) images. Furthermore, their sensitivity and
accuracy decrease with AGB and LAI [3,18]. All these limits are nowadays overcome by
the recent developments in remote sensing (RS) platforms and geographic information
systems (GISs), which have proven to be efficient tools to analyze the vegetation cover
in different sectors [3,10,14,19–31]. RS platforms, such as satellite systems, aircrafts, and
unmanned aerial vehicles (UAVs), have different peculiarities exploited for different issues
under investigation. Satellite solutions are a fundamental tool for long-term and extensive
monitoring in forestry activities [32]. Airborne platforms, instead, provide a higher level
of detail compared to satellites but require a higher effort in flight planning [12,29,33].
Unfortunately, the cost and/or the low resolution of imagery provided by these platforms
often discourage their use for the detection of some vegetation parameters, such as biomass
estimation [14]. The UAV represents a fast, flexible, and low-cost tool that can easily
provide images of the investigated areas with a very high spatial resolution. UAVs can
fly on pre-programmed routes, and they allow investigation of the forest structure by
flying at a low altitude for several hectares, thus acquiring images in optimal weather
conditions (low wind and clear sky conditions) [31,34]. These RS technologies represent a
fundamental tool for precision forestry (PF). The PF concept concerns planning, monitoring,
and conducting site-specific forest management activities and operations to improve wood
product quality and utilization, reduce waste, increase profits, and maintain the quality
of the environment [35]. Multitemporal analysis and timeliness are key requirements to
enable the adoption of PF practices [29]. This is especially true when the forest structure is
changing rapidly [36], as in managed riparian buffer zones. According to the latest findings
in PF applications, UAVs have been equipped with a wide range of optical sensors [37–41]
and employed mostly for forest health monitoring and diseases mapping [37,42–44], re-
covery monitoring after fire events or conservation interventions [39,45,46], tree species
classification and invasive plants detection [33,47–52], and, as a top research topic, estima-
tion of dendrometric parameters, such as the dominant height, stem number, crown area,
volume, and AGB [14,28,29,53–62]. It is possible to estimate tree biomass directly from two
tree architectural properties that can be remotely measured: tree height (H) and crown
diameter (CD) [53]. A methodological approach to estimate these parameters is to use the
RGB images and structure from motion (SfM) algorithms to provide a high 3D geometric
reconstruction of the investigated area [14]. To analyze these data, tree height models, such
as the canopy height model (CHM), are used [28]. The application of an unsupervised algo-
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rithm to realize individual tree crown segmentation is a high-performance methodology to
localize individual trees from raster images and thus estimate their crowns, heights, and po-
sitions [29]. This step is complex, particularly in broadleaf, mixed, or multi-layered forests
and, therefore, also in riparian areas, where similar conditions can be found. This difficulty
is generally due to an inability to determine the appropriate kernel size to simultaneously
minimize omission and commission error concerning tree stem identification [63]. For the
aforementioned difficulties, the adoption of PF in riparian zones is currently limited to a
few studies [3,64–73]. Moreover, to the authors’ knowledge, none of these studies have
dealt with UAV estimation of riparian vegetation biomass in the Mediterranean area except
for the one conducted by [72], who estimated carbon stocks for ecological purposes. It is
from the need to fill this current information gap that the present study was conceived,
also because the estimation of biomass potentially available through riparian maintenance
works can provide an economic return for local stakeholders. The purpose of this study
was to identify a rapid and easily reproducible technique for wood biomass estimation in
riparian zones through imagery acquisition from a UAV platform. Pursuing this aim, a
flight campaign flanked by a ground data collection was carried out in the south of Tuscany
(Italy). The area is characterized by a complex physical geography, extreme morphological
heterogeneity, and a temperate climate, typical of the Mediterranean Basin. About 60%
of lands in Tuscany suffer from flood and flash flood events [11], thus the vegetation
constantly changes over time as a consequence of this natural disturbance [74]. For this
reason, monitoring and management is necessary to restore the waterways’ hydraulic
efficiency. In this area, a thinning intervention on the vegetation along the riverbanks was
scheduled for management tasks. The methodology implemented in the study will help to
enable the control of large areas of interest that need regular maintenance, thus overcoming
the limits of a traditional approach based only on ground observations. Moreover, this
procedure underpinned by RGB interpretation and the 3D model obtained from UAV and
the allometric determination derived from the simplified modeling approach allows its
application both in different environments and at different spatial scales.

2. Materials and Methods
2.1. Study Area

The study took place between June and July 2019, upon a request received from the
land reclamation consortium Consorzio di Bonifica 6 Toscana Sud (CB6), a public authority
active in the southern part of Tuscany for water management, land conservation, and
environment protection. CB6 had planned a thinning activity in the Provinces of Siena
and Grosseto and was interested in a fast and accurate assessment of the wood biomass
available for economic reasons and for energy demand. As a first step, a preliminary survey
was conducted by analyzing the orthophotos available in the regional database, focusing
on sites’ main morpho-vegetational characteristics. In the hydrographic district under
investigation, amounting to about 120 hectares (ha), 5 zones (see Figure 1) and 15 stream
reaches belonging to 3 rivers and 7 creeks (see Table 1) were selected as being representative
of the whole area and characterized by a heterogeneous spatial distribution of trees and
shrubs of different sizes and ages, whose species’ mix was typical of this climatic belt.

2.2. Test Sites and Ground-Data Collection (GDC)

Within the transects under investigation (A–F, Table 1), dendrometric measurements
of the standing trees were taken at ground level (GDC) to develop appropriate allometric
models for quantifying the available biomass. In some cases, it was chosen to monitor
both sides of the riverbeds while in others only a single part. Survey conditions were
particularly difficult due to the presence of dense herbaceous-shrub vegetation with a
prevalence of bramble (Rubus spp.). As an example, a zoom of the tested area located along
the Bruna River (Site STR-5) is shown below (Figure 2).



Forests 2021, 12, 1566 4 of 19

Figure 1. The study zones (highlighted in blue) selected within the Regione Toscana area (highlighted
in red) and a zoom of two Osa River reaches where detailed information was acquired (highlighted
in white).

Table 1. Study area and experimental campaign description (* UAV’s flight ID, ** Ground-data collection ID).

Zone ID Location Waterway Segment Type ID_UAV * GDC ID **

STR-5 42◦53′18.22′′ N
11◦33′41.57′′ E

Bruna 5A River 5A A
Bruna 5B River 5B B

Asina Creek 5C
Rigo Creek 5D C

STR-6 42◦53′18.22′′ N
11◦33′41.57′′ E

Asso Creek 6A
Orcia River 6B

Tuoma Creek 6C
Ente Creek 6D

STR-7 42◦53′18.22′′ N
11◦33′41.57′′ E

Ombrone 7A River 7A D
Ombrone 7B River 7B

STR-8 42◦53′18.22′′ N
11◦33′41.57′′ E

Ombrone 8A River 8A E
Ombrone 8B River 8B

Gretano Creek 8C F

STR-9 42◦53′18.22′′ N
11◦33′41.57′′ E

Osa 9A Creek 9A
Osa 9B Creek 9B

The length of transects was measured with a metric tape and the border points
were georeferenced with a differential GPS (Leica GS09 GNSS, Leica Geosystems AG,
accuracy of 0.02 m). The vegetation of each segment was surveyed by ground observations,
recording the number of trees, GPS position, species, diameter at breast height (DBH),
height (H), and vegetative status. DBHs were measured with a dendrometric caliper while
Hs were recorded with a hypsometer (Nikon Forestry Pro). Once H and DBH had been
recorded for each tree, a “double-entry-tables” system provided by the Italian National
Forest Inventory [75] was used to estimate the corresponding dendrometric volume (m3).
These tables provide the dendrometric volume (i.e., tree’s volume excluding branches)
for the majority of Italian tree species distinguished by phytoclimatic belts. However,
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some poplars measured in the transects exceeded the range of H and/or DBH, and some
minor species were not reported. In both cases, dedicated allometric equations [75] were
applied, respectively:

v = 5.42876 · 10−5 · d1.7885 · h1.0286 (1)

for poplar (1), where v = volume (m3), d = DBH (cm) and h = H (m):

v = −1.614 · 10−3 + 3.72428 · 10−5 · d2 · h + 9.59885 · 10−4 · d− 2.40608 · 10−4 · h (2)

for other broadleaf species (2). To convert volume into mass units (Mg), the former was
multiplied by the specific tree species’ mass density [76].

Figure 2. Study site (red polygon) localized along ID_UAV 5B (white polygon) of Bruna River.

2.3. UAV Data Collection and Processing

Over the selected transects, a UAV flight campaign was designed, to cover the whole
stand’s variability. As a preliminary step, a fine-tuning calibration of the UAV system
was performed, comparing field ground measurements and remotely sensed data. A DJI
Phantom 4 Pro UAV platform was deployed in the study campaign (Figure 3), a model
designed with a magnesium alloy structure, robust and capable of absorbing vibrations,
and characterized by a higher center of gravity that provides great balance and flight agility
at the same time.

Figure 3. DJI Phantom 4 Pro used during UAV flight campaigns.

The UAV used can fly for up to 28 min, within a range of 5 km and is equipped with
an HD video transmission. The integrated 3-axis gimbal allows camera stabilization for
taking high-resolution photos at 20 megapixels. During the planning phase, different flight
altitudes were tested to guarantee a good compromise between the spatial resolution of
the acquired RGB images and the survey speed. The flight altitude identified to ensure
an optimal characterization of vegetation in the monitored areas was 90 m, providing
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0.025 m per pixel ground resolution. Furthermore, recording in clear sky conditions was
fundamental to obtain good results. Three-dimensional photogrammetric reconstruction
also requires a high image overlap, which was achieved by setting a low forward speed
(frontal overlap) and narrow flight transepts (lateral overlap). In this study, the overlap
percentage set among frames was 80%. This type of flight, being characterized by the
acquisition of small surfaces per unit of time, allowed the maximum accuracy of geometric
reconstruction of the vegetation to be achieved, and therefore precision in estimating
biomass. This data processing workflow was also adopted in a recent work by the authors
to estimate the pruning biomass recovered from uneven-aged and irregularly spaced
chestnut orchards in central Italy through the use of multispectral data [29]. The RGB
images’ processing requires a high computing power; for this reason, it was operated by
a workstation equipped with 2 Intel Xeon E7 v.4 processors, an NVIDIA Quadro M6000
video card with 24 dedicated GB, and an RAM with 256 GB. Figure 4 reports the different
software involved in the image processing workflow.

Figure 4. Processing chain of UAV data acquired: dense cloud and orthomosaic (a), canopy height
model CHM (b), trees’ position and crown boundaries (c), and main tree parameters (d).

During the first phase, the Agisoft Metashape Professional software, Edition 1.5.2
(https://www.agisoft.com, accessed on 14 September 2021) was used. This Structure from
Motion (SfM) processing software, through a special processing chain that exploits the
high overlap level of the RGB images acquired by UAV, generates the dense point cloud
(3D model) and the orthomosaic of each investigated site of interest (Figure 4a). The
dense cloud was imported into QGis software (https://www.qgis.org/it/site/, accessed
on 11 July 2021) to develop, through LAStools toolbox (https://laszip.org/, accessed on
6 June 2021), the CHM, a raster file of trees located in the sites (Figure 4b). The LAStools
pipeline called “flightlines to single CHM (pit-free)” was used to convert LAS files, 3D point
cloud exported by Agisoft Metashape, into a single pit-free CHM using the algorithms
described by [77]. The CHM accuracy was analyzed comparing the vegetation height
measurements collected during the field campaigns and the resolution chosen for this
model at 0.5 m. This stage is usually exploited to detect the tree top, visualize the crown
shape, or estimate the tree volume [28]. The next image processing step concerned the use
of ‘rLIDAR’ script (version 0.1.1) [78] in the R programming language (version 3.6.0). In this
study, it enabled the unsupervised generation of a vector file relative to the position and
crown boundaries of trees within the CHM (Figure 4c). First of all, CHM smoothing, based
on local maxima, was applied to remove noise and to improve over-segmentation errors.
The tops of individual trees were then automatically detected using the CHM and the
local maximum search method (rLiDAR: FindTreesCHM function) with a Fixed Window
Size (FWS) of 3 × 3 pixels resulting as the best window. The threshold for the lowest tree
height (Minht value) was fixed at 3.0 m to avoid the misdetection of undergrowth. The
ForestCAS function (cf. rLiDAR), based on a centroidal Voronoi tessellation approach, was
then applied to automatically isolate each tree crown polygon [78,79]. The threshold for
the Maximum Crown Radius (Maxcrown) was set at 10.0 m, according to the dendrometric
characteristics of the sites. After isolating each tree boundary and clipping them from the

https://www.agisoft.com
https://www.qgis.org/it/site/
https://laszip.org/
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CHM, the grid cells with values below 50% of the maximum height measured for each tree
were excluded (Exclusion values) to eliminate the low-lying noise. Finally, the vector file
including each tree boundary characteristic was analyzed in a GIS environment to extract
the tree parameters necessary for spatial estimation of biomass (Figure 4d): H and CD.

2.4. Biomass Estimation Methodology

As highlighted before, tree biomass can be estimated by two dendrometric parameters:
H and CD. H was measured for each tree placed in the studied segments (Section 2.2),
whereas CD was extracted through an on-screen interpretation of two products: ortho-
mosaic and CHM (Figure 5). This choice was made because, in sites where there is dense
vegetation, such as those investigated in this study, the remotely sensed identification of
CD allows the processing times to be shortened, thanks also to the high resolution of the
two aforementioned products. The manually drawn individual crown polygons approach
has already been exploited in association with the unsupervised approach by the scientific
community for the detection of trees’ parameters [29,80].

Figure 5. Orthomosaic and canopy height model (CHM) (with transparency for values = 0) used for
on-screen interpretation to extract trees’ CD.

Using this database (composed of both measured and remotely sensed parameters)
and estimated biomass for each tree as indicated in Section 2.2, allometric models with a
power relationship were developed to detect the biomass of the whole monitored areas.
LAB Fit Curve Fitting Software v. 7.2.50 [81] was used to build the following Models (3–6):

Y = A · XB (Model 1 3)

Y = A · X(B·X) (Model 2 4)

Y = A · (X1 · X2)
B (Model 3 5)

Y = A · X1
(B·X2) (Model 4 6)

The first two models relate H (X-independent variable) to biomass (Y-dependent
variable), whereas in Model 3 and Model 4, biomass (Y) is estimated through two inde-
pendent variables related, respectively, to CD (X1) and H (X2). A and B are multiplicative
parameters in all four models. The coefficient of determination (R2) and root mean square
error (RMSE) were computed for the aforementioned regressions.

2.5. Model Validation

Selected trees located both in the bed and on the bank of the rivers were removed
according to the thinning plan. The logging company’s team was composed of 4 operators,
2 equipped with chainsaws, one with an excavator for severing and piling logs, and the last
one with a forwarder for the extraction. Wood was stored to dry in several piles, waiting
to be chipped at a later date. CB6 carried out felling in 4 out of the 5 surveyed zones
(STR-5, STR-7, STR-8, STR-9), on a larger area compared to the one covered by UAV flights.
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Therefore, to compare remotely sensed biomass with the measured one, the estimated
amount of biomass per unit of surface (Mg ha−1) was multiplied by the total area affected
by cuts. Through this comparison, it was possible to determine whether our regression
models could be used to generate an accurate biomass estimation. This can be defined as
an indirect check of its reliability when applied to large areas. The methodology used deals
with a training and validation dataset but does not follow a standardized approach. Indeed,
the training dataset encompasses all trees measured during the ground data collection in
the test site (180 trees, Table 2), while the validation was performed against all the trees in
the area covered by UAV flights (total number of the trees > 1000). Considering that the
Consorzio di Bonifica provided a total amount of pruned biomass, our validation refers to
this value (cumulated total biomass removed).

Table 2. Main features of the test sites and ground-collected allometric data.

GDC
Site

Length Surface Trees Species DBH H CD Biomass

m m2 N Type % cm m m Mg

A 108 1135 25

Populus nigra 45

26.83 ± 16.30 11.40 ± 3.96 7.65 ± 3.36 0.18 ± 0.27
Robinia pseudoacacia 19

Acer monspessulanum 18
Quercus ilex 18

B 68 884 15
Quercus pubescens 50

23.67 ± 6.53 13.55 ± 2.34 5.23 ± 0.42 0.25 ± 0.16Robinia pseudoacacia 44
Populus nigra 6

C 34 568 15
Populus nigra 87

24.25 ± 13.26 10.52 ± 2.26 3.92 ± 1.43 0.12 ± 0.15Quercus ilex 13

D 190 2296 80
Robinia pseudoacacia 80

16.55 ± 8.41 10.82 ± 2.83 4.94 ± 1.14 0.13 ± 0.13Populus nigra 15
Salix alba 5

E 25 479 26
Populus nigra 70

28.88 ± 8.03 13.60 ± 3.75 3.97 ± 0.77 0.18 ± 0.12Salix alba 30

F 43 554 19

Populus nigra 59

19.64 ± 5.82 13.40 ± 4.56 5.83 ± 2.72 0.26 ± 0.15
Robinia pseudoacacia 23

Salix alba 9
Ulmus minor 5

Alnus glutinosa 4

3. Results
3.1. Ground Data Collection (GDC)

Table 2 shows the main features of each tested segment (length, surface, number of
trees, species) and the ground-collected allometric data, such as DBH, H, and CD, collected
with ground-based measured biomass. For each allometric characteristic, mean values and
standard deviations are reported. Most of the surveyed species were typical of riparian
vegetation, such as black poplar (Populus nigra), black locust (Robinia pseudoacacia), white
willow (Salix alba), field elm (Ulmus minor), and common alder (Alnus glutinosa). However,
there was a small group of thermophilic species strictly belonging to Mediterranean scrub,
such as downy oak (Quercus pubescens), holm oak (Quercus ilex), and Montpellier maple
(Acer monspessulanum). Overall, the most pervasive species across the six test areas were
poplar and black locust, the latter an alien plant that exploits its vegetative reproduction
to spread widely in wetlands. A description of the experimental results is given, their
interpretation, as well as the conclusions that can be drawn.

The GDC A site (located in the Bruna 5A segment) was adjacent to a tomato field and
had a narrow and long rectangular shape (10.5 m × 108 m). Many patches contained inva-
sive plants, such as giant reed (Arundo donax) and black locust, grouped in 8–10 specimens
(small trees not recorded) (Figure 6a). Although the surveyed area was large (1135 m2),
it had a low tree density (on average DBH > 10 cm and H = 1.40 m). Nevertheless, the
highest CDs were detected here (7.65 m), owing to some large and mature trees. This
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heterogeneity was also reflected in the variability of the estimated biomass (±0.27 Mg).
GDC B (located in the Bruna 5B segment) was enclosed between cultivated fields and
characterized by a high number of downy oak and black locust (Figure 6b), while only a
few black poplar trees were present. Concerning shrub vegetation, common hawthorn
(Crataegus monogyna) was widely spread in the understory and this made the survey area
particularly difficult to access. Hs were on average greater than 13 m with slight variability,
while DBHs reached an average value close to 24 cm. Numerous plants were lying on
the ground or in the watercourse bed and, amid high vegetation, many smaller trees did
not have the minimum size needed to be recorded (DBH < 3 cm), thus affecting the tree
density. Biomass registered here had the highest values among the six test areas and this is
consistent with the medium-high values for all the other allometric quantities taken into
consideration (DBH, H, CD; see Table 2).

Figure 6. Vegetation pattern and distribution within the six test segments (capital letters correspond
to the test area ID, Table 2).

GDC C (Rigo creek, Figure 6c) was located on the left bank next to an abandoned
field with scattered olive trees. The few trees (15) were all black poplars except for two
holm oaks. They had the lowest heights (10.52 m) among the six test areas with reduced
variability. Regarding the crown diameters, the lowest average values were found (3.92 m)
and this affected the low average biomass (0.12 Mg).

GDC D (Ombrone 6A) and GDC E (Ombrone 8A) were the only study sites located
on the main watercourse (river Ombrone) of the study hydrographic network. In GDC D,
the most widespread species was the allochthonous and invasive black locust (Figure 6d).
Other species, like black poplar and white willow, were sporadic with isolated large trees,
especially of the former. It was characterized by an elongated rectangular shape with a very
steep scarp at the beginning and end of the stretch and with a double-terraced riverbank
profile in the central section. The dense vegetation alternated with sections in which trees
were absent; nevertheless, the number of trees detected was the highest of all the test areas
(80), also due to the biggest surface (2296 m2). The surveyed trees had very low values
regarding both H (10.82 m) and DBH (16.55 m). In particular, the presence of small trees
was also worthy of note (28 specimens) with DBH < 10 cm (Figure 6d), which, however,
can contribute significantly to the total biomass. GDC E was characterized by a rectangular
shape, and it was placed in the closest zone to the river floodplain, in the lower course of
the river. Although Ombrone 8A is the smallest test area among those considered (479 m2),
it had the highest trees density (5.4 trees/100 m−2) (Figure 6e). This was composed mainly
of black poplar and to a lesser extent of white willow, with the highest average values in
terms of DBH (28.88 cm) and H (13.60 m) among all the surveyed areas. GDC F (Gretano
creek) consisted of two separate but close blocks. The first block included a few large trees
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while the second was composed of dense and multi-layer vegetation of mixed species,
with an understory rich in young trees (Figure 6f). The spatial separation between the two
blocks contributes to the vegetation unevenness, which is reflected in the highest variability
among all the test areas in terms of the detected species (five, Table 2). Moreover, the test
area presented the lowest amount of biomass (0.09 Mg) with a small standard deviation
due to the presence of many young trees of a similar size.

3.2. UAV Estimated Dataset

Table 3 shows the remotely sensed dataset acquired through UAV campaigns for the
five studied zones.

Table 3. UAV remotely sensed dataset acquired for the five monitored sites.

Zone ID ID_UAV
(GDC Site) Total Area (ha) Σ Crown Areas (ha) Tree Cover (%) H (m) CD (m)

STR-5

5A (A) 3.14 2.09 67 14.33 ± 5.57 4.88 ± 1.56
5B (B) 4.16 2.69 64 12.96 ± 4.53 5.19 ± 1.74

5C 3.67 2.22 60 16.56 ± 6.87 5.06 ± 1.60
5D (C) 8.27 3.43 42 10.71 ± 3.76 5.10 ± 1.49

STR-6

6A 1.30 1.07 82 19.87 ± 4.58 5.79 ± 1.49
6B 2.97 2.61 88 14.62 ± 5.25 5.07 ± 1.36
6C 1.08 0.88 81 16.66 ± 4.15 5.65 ± 1.25
6D 1.97 1.62 82 18.40 ± 6.51 5.98 ± 1.35

STR-7
7A (D) 1.10 0.92 84 11.20 ± 5.55 4.56 ± 1.19

7B 1.58 1.42 90 12.37 ± 5.71 5.12 ± 1.43

STR-8
8A (E) 6.43 3.03 47 13.74 ± 5.47 5.18 ± 1.60

8B 4.34 0.94 22 15.96 ± 7.20 3.72 ± 1.70
8C (F) 1.15 0.65 57 18.83 ± 6.32 4.79 ± 1.98

STR-9
9A 1.35 1.25 92 13.43 ± 4.52 5.57 ± 1.50
9B 1.56 1.18 75 12.97 ± 6.05 5.52 ± 1.53

In Figure 7, zones flown over by the UAV are drawn as white polygons, while trees’
crown segmentation areas are reported in green. Using these parameters, the percentage of
tree cover was identified. Lastly, the average H and CD values of trees present in every
cutting area were estimated. Trees that had an H value lower than 3 m were not taken into
consideration because this range was not affected by the cuts made by CB6. The highest
variability among the data shown in Table 3 occurred in the tree cover percentage values.
They ranged from 22% in site 8B (Ombrone) to 92% in site 9A (Osa) (see Figure 7). Moving
on to the tree’s dendrometric parameters, always within the two aforementioned areas, the
highest and lowest CD value was found. It can be observed that site 8B had an average
CD of 3.72 m, whereas in site 6D, the highest CD was equal to 5.98 m. Regarding the
average tree height, this ranged from 10.71 (site 5D, Rigo) to 19.87 m (site 6A, Asso), and
the highest variability of this parameter was detected in site 8B (± 7.20 m). The lowest
heights recorded along the 5D (Rigo) were also highlighted among the six test areas during
the GDC (Table 2).

3.3. Regression Models

Through the UAV remote sensing activity, it was possible to estimate the woody
biomass within the monitored stream reaches. As mentioned in Section 2.4, the dendro-
metric parameters H and CD represent an effective approach for trees’ biomass estimation.
The relations (equations and R2) connecting these two variables and the estimated biomass
within the five studied zones are presented in Table 4. Particularly, the first two models link
only measured height (X-independent variable) to the estimated biomass (Y-dependent
variable), whereas in the last two models, the biomass (Y) is estimated through two inde-
pendent variables: manually contoured CD (X1) and ground-measured H (X2).
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Figure 7. Tree crown segmentation areas (colored in green) identified within cutting polygons (in
white) indicated by the CB6. Red area represents GDC study sites.

Table 4. Equations and R2 of the four adopted regression models.

N◦ Equation R2 RMSE (Mg)

Model 1 Y = 0.0001 · X2.8377 0.56 0.10
Model 2 Y = 0.0221 · X(0.5687·X) 0.57 0.10
Model 3 Y = 0.0020 · (X1 · X2)

1.0737 0.59 0.18
Model 4 Y = 0.0502 · X1

(0.0576·X2) 0.63 0.09

All four developed models show interesting results, with the highest correlation found
in the fourth (Model 4, R2 = 0.63), which also presents the lowest RMSE equal to 0.09 Mg.

3.4. Biomass Estimation

Table 5 shows the estimated biomass results (tree average biomass and biomass per
unit of surface) obtained through the four aforementioned models (Table 4) within each
parcel. Regarding tree average biomass (Mg), it can be observed that through Model 2,
the highest values with the highest variability were obtained, and the maximum value
reaches 1.22 Mg in the 6D (STR-6) and 8C (STR-8 sites). This relation probably tends to
overestimate the values. The other three power relationships, instead, provide averagely
comparable values; in fact, they range from 0.14 Mg in the 7A (STR-7) to 0.60 Mg estimated
in the 6A site (STR-6).

The total tree biomass divided by the area of each segment allowed the available
amount of biomass per hectare (Mg ha−1) to be calculated. A wide variability was observed
within these results. The second model overestimated the biomass results for all sites,
whereas the lowest value was found in the 5D segment (23.0 Mg ha−1) by applying the
first model.

3.5. Comparison between Estimated and Measured Dataset

At the end of October 2019, thinning was carried out in zones STR-5, STR-8, and STR-9
by the forestry companies in the manner indicated in Section 2.5. Thinned surface (ha),
selective cutting grade (%) adopted in each zone, measured biomass (Mg), and average
UAV estimated biomass of each zone (Mg ha−1) using the four models (see Table 4) are
shown in Table 6. Regarding the UAV total biomass (Mg), this was calculated by averaging
the biomass per unit of surface (Mg ha−1) covered by flights within the three thinned zones
(see Table 5), and multiplying it by the respective surface, taking into account the cutting
percentage applied.

The results showed that Model 4 exhibits the highest accuracy with a tendency to
underestimate cut biomass and the lowest absolute errors, represented by 67 Mg for STR-5,
66 Mg for STR-8, and 10 Mg for STR-9, while Model 1 performs better for STR-7 with a
slight overestimation of 26 Mg. Conversely, Model 2 widely overestimates the actual data
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and Model 3 offers intermediate results. Thinning was not done in the 8C site of STR-8,
thus the average UAV estimated biomass for STR-8 was calculated by averaging the values
from 8A and 8B.

Table 5. Tree average biomass (Mg) and biomass per surface (Mg ha−1) estimated for each UAV flight through the four
models previously shown in Table 4.

Zone ID ID_UAV
Total
Area
(ha)

Biomass Per Tree (Mg) Biomass (Mg ha−1)

Model 1 Model 2 Model 3 Model 4 Model
1

Model
2

Model
3

Model
4

STR-5

5A 3.14 0.30 ± 0.03 0.47 ± 0.09 0.20 ± 0.01 0.23 ± 0.02 96.0 151.5 63.3 74.0
5B 4.16 0.21 ± 0.02 0.25 ± 0.04 0.19 ± 0.01 0.20 ± 0.01 57.7 68.1 52.0 55.0
5C 3.67 0.47 ± 0.05 1.03 ± 0.16 0.23 ± 0.01 0.30 ± 0.03 127.1 281.9 63.8 82.7
5D 8.27 0.12 ± 0.01 0.13 ± 0.01 0.15 ± 0.01 0.15 ± 0.01 23.0 24.7 27.8 27.9

STR-6

6A 1.30 0.60 ± 0.03 1.06 ± 0.11 0.24 ± 0.01 0.31 ± 0.02 271.8 475.5 109.9 140.1
6B 2.97 0.30 ± 0.02 0.38 ± 0.05 0.20 ± 0.01 0.23 ± 0.01 120.2 153.0 83.4 92.4
6C 1.08 0.37 ± 0.02 0.47 ± 0.04 0.20 ± 0.01 0.22 ± 0.01 180.1 226.3 94.9 107.3
6D 1.97 0.57 ± 0.05 1.22 ± 0.16 0.24 ± 0.02 0.32 ± 0.03 196.8 425.0 84.4 110.7

STR-7
7A 1.10 0.18 ± 0.03 0.28 ± 0.07 0.14 ± 0.01 0.16 ± 0.01 86.4 133.9 65.6 75.3
7B 1.58 0.22 ± 0.03 0.33 ± 0.08 0.18 ± 0.01 0.20 ± 0.02 89.1 134.3 71.5 80.6

STR-8
8A 6.43 0.29 ± 0.03 0.37 ± 0.06 0.20 ± 0.01 0.24 ± 0.02 60.1 76.3 41.8 49.2
8B 4.34 0.48 ± 0.04 0.79 ± 0.11 0.16 ± 0.01 0.26 ± 0.02 82.5 130.7 28.1 44.5
8C 1.15 0.59 ± 0.05 1.22 ± 0.15 0.26 ± 0.02 0.35 ± 0.03 158.7 329.4 68.9 93.4

STR-9
9A 1.35 0.23 ± 0.02 0.27 ± 0.04 0.20 ± 0.01 0.21 ± 0.01 80.7 95.1 72.8 75.5
9B 1.56 0.26 ± 0.03 0.46 ± 0.09 0.20 ± 0.01 0.23 ± 0.02 75.8 133.4 57.8 66.4

Table 6. Characteristics of cuts made in STR-5, STR-7, STR-8, and STR-9 sites.

Site STR-5 STR-7 STR-8 STR-9

Cutting Area (ha) 44.96 18 19.86 8.09
Selective cutting grade (%) 66 33 33 50

Measured Biomass (Mg) 1844 495 373 277

Estimated Biomass
(Mg ha−1)

Model 1 75.9 87.7 71.3 78.2
Model 2 131.5 134.1 103.5 114.2
Model 3 51.7 68.5 34.9 65.3
Model 4 59.9 77.9 46.8 70.9

Total biomass (Mg)

Model 1 2252 521 467 316
Model 2 3902 797 678 462
Model 3 1534 407 229 264
Model 4 1777 463 307 287

4. Discussion

The proposed methodology, thanks to the support of the new technologies, allows
an accurate estimation of the wood biomass available in a riverbank environment under
Consortium management, overcoming the limits of a traditional ground survey. A careful
preliminary analysis of the area under investigation based on the available local orthopho-
tos permitted five zones representative of the morpho-vegetational trees’ variety to be
identified. A quick pilot inspection of the riverbank segments selected for the trials was
crucial to choose the accessible sites, discarding points with extremely dense vegetation,
steep banks, or even closed by private-property fences.

The UAV’s campaign realized over the selected riparian traits representative of the
whole river network through an accurate photogrammetric reconstruction of RGB images
allowed an extremely detailed orthomosaic map as well as an accurate 3D model to be
acquired. The analysis of a dataset composed of both measured and remotely sensed
acquired parameters allowed a system of four allometric models for estimating the trees
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biomass to be built (Tables 4 and 5). These models were chosen over others, which, although
providing better results in terms of R2, were found to be not fully reliable. In the case
of exponential models, for example, extreme heights (that could be due to errors inside
the CHM) produced an estimate exponentially out of range. Models presented in Table 4
instead show representative results (the greatest correlation is R2 = 0.63) where such values
could be a direct consequence of the high vegetation variability in terms of the species and
size of trees (Section 3.1).

In this regard, given that studies on UAV biomass estimation in riparian zones are
limited to [72], the results presented here are compared to these and to some scientific
works within a larger scope. In particular, the comparison between UAV-predicted biomass
vs. field reference biomass was considered by [58], who reported for an uneven-aged and
mixed forest an R2 value equal to 0.39 (broadleaf species); [82] and in a healthy subplot of
Robinia pseudoacacia forest with UAV- LiDAR and [83] in the Mediterranean environment,
R2 reached up to 0.92 and 0.87, respectively. The current work presents higher correlation
values (even for the worst model) with respect to [58] but lower ones if compared with
studies that encompass regularly spaced forests with an open canopy, fairly flat terrain,
and no understory [82,83]. However, if the complexity of riparian vegetation is taken as a
reference point, the present study can be related to similar studies that estimate AGB in
a tropical forest. As in the case of [84], which, comparing AGB obtained from UAV-RGB
imagery versus AGB estimated by allometric equations starting from ground-measured H
and DBH, achieved comparable R2 (from 0.65 to 0.76). This brief comparison can give an
idea of how difficult it is to estimate such a pivotal allometric parameter as biomass in a
natural riparian environment.

Considering the ground-sampled parameters (Table 2), it can be noted that allometric
data present relevant differences among test areas, especially for DBH and biomass. This
reflects the extremely high variability in terms of the spatial distribution and multi-layer
growth of spontaneous vegetation along with the watercourses. The highest values for H
and DBH occurred in test area E; the possible reason why there is such tree growth could
be twofold: plants could be boosted by nutrient leaching stemming from the adjacent field
and/or the long time since the last management. In test area D, we can observe a specific
distribution of DBH that is affected by the dense vegetation and young tree age, which
influences, in turn, the low average biomass value (0.13 Mg). The lowest CD values can
be found in test areas C and E (3.92 and 3.97 m, respectively) and this is probably due
to a large number of black poplars and to their columnar habitus, which causes reduced
crown projection.

Analyzing the UAV remotely sensed allometric parameters, i.e., H and CD, acquired
for the five monitored zones, it was observed that this technology achieved good results.
Indeed, comparing the measured values in test sites A–F (Table 2) with the estimated ones
within the same areas (ID UAV 5A, 5B, 5D, 7A, 8A, 8C, Table 3), a good correspondence
between the two datasets emerged in almost all the cases. For H, the variation ranged
from −5% to +12% (with the worst result for Bruna 5A with an overestimation of +25%)
while for CD, the variation was rather higher, ranging from −8% to +23% (with the worst
result always for Bruna 5A with an underestimation of −57%). In particular, the lowest
average height identified through ground measurements along the 5D site in the Rigo creek
(10.52 m ± 2.26 m) was also highlighted through the UAV survey (10.71 m ± 3.76 m). The
comparison between these two datasets allows a good validation of the remotely sensed
data to be performed, although a conspicuous ground dataset was not sampled, as done in
other works [27,85]. Moreover, the UAV-derived parameters are comparable with those
identified with the same platform, especially for H, for example, in areas characterized
by Robinia pseudoacacia [82] or in a pan-mixed conifer–broadleaf stand where Acer spp.,
Salix spp., and Quercus crispula are common deciduous species [58]. Instead, for CD, no
references dealing with the species detected in this work were found.

Regarding tree average biomass, a high variability was observed over the sites and
among the four models (Table 5). Site 5D presented very low biomass through all four
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models (<0.15 Mg) due to the massive presence of isolated young poplars, while the
highest value (average 0.61 Mg) stemmed from 8C, where a large number of trees with
considerable size were detected by the UAV flight. Besides, site 8C, together with 6D,
had the highest variability among the models, which could be due to the highest number
of species detected. When the site plant cover is dominated by a single tree species, as
in site C and D (with 87% of poplar and 80% of Robinia pseudoacacia, respectively), the
variability in the biomass estimation is greatly reduced. Comparing UAV-derived with
ground-sampled average values (Table 2), we can see that estimations stemming from
Model 3 are the closest to the in-field biomass over the sites except for 5B and 5D, which
are more congruent with Model 2 and Model 1, respectively. In particular, UAV-estimated
biomass for the 5B, 7A, and 8A sites differ from ground measurements by at most 0.02
Mg. Model. 2, which links only measured height (X-independent variable) with estimated
biomass (Y-dependent variable), returned the highest dataset value (1.22 Mg within the
6D and 8C UAV sites) and, despite the good linkage in the 5B site, in general, it tended to
overestimate the results. If Model 4 is taken as a reference (best R2 value equal to 0.63), it
is worth noting that the remotely sensed values gained a good estimation of tree average
biomass. In fact, the variation range between field-measured and remotely sensed values
is between −25% (5B site) and +22% (5A and 8A sites). Only site 8C (Gretano) presents a
very high deviation from the in-field biomass (+74%); this could be due both to the high
species variability and to the small sizes of the sampled trees within the test area with a low
tree number (GDC site F, tree numbers = 19, Table 2), which in turn affected the uneven
weight distribution.

Additionally, focusing on the UAV biomass per surface, it was possible to observe a
wide variability in the results, and the highest wood biomass per hectare was obtained
through Model 2 within parcel STR-6, along ID-UAV 6A/Asso creek and ID-UAV 6D/Ente
creek (475.5 Mg/ha and 425.0 Mg/ha, respectively). This result can be attributed to the
tallest tree heights found among the monitored sections (19.87 m for Asso creek and 22.44 m
for Ente creek). Instead, the least amount of wood biomass obtainable from the cutting
polygons was found in the 7A segment of the Rigo creek (23.0 Mg/ha) with Model 1. In
this section, as also highlighted by the field surveys, lower tree heights were identified
(Tables 2 and 3). This feature, in association with low vegetative cover (42% on 8.27 ha),
may be the reason for the low biomass values. With the aim of comparing these results
with analogous biomass per surface values obtained by UAV optical imagery, only a few
studies are found in the literature for a suitable comparison in terms of species and climate
conditions. In particular, [72,74,86] reported the final results in Mg of carbon per dry weight,
so a 2.30 conversion factor was applied to account for the carbon/total biomass ratio [87]
and wood moisture content (15%). The authors of [72] classified riparian vegetation species
and estimated carbon stock for ecological purposes in a Mediterranean environment. For
a plot dominated by Acacia dealbata, they estimated an AGB value of 442 Mg/ha, a value
three times higher than the maximum for 7A (133.9 Mg/ha) dominated by a species of the
same botanic family (Robinia pseudoacacia). The biomass gap can only be partially explained
by the different species and by the different reference unit (AGB vs. dendrometric mass).
The results of [86], obtained in a pan–mixed conifer–broadleaf forest also characterized
by Quercus crispula, can be compared with site 5B, where the genus Quercus is strongly
represented (50% of trees). Even in this case, our results are lower (68 vs. 189 Mg/ha).
The vegetative composition and colder climate in [86] could be a possible explanation.
Additionally, [74] estimated higher values (202 Mg/ha) than the poplar-dominated sites C
and E in central Italy for riparian forests. In this regard, it must be noted that our study
could underestimate the woody riparian biomass since it aimed to estimate dendrometric
biomass, which is a fraction of AGB. The dendrometric biomass is directly linked with
merchantable biomass and the choice to use it as a tree weight reference stems from the
practical purpose of this study.

Considering research works that estimate biomass per surface through ground mea-
surements, the present results are in line with literature references. The authors of [88]
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reported values of 76 Mg/ha in mature cork oak (Quercus suber) forests comparable with
55 Mg/ha of Model 4 in site 5B while an AGB of 135 Mg/ha was reported by [89]. These
last values are near the ones estimated for STR-6 with Model 4. Nevertheless, the reported
values for riparian biomass are highly variable in the available literature, as shown by [89]
in a recent synthesis developed mostly in temperate riparian forests.

Although there are discrepancies between the UAV-estimated biomass per hectare
and similar values from the literature, the results of the total harvestable biomass (Table 6)
are in line with those provided by the CB6 for selective loggings. In particular, the biomass
values for Model 4 (STR-5, STR-8, and STR-9) and Model 1 (STR-7) are similar to the CB6
final report with an underestimation of 4% for STR5 and STR9 and 18% for STR8, and an
overestimation of 5% for STR7. The selective cutting grade is variable among the parcels,
and it is dependent not only on the number of trees but also on the floodplain width, river
flow, cutting frequency, and presence of roads, bridges, and buildings.

Finally, the methodology presented in this study could represent a very useful tool
for public authorities because it can provide data for riparian biomass estimation in a
cost-effective and timely way. In some cases, LiDAR-derived information may help to
achieve high biomass accuracy estimates since it has the unique capability of measuring the
three-dimensional vegetation structure, also through the extraordinary strata complexity of
uneven-aged forests [15]. Although LiDAR could measure the riparian forest dendrometric
features accurately, this technology is quite expensive. The authors of [90] reported a major
drawback in comparison to LiDAR and photogrammetry, where the latter is limited to
the characterization of the outer canopy envelope, while LiDAR can acquire the vertical
profile of vegetation also operating in under-canopy conditions. Regarding the costs, [91]
estimated a total cost, including field crew, of about 9300 € for UAV-LiDAR and 6800 € for
UAV-SfM to measure vegetation height for 30 sites on seismic lines. Besides, UAV-RGB
imagery can provide good results in estimating biomass in the complex vegetation mosaic
that characterizes Mediterranean riparian systems also on a large scale (i.e., river basin area),
as demonstrated by the present study. Therefore, the choice to use it could be a prototype
as well as a possible solution using off-the-shelf products (UAV and RGB camera) to help
public authorities in managing public resources in the context of riparian ecosystems.

5. Conclusions

The adoption of precision forestry (PF) in riparian areas is currently limited to a few
studies and none of these have dealt with UAV estimation of biomass, with the exception
of [72]. To fill this gap, this work aimed to identify a quick and easily reproducible
UAV methodological framework for estimating biomass in riparian zones following the
management activities necessary to ensure optimal hydrological safety. Future research
will be oriented to (i) the development of a methodology for remote CD estimation, in order
to have another parameter available to build correct models for mass estimation of basin-
scale biomass; and (ii) the recognition of alien species in the Mediterranean environment
that threaten biodiversity (e.g., Robinia pseudoacacia, Ailanthus altissima) using UAV-RGB
technology. Additionally, it is important to optimize the accuracy and automation level
of the entire workflow from data collection, image processing, and equation modeling to
biomass weighing. Therefore, research can provide effective support to authorities involved
in river ecosystems’ management strategies in an efficient, timely, and cost-effective way.
In fact, this methodology, supported by simple RGB acquisition obtained from UAV, allows
its application both in different environments and at different spatial scales.
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