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Abstract: While closed canopy forests have been an important focal point for land cover change
monitoring and climate change mitigation, less consideration has been given to methods for large
scale measurements of trees outside of forests. Trees outside of forests are an important but often
overlooked natural resource throughout sub-Saharan Africa, providing benefits for livelihoods as
well as climate change mitigation and adaptation. In this study, the development of an individual
tree cover map using very high-resolution remote sensing and a comparison with a new automated
machine learning mapping product revealed an important contribution of trees outside of forests
to landscape tree cover and carbon stocks in a region where trees outside of forests are important
components of livelihood systems. Here, we test and demonstrate the use of allometric scaling from
remote sensing crown area to provide estimates of landscape-scale carbon stocks. Prominent biomass
and carbon maps from global-scale remote sensing greatly underestimate the “invisible” carbon in
these sparse tree-based systems. The measurement of tree cover and carbon in these landscapes has
important application in climate change mitigation and adaptation policies.

Keywords: trees outside of forests; REDD+; carbon; climate change; crown allometry; natural
climate solutions

1. Introduction

Closed canopy forests have been an important focal point for land cover change
monitoring for the last twenty years, and as a result, considerable progress has been made
to develop tools and methods applied to these forest ecosystems [1–3]. These high carbon
ecosystems have been undergoing significant changes due to land use conversion. Globally,
deforestation and degradation of closed canopy tropical forests are important sources
of carbon emissions. However, there has been less consideration and analysis given to
carbon stocks and monitoring of landscapes of trees outside of forests (TOF) [4]. Here, we
considered TOF to include occurrences of (1) sparse woodlands and savannas with canopy
cover less than the forest definition; (2) agricultural landscapes with individual remnant
or planted trees on farms; and (3) agro-forestry systems that combine perennial trees with
annual crops. Although the carbon density of these tree systems is low, they usually have
significant livelihood dependencies for economically poor rural communities in marginal
landscapes that are particularly vulnerable to climate change.

The geographic distribution of TOF systems is globally extensive [5,6]. In Africa, many
farmers plant trees or maintain remnant trees on their farms because they recognize the
multiple benefits that trees provide for land productivity and household incomes, thereby
providing substantial benefits to rural dwellers, national economies, and food security [7].
While the area of forests is declining in developing countries, tree cover on farms is found
to be increasing in many parts of Africa and the world, as farmers use trees for products
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formerly available in local forests [5,8,9]. In sub-Saharan Africa, the majority (87%) of
agriculturally dominated landscapes has a tree cover of more than 10% [10].

Systems of TOF are important sustainable land management systems and climate-
smart farming systems that create opportunities for climate change mitigation and adapta-
tion [11]. In terms of climate change actions, these systems have great potential to link both
mitigation and adaptation in a single intervention [11,12]. Moreover, widespread adoption
of TOF by farmers provides an opportunity to act simultaneously on two economic devel-
opment problems—climate change vulnerability and rural poverty—since TOF products
can achieve higher value chains than most annual crops. Through innovations in landscape
management using TOF practices, millions of farmers could be important participants in
climate change mitigation actions, while also enhancing their livelihoods at the same time.

However, before TOF can be fully integrated into the international frameworks for
climate change mitigation and sustainable development, it is necessary to develop tools
that provide robust and rigorous measurement and monitoring methods across large areas
of the rural landscape. In this paper, we assessed the contribution of TOF systems in West
Africa to landscape carbon stocks, while demonstrating a framework for measurement,
reporting, and verification (MRV) applicable to national REDD+ program requirements.
This paper is focused on MRV that can directly support building capacity for the National
Forest Monitoring System (NFMS) in countries that are making forest-related contributions
to climate change mitigation as part of their commitments following the Paris Agreement
on the United Nations Framework Convention on Climate Change (UNFCCC). The in-
ternational climate agreements arising from the 2015 Paris Conference of the Parties to
the UNFCCC (COP21) have brought forest and agricultural landscapes into prominence
in efforts for greenhouse gas emission mitigation. TOF systems are important for their
role as natural climate solutions, especially for atmospheric removals, and because these
landscapes are significant to the livelihoods of millions of rural people.

Our aim was to evaluate the magnitude and spatial distribution of aboveground
biomass and carbon stocks in individual trees of savanna landscapes in Senegal using very
high resolution (VHR) remote sensing data for mapping the crowns of individual trees,
upon which a crown-area allometric scaling model was used to estimate tree diameters so
that it may be used by standard allometric equations for the region. The development of a
diameter at breast height (DBH) estimator is useful for including individual tree maps in
national inventory and accounting programs for climate change mitigation. Using canopy
parameters to estimate DBH, we assessed an approach to mapping landscape carbon
and demonstrated a measurement framework that supports the requirements of REDD+
national forest monitoring systems for both activity data (AD) and emission factors (EF).

This study asks the following questions: (1) How important is the contribution of TOF
to landscape tree cover and carbon stocks? (2) How well does high resolution mapping of
TOF cover compare to estimate from global-scale medium resolution mapping, such as [1]?
(3) How well does high resolution mapping of TOF carbon stocks compare to estimates
from global-scale coarse resolution estimates? (4) How effectively can measurements of
canopy area from remote sensing be used to estimate tree stem diameters and be used with
existing allometric equations for these landscapes?

2. Materials and Methods
2.1. Study Region

This study takes place in an important area of the Sahelian-Sudanian ecoregion of
West Africa (Figure 1). The climate is semi-arid with annual rainfall from 400 to 1000 mm,
but can reach up to 1845 mm. The rainy season usually lasts three months from July to
September. The area is important for agriculture, a part of the so-called peanut basin of
Senegal where thousands of communities depend on agroforestry and other tree-based
production systems.
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Figure 1. Location of the study site in the Sudano-Sahelian zone of Senegal. (A) The red box indicates 
the location of the data collection in the vicinity of Sokone. (B) The blue box indicates the location 
of validation, vicinity of Karang. 

These landscapes are also important for their climate and carbon dynamics. For the 
last several decades, the total amount of precipitation has been increasing, resulting in an 
increase in vegetation productivity and biomass [13,14]. Multitemporal analyses provide 
evidence of a general greening trend in West Africa, although not in all locations and pe-
riods [13,14]. Notable increases in primary productivity can be attributed to tree cover 
[15,16] and overall woody cover, in part driven by climatic factors such as an increase in 
the frequency of heavy rainfall events and extra-seasonal rainfall [17–20]. Across the 
broader Sahel, there is evidence that farmers in arid and semi-arid Sahelian lands are pro-
moting medium-to-high woody cover in their fields and around settlements, which may 
even exceed that of the surrounding natural savannas [21]. A combination of increasing 
productivity and farmer-assisted agroforestry may have combined to create what most 
evidence suggests as a net carbon sink over the last 30 years [11].  

This project focused on the Fatick region of Senegal. This is the southern part of the 
so-called peanut basin of Senegal, characterized by a savanna landscape. This savanna 
landscape is a mosaic of remnant savanna trees, cultivated individual trees, and planta-
tion clusters of Anacardium occidentale and Eucalyptus. This study site has seen both in-
creases in biomass in TOF around villages and extensive land degradation as trees are 
removed for fuelwood and cropland conversion. 

2.2. Basic Approach: Mapping Individual Trees and Estimating Diameter from Crown Area  
The first step in analysis was to acquire very high resolution (VHR) remote sensing 

data using the Worldview products for a 36 km2 test site (Figure 2). We reprocessed 2-m 
resolution multi-spectral data by sharpening with 0.5 m panchromatic data. These data 
are used to manually derive individual crown polygons for all trees in the test site and 
estimate tree cover and density parameters, which can be compared to tree crown prod-
ucts that use automated methods [22] and to global tree cover products using Landsat 
data [1].  

Figure 1. Location of the study site in the Sudano-Sahelian zone of Senegal. (A) The red box indicates
the location of the data collection in the vicinity of Sokone. (B) The blue box indicates the location of
validation, vicinity of Karang.

These landscapes are also important for their climate and carbon dynamics. For
the last several decades, the total amount of precipitation has been increasing, resulting
in an increase in vegetation productivity and biomass [13,14]. Multitemporal analyses
provide evidence of a general greening trend in West Africa, although not in all locations
and periods [13,14]. Notable increases in primary productivity can be attributed to tree
cover [15,16] and overall woody cover, in part driven by climatic factors such as an increase
in the frequency of heavy rainfall events and extra-seasonal rainfall [17–20]. Across the
broader Sahel, there is evidence that farmers in arid and semi-arid Sahelian lands are
promoting medium-to-high woody cover in their fields and around settlements, which may
even exceed that of the surrounding natural savannas [21]. A combination of increasing
productivity and farmer-assisted agroforestry may have combined to create what most
evidence suggests as a net carbon sink over the last 30 years [11].

This project focused on the Fatick region of Senegal. This is the southern part of the
so-called peanut basin of Senegal, characterized by a savanna landscape. This savanna
landscape is a mosaic of remnant savanna trees, cultivated individual trees, and plantation
clusters of Anacardium occidentale and Eucalyptus. This study site has seen both increases in
biomass in TOF around villages and extensive land degradation as trees are removed for
fuelwood and cropland conversion.

2.2. Basic Approach: Mapping Individual Trees and Estimating Diameter from Crown Area

The first step in analysis was to acquire very high resolution (VHR) remote sensing
data using the Worldview products for a 36 km2 test site (Figure 2). We reprocessed 2-m
resolution multi-spectral data by sharpening with 0.5 m panchromatic data. These data
are used to manually derive individual crown polygons for all trees in the test site and
estimate tree cover and density parameters, which can be compared to tree crown products
that use automated methods [22] and to global tree cover products using Landsat data [1].

Within the test site, we deployed a field inventory to collect individual tree data on
crown areas, standard allometric parameters (cf. diameter at breast height and crown
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projected area), species and landscape descriptions, and tree location information co-
registered to the tree map products. A sample frame inventory was deployed using
standard operating procedures for forest carbon inventories [23]. Allometric measurements
from field plots were used to estimate diameter at breast height (DBH) from crown projected
area (CPA) using linear ordinary least squares regression. The estimated DBH was used
as an input parameter in the standard, local allometric equation to estimate tree biomass.
The aim of estimating DBH from remote sensing, rather than directly estimate carbon, is
so our approach is compatible with national forest inventory practices in the Senegal that
routinely use tree and forest inventories from existing allometric equations.
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individual tree crowns were mapped (Figure 3). The VHR data were processed for geo-
metric registration, and atmospheric correction. Panchromatic sharpening of the 2-m mul-
tispectral bands to the 0.5 m panchromatic bands was used to maximize spatial resolution 
and this product was used as the basic tree crown mapping dataset. Two methods were 
tested for the mapping of individual tree crowns and measurement crown geometry. First, 
all trees with CPAs greater than 5 m2 were mapped using heads-up digitizing [24], which 
is a common method used in Senegal and in many other countries [25]. This manual dig-
itizing also has the advantage in that an individual tree and its landscape context can be 
immediately assessed by the analyst to prevent false clustering of overlapping crowns, 
which assured that we did not obtain multiple crowns merged into single polygons, which 

Figure 2. The test site for remote sensing mapping and field data collection. The test site measures
3366 ha in a square area that is divided into nine blocks for field sampling. Field data collection of tree
parameters from individual open grown trees outside of forests was conducted along a north–south
transect of three blocks. One hectare sample plots were identified and all trees within sample plots
were measured. The yellow circles show the location of one or more sample plots and the number of
trees sampled.

2.3. Tree Cover Mapping with Very High Resolution Remote Sensing Data

The project acquired VHR data (2 m multispectral, 0.5 m panchromatic) from com-
mercial sources and the NASA Commercial Data archive for the study test site in which
individual tree crowns were mapped (Figure 3). The VHR data were processed for ge-
ometric registration, and atmospheric correction. Panchromatic sharpening of the 2-m
multispectral bands to the 0.5 m panchromatic bands was used to maximize spatial reso-
lution and this product was used as the basic tree crown mapping dataset. Two methods
were tested for the mapping of individual tree crowns and measurement crown geometry.
First, all trees with CPAs greater than 5 m2 were mapped using heads-up digitizing [24],
which is a common method used in Senegal and in many other countries [25]. This manual
digitizing also has the advantage in that an individual tree and its landscape context can
be immediately assessed by the analyst to prevent false clustering of overlapping crowns,
which assured that we did not obtain multiple crowns merged into single polygons, which
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could skew the outputs from the allometric scaling model since it is non-linear. It also
allows distinguishing trees from shrubs. It replicates the measurement protocol that would
be deployed in field measurements, which calls for defining a circle or ellipse based mea-
surement on the long-axis and its perpendicular axis. To capture the CPA polygon, each
tree crown was digitized using the Arc/GIS Construction tool. A large area of forest in the
study site, which was also used for grazing livestock, was excluded from tree mapping.
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Figure 3. Example components of the landscape from VHR data (left) and processed crown projected areas for individual
trees (right). The size of the circle represents the crown projected area (m2). All trees in the 3336 ha test site were processed
for crown projected area.

We recognize that covering extremely large areas may require automated processing.
Therefore, we additionally examined the automated detection algorithm developed by
Brandt et al. [22] using their published dataset. This dataset is available from a publicly
accessible repository at the Oak Ridge National Laboratory Distributed Active Archive
(ORNL-DACC). It covers a very large area of Sahelian West Africa and includes mapping of
individual trees with crown areas greater than 3 m2. It was produced using an automated
machine learning algorithm as described by Brandt et al. [22] using Worldview VHR
satellite data. The area of our study site was clipped from two tiles of this dataset and the
trees within woodland or forest areas were masked out.

2.4. Field Sampling

The remote sensing mapping of trees and the field inventory was developed in a
topographically level semi-arid landscape in southern Senegal close to the community of
Sokone, as shown in Figure 1 and in detail in Figure 2. The area measures 36 km2 in an
area bounded by a 6 × 6 km rectangular perimeter. The area contains both plantations of
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Anacardium occidentale (cashew) and scattered individual trees. Individual trees include
Anacardium as well as other natural and individually planted tree types. Farmers in the
region use or maintain a limited range of tree species including Cordyla pinnata, Cola cordifo-
lia, Mangifera indica, Combretum glutinosum, Cordila pinnata, Pterocarpus erinaceus, Adansonia
digitata, Zizyphus mauritiana, Diospyros mespiliformis, Prosopis africana, and Parkia biglobosa.
Cultivated land associated with rainfed agriculture consists mostly of peanuts (Arachis
hypogaea), millet (Pennisetum typhoides), and cashew (Anacardium occidentale) production.

Although the remote sensing analysis covered the entire test site area, the field param-
eters were collected on a sample basis. The VHR data were segmented into nine blocks of
400 ha each. Within the nine blocks comprising the study area, we selected three blocks
with the highest tree densities to sample individual trees (Figure 2). In these sample blocks,
we established 105 random sample plots in agricultural TOF land with isolated trees. Sam-
ple plots for plantations were 0.1 ha in size, while sample plots for isolated agricultural
trees were 1.0 ha. All trees in each sample plot with DBH > 10 cm were measured for
allometric parameters following standard forest inventory methods: DBH, tree height,
crown height, crown long axis diameter, and crown perpendicular axis diameter. Critical
descriptor data were also recorded including species, stand plot type, block number, and
tree location by GPS. The field sampling resulted in a dataset of 377 trees. The regression
model used here did not use trees in block-plantations of Anacardium (cashew), resulting
in 127 trees for regression analysis. These trees covered a CPA range from 5–300 m2.

The sampling protocol followed the standard operating principles provided in [23]
for 1 ha rectangular plots with a randomly determined centroid, which is widely used
in Senegal and other countries for their national forest inventory. Location of trees was
determined using a Trimble GeoXT with TerraSync Pro software and were co-located with
trees in high resolution photo maps produced from temporally concurrent processed 0.5 m
resolution VHR imagery. Tree canopy projected area was measured in the field using the
ellipsoid major–minor axis measurement method in which the long axis of the dripline was
measured with a distance tape first, followed by its perpendicular axis, in meters. Stem
diameter was measured at 1.3 m height using a Ben Meadows standard diameter tape in
centimeters. Tree height was determined using a paired measure using a Suunto clinometer
and a MDL Laser-Ace hypsometer.

Figure 2 shows the locations of the blocks with sample plots, where each location of
one or more plots is identified with the number of sampled trees. This sample transect
represented the best spatial gradient of tree cover in the most densely treed blocks. The
entire 36 km2 test site was mapped with remote sensing for all trees using semi-automated
polygon mapping using the ARC GIS software.

The project established a paired validation site outside the test site around the com-
munity of Karang (Figure 1). VHR satellite data were used to randomly select 143 trees
and the DBH was measured estimated using the same methods and estimated using a
DBH–CPA linear relationship from the test site data analysis.

2.5. Estimation of Tree Stem Diameters from Crown Projected Area

A map of all tree crowns was created from the VHR remote sensing dataset by heads-
up digitizing or clipped from the deep learning dataset of Brandt et al. [22]. Areas of
woodland forests were masked out. An ordinary least squares linear regression was
estimated from the field-measured DBH and remote sensing CPA using the sample tree
data. This produces a simple model to estimate DBH from remote sensing CPA, which
can be used in standard allometric equations based on DBH. Once the estimator is applied
to each tree across the test landscape, the allometric equation from Mbow et al. [26] is
applied to estimate biomass for each tree in the landscape. The allometric equation from
Mbow et al. [26] was developed specifically for this Senegalese landscape. The equation
is generalized for a range of tree species. Only trees with crown projected areas from
5–300 m2 were included. This is the valid limit of the allometric equation and is consistent
with the analysis by Rassmussen at al. [27]. This removes trees, which are outside the
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range of the field-based sampling as well as polygon clusters of trees than can occur in the
automated deep learning dataset. Our analysis suggests this clustering represents less than
2% of the trees. We then compared this carbon map against maps similarly produced using
the allometry from the IPCC default for tropical dry forest, and open-grown trees from
Kuyah et al. [28]. The aboveground biomass estimates were converted to total carbon using
a shoot–root expansion factor of 1.26 and a carbon conversion factor of 0.5. Parameters for
the estimation of biomass and carbon are provided in Table 1.

Table 1. Biomass allometry and carbon estimation parameters.

Estimate of Tree Diameter, DBH DBH = 0.5389 × Crs + 15.835

Aboveground Biomass [26] AGB = 1.929 × DBH − 0.116 × DBH2 + 0.013 × DBH3

Aboveground Biomass [29–31] AGB = EXP(−1.996 + 2.32 × ln(DBH))

Aboveground Biomass [28] AGB = 0.091 × DBH2.472

Belowground Biomass Factor BGB = AGB × 0.26

Biomass–Carbon Conversion C = (AGB + BGB) × 0.5

In these equations, AGB is the tree biomass estimate in kg, BGB is belowground
biomass, and Ctree is the estimated carbon stock of trees. DBH is the remote sensing
estimated diameter at breast height for the tree and Crs is the remote sensing mapped
crown projected area.

Allometric equations are commonly used to estimate biomass and carbon stocks,
however, there is limited reporting on allometric models for TOF, especially in African
savannas and woodlands [32]. The estimation of carbon stocks in sub-Saharan Africa is
frequently based on allometric models in conjunction with forest inventory data [33,34]. For
West African savanna ecosystems, studies have developed allometric scaling models based
on stem diameters [35], height [36], or other parameters [37,38], but few with consideration
of crown parameters [39]. Most have focused on the estimation of aboveground biomass of
closed forest ecosystems, specific tree species, or plantations [34,40]. The study from Kuyah
et al. [28] is one of a few that have focused on the estimation of aboveground biomass
in agricultural landscapes from destructive sampling of open grown trees. The study by
Mbow et al. [26] is one of the few that has developed allometric equations for savannas,
both for dominant species in our study area and general multi-species equations.

For this study, we used the allometric scaling model from Mbow et al. [26] because it is
a local equation developed using destructive sampling in the same region of Senegal as this
study. For comparative purposes, we also used the IPCC tropical dry equation [29] and the
equations from Kuyah et al. [28,41], which includes crown allometry. The IPCC equation
is important because it is an often-used default allometry. Kuyah et al. [28] and [41] are
important because they present allometric models for open-spaced trees using diameter
and crown parameters in the same tree inventory.

2.6. Statistical Metrics

To evaluate comparative statistical measures for the linear regression of CPA to es-
timate DBH and its validation performance, we computed the following statistics fol-
lowing [42]. The accuracy of each model was assessed according to the coefficient of
determination (R2), absolute and relative root mean square error (RMSE and %RMSE,
respectively), and absolute and relative bias (%bias).

R2 = 1 −
∑n

i=1

(
Ŷ − Y

i
.
i

)2

∑n
i=1
(
Yi − Y

)2 (1)
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RMSE =

√
∑n

i=1
(
Ŷi − Yi

)2

n
(2)

%RMSE =
RMSE

Y
× 100 (3)

bias =
∑n

i=1
(
Ŷi − Yi

)
n

(4)

%bias =
bias
Y

× 100 (5)

where Ŷi = estimated tree attribute for the i-th tree; Yi = observed tree attribute for the i-th
tree; Y = observed mean tree attribute; and n = number of observations. We also include
the computation of the Pearson correlation coefficient, r.

These measures allow our OLS regression to be compared to other estimates, providing
measures of performance which are shown as graphical results. To evaluate whether to use
a linear or higher order regression, we compared the linear to a second order polynomial,
which produces a slightly better coefficient of determination. However, using the Akaike
information criterion (AIC) there was no important increase in information content, so
we selected a linear OLS. All computations of statistics were performed using the R
software package.

3. Results
3.1. Landscape Mapping of TOF Cover

Figure 3 shows two representative sections of the study area with individual tree
crowns, where the size of the crown represents its CPA determined by VHR remote sensing.
We mapped 29,836 trees in the study area, with canopy areas ranging from 5.5 to 298 m2.
This represents an average of eight trees per hectare, which is lower than what Brandt
et al. [25] mapped with 30 trees per hectare across a large area of the West African semi-arid
region of the Sahel. Within our study area only, Brandt et al. reported 12 trees per hectare,
an estimate that includes small trees with crown areas (3–5 m2), which was less than our
minimum of 5.5 m2, but comprising only approximately 3% of their total tree inventory
(Table 2).

Table 2. Carbon stock estimates. Results of this study analysis and compared using the alternative tree cover map from
Brandt et al. and carbon stocks using two alternative allometric equations.

Study
Area (ha)

Total
Trees

Total Tree
Cover (m2)

Stem Density
(trees ha−1)

Tree Cover
Percent

Carbon Density
(MgC ha−1)

Total Carbon
(MgC) 1

This study 3336 29,835 1.923 × 106 8 5.0 13 44.28 × 103

Brandt et al. [22] 3336 44,070 2.416 × 106 12 7.0 22 73.35 × 103

Brown [29] 9 29.60 × 103

Kuyah et al. [28] 11 37.72 × 103

1 Note: Total carbon in this study and Brandt used the allometric equations from Mbow. Total carbon entered for Brown and Kuyah used
the tree cover map data from this study.

The total canopy cover for the entire study areas was 1.92 × 106 m2, which represents
5% canopy cover and would be considered under the definition used by the United
Nations Food and Agricultural Organization to be a true TOF landscape rather than
sparse woodlands (Figure 4). By comparison, the analysis by Brandt et al. [25] found
2.416 × 106 m2 of total crown cover in this study area, representing 7% canopy cover and
would also be considered under the FAO definition to be TOF areas (Table 2). The mean
cover area per tree in our analysis was 65 m2 with a median value of 56 m2 (Table 3).
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Table 3. Tree crown area (m2), DBH (cm), and carbon (Mg) descriptive statistics.

This Study Brandt et al. 2020

Tree Crown Tree Diameter Tree Carbon Tree Crown Tree Diameter Tree Carbon

Mean 64.48 50.59 1.48 52.61 44.18 1.67
Standard Error 0.208 0.112 0.017 0.238 0.128 0.019

Median 56.07 46.05 0.70 36.75 35.64 0.30
Mode 49.23 42.37 0.54 5.50 19.07 0.03

Kurtosis 5.821 5.82 67.49 4.321 4.32 23.813
Skewness 1.86 1.86 7.08 1.94 1.94 4.515
Minimum 5.47 18.78 0.05 3.00 17.45 0.022
Maximum 298.13 176.50 42.97 299.50 177.24 35.17

Sum 1,924,000 1,509,281 44,283 2,318,555 1,947,318 73,912
Count 29,835 29,835 29,835 44,070 44,070 44,070

The mapping of tree cover demonstrates that while the cover is very sparse, there is
measurable tree density that may have been overlooked by global scale mapping and anal-
yses. One of the characteristics of TOF cover in this region is its spatial and density-class
distribution. As shown in Figure 4, the TOF cover is spatially diverse and clumped. Indeed,
as noted in other studies, and demonstrated here, TOF is concentrated in areas of human
settlement and areas of active agricultural production. This results in a robust pattern on a
per hectare basis as show in Figure 4, where the range in values of carbon density in indi-
vidual grid cells is very wide and spatially uneven, with a highly asymmetrical distribution
(mean = 688 m2 ha−1, median = 381 m2 ha−1, mode = 73 m2 ha−1, skewness = 1.9).
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3.2. Estimation of Tree Diameter from Remote Sensing Crown Projected Area

To evaluate these tree cover results in carbon terms, CPA measurements taken from
VHR remote sensing data were regressed against field-measured stem diameter (DBH)
from individual trees to produce a model that estimates DBH from remote sensing CPA.
The linear OLS regression that was estimated from remote sensing CPA and field measured
DBH is shown in Figure 5. The estimate range extended from 2 to 300 m2 CPA, with a
coefficient of determination (R2) of 0.84 (p < 0.001) which is reasonably good. The root mean
square error (RMSE) and relative root mean square error (%RMSE) were 10 cm and 21,
respectively. The linear relationship bias and relative bias were close to zero. The Person’s
r was 0.92. An alternative formulation using a second-degree polynomial would improve
the model, but based on our evaluation using the Akaike information criteria (AIC), it
would only improve from 566 (linear) to 573 (polynomial), so it was deemed parsimonious
to keep the linear formulation. Six of the largest trees in the sample were statistical outliers,
but we used them to capture larger trees that would have important carbon contributions
in the landscape. Using this model to predict the allometric parameter of DBH appears to
be reasonable.

Forests 2021, 12, 1652 10 of 25 
 

 

3.2. Estimation of Tree Diameter from Remote Sensing Crown Projected Area 
To evaluate these tree cover results in carbon terms, CPA measurements taken from 

VHR remote sensing data were regressed against field-measured stem diameter (DBH) 
from individual trees to produce a model that estimates DBH from remote sensing CPA. 
The linear OLS regression that was estimated from remote sensing CPA and field meas-
ured DBH is shown in Figure 5. The estimate range extended from 2 to 300 m2 CPA, with 
a coefficient of determination (R2) of 0.84 (p < 0.001) which is reasonably good. The root 
mean square error (RMSE) and relative root mean square error (%RMSE) were 10 cm and 
21, respectively. The linear relationship bias and relative bias were close to zero. The Per-
son’s r was 0.92. An alternative formulation using a second-degree polynomial would im-
prove the model, but based on our evaluation using the Akaike information criteria (AIC), 
it would only improve from 566 (linear) to 573 (polynomial), so it was deemed parsimo-
nious to keep the linear formulation. Six of the largest trees in the sample were statistical 
outliers, but we used them to capture larger trees that would have important carbon con-
tributions in the landscape. Using this model to predict the allometric parameter of DBH 
appears to be reasonable.  

 
Figure 5. Constructed model of the OLS linear regression of field measured tree diameter at breast 
height (DBH) and the remote sensing derived crown projected area (CPA). 

We established an additional field site for validation in a savanna landscape in the 
vicinity of Karang to the south of the Sokone test site. We measured tree stem DBH in the 
field and tested the CPA model against this independent set of tree samples. Figure 6 pre-
sents the regression of DBH predicted from remote sensing CPA in the test site model and 
field measured DBH values in the Karang validation site. The correlation coefficient was 
depressed slightly compared to the model with the coefficient of determination (R2) of 
0.70 and a Person’s r of 0.83, but the relationship was significant (p < 0.01). The RSME for 
the validation set was 15.6 cm and the %RMSE was 24.5, which is nominally good but by 
standards of forest inventory that use more parameters such as height was somewhat low. 
An estimate of bias was close to zero and is close to the few other published estimates for 
TOF systems (cf. [41]).  

The validation landscape is slightly different from the test site with respect to species 
composition and tree sizes. The test site in Sokone is dominated by two species, Anacar-

Figure 5. Constructed model of the OLS linear regression of field measured tree diameter at breast
height (DBH) and the remote sensing derived crown projected area (CPA).

We established an additional field site for validation in a savanna landscape in the
vicinity of Karang to the south of the Sokone test site. We measured tree stem DBH in
the field and tested the CPA model against this independent set of tree samples. Figure 6
presents the regression of DBH predicted from remote sensing CPA in the test site model
and field measured DBH values in the Karang validation site. The correlation coefficient
was depressed slightly compared to the model with the coefficient of determination (R2) of
0.70 and a Person’s r of 0.83, but the relationship was significant (p < 0.01). The RSME for
the validation set was 15.6 cm and the %RMSE was 24.5, which is nominally good but by
standards of forest inventory that use more parameters such as height was somewhat low.
An estimate of bias was close to zero and is close to the few other published estimates for
TOF systems (cf. [41]).

The validation landscape is slightly different from the test site with respect to species
composition and tree sizes. The test site in Sokone is dominated by two species, Anacardium
spp. and Cordila pinata, with a few large Ficus spp. and some Acacia spp. The validation
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landscape has a more heterogeneous species composition, dominated by Cordila and
four others: Danielia, Posposis, Parkia, and Anacardium, in order. As such, the results are
encouraging since the model appears to be robust across varied landscapes. The regression
model is applicable to trees with CPA of less than 300 m2. There were few measured trees
with CPA values this large, but if they were mapped by remote sensing, they were not used
in calculations of tree cover or carbon stocks.
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3.3. Carbon Stocks of Landscape Wide TOF

Generally, the local equation from Mbow et al. [26] overestimates the other two
equations by approximately 60% across the full range of field-sampled tree sizes; however,
the largest difference occurs at higher DBH values. In the 15–50 cm range of DBH values,
the local equation was underestimated by about 10%. Most of our trees were in this range.
The allometric models we derived, along with other equations for carbon estimation, are
shown in Table 1. The derived model that estimates DBH from remote sensing CPA can
be inverted so that the dependent variable, or output, is the estimated DBH, and this is
shown in the table. Both the linear form of the model and the second order polynomial
are provided.

Using the TOF cover map of individual trees in the Sokone study area and the allomet-
ric scaling model, a carbon map was created as well as geospatial estimates of tree-based
parameters (Tables 2 and 3). Figure 7 presents the same selected sites as shown in Figure 3,
with tree CPA magnitude represented as the size of the crown circle and the carbon estimate
represented as a green color tone (darker tones represent higher carbon values). The sum
of carbon in individual trees is the landscape-wide carbon stock. The total carbon stock for
this landscape was 44.28 × 103 MgC, or 14 MgC ha−1. The estimate using the alternative
Brown–IPCC default allometry was 29.60 × 103 MgC (9 MgC ha−1) and using Kuyah et al.
was 37.721 × 103 MgC (11 MgC ha−1).
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A representative value for carbon density in Senegal based on field studies [43], ranges
from 10 MgC ha−1 to 36 MgC ha−1. One reason why our estimates may be lower is that
our landscape-wide analysis covers a range of conditions from cropland with few trees
to degraded savannas to dense tree cover areas, while biomass studies tend to establish
sample plots in areas with tree cover, which may not be representative of larger landscapes.
Our mapping produces a more accurate landscape-wide carbon density estimate. The
IPCC default values [30,31] for growing stock carbon in Senegal landscapes are 14 tC ha−1,

which was close to our estimates for this specific landscape.
We compared our results to those produced by Brandt et al. [22] using their published

individual tree cover dataset with our allometry. This study was approximately 40% lower
in carbon density and total landscape carbon (Table 2). This is largely due to the greater
number of trees in the Brandt et al. dataset, which produced 25% more total canopy cover.
However, the mean per tree carbon stock for Brandt was only 13% higher than this study,
and our mean tree cover and estimated DBH were actually higher than Brandt (Table 2).

4. Discussion
4.1. Application of Standard Allometric Equations for Carbon Estimation

One of the main objectives of this study was to produce a regression model that allows
for the use of remote sensing CPA to estimate tree DBH, so that it can be used with regular
national inventories based on ground plot sampling. These inventories use measures of
DBH, and sometimes other tree parameters, to estimate tree and landscape carbon stocks
using standard allometric equations based on DBH. Although the linear model estimating
DBH from CPA is reasonable, the selection of the allometric equation could present other
complexities, not only for this type of an approach, but any model using individual tree
estimators such as LiDAR methodologies that could be used to estimate height parameters
in a similar way.

Using the locale allometric equation from Mbow et al. [26], our estimate of the total
carbon across the study’s landscape was higher than if we used either of the alternative
allometric equations. Our estimate was 47% higher than an estimate using the dry tropical
forest equation from Brown [29], which is the IPCC default equation for this area. Our
estimate was 16% higher than an estimate using the allometric equation developed by
Kuyah et al. [28], which was based on destructive sampling of open-grown trees in agricul-
tural areas in western Kenya. However, our equation was locally derived, and therefore
is likely better suited to this area than the global default from IPCC or one derived in
landscapes in East Africa. All are general equations developed using sampling of a wide
range of tree species across a wide range of size classes. Most of the carbon differences
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between estimates from different allometric equations were due to the larger tree size
classes (cf. >50 cm DBH), especially those greater than 100 cm DBH. Unlike closed tropical
moist forests in which a few very large trees comprise as much as 60% of the carbon per
hectare [44,45], semi-arid trees are more evenly distributed across size classes. Nonetheless,
the large trees may contribute to differences between estimates, and thus the uncertainty in
the total carbon stock.

Among other considerations of allometric scaling, this non-linear-large-tree character-
istic of most standard allometric scaling equations presents sensitivities, and perhaps error
or uncertainty, for any tree-based measurement using a remote sensing-based estimator
including LiDAR. We cannot over-state the importance of the selection of the allometric
scaling model. The difference in results from different allometries is as important as the
difference due to remote sensing mapping approaches, as shown in Table 2. While remote
sensing methods for quantification of biomass and carbon are converging, there remains
considerable work to be done in refining and selecting appropriate allometric models.

One issue is that the allometric scaling models have been adopted from pre-existing
studies and prior assessments, rather than developed in tandem with the mapping activity.
Ideally, it would be advisable to develop the mapping model for a specific landscape and
use it to deploy an appropriate tree carbon inventory and destructive sampling scheme
using a sampling allocation that accommodates the mapping parameters, landscape fea-
tures, and ecology of the area, particularly the canopy size distribution, tree-type or species
distribution, and land uses. Another issue is that the greatest difference in the results
from allometry occurs with big trees, the size range where most allometric equations
diverge considerably. Better use of large area remote sensed-based mapping would likely
be achieved using segmented allometric equations in multiple, narrow size classes.

Our analysis is in part based on a comparison of remote sensing-derived CPA with
field measured CPA. The remote sensing measurement of CPA delineates the whole crown
as a polygon. The field-based estimate is derived from a geometric method that uses two
diameter measurements to estimate the area of a uniform ellipse. Field crown diameter
measurements can be difficult to obtain consistently and with an accurate representation of
the projected area. Therefore, it is not certain that the ground measurement of CPA is more
precise and accurate than the high-resolution remote sensing measurement, especially
when using satellite data with its very high spatial resolution and radiometric fidelity.

We tried to minimize this problem by constructing the allometric scaling model directly
from remote-sensing CPA and field DBH without having to consider field measured CPA.
Nonetheless, the field techniques for allometry are standardized and widely used, so for
practical application, it makes sense to test and calibrate the remote sensing measurement to
field measures. This was not undertaken in this study, since we directly modeled the DBH
relationship from the remotely sensed canopy area. Our prediction of DBH from remote
sensing CPA was remarkably good, but the variance did result in different carbon estimates
than the results using the field measured DBH. Improvements in the method could likely be
achieved by adding more specificity to the scaling model by adding additional parameters
such as height if it can be derived from remote sensing, or segmentation of the model
into narrower species groups, tree-types, or size classes. It also makes sense to consider
alternative models for carbon estimation that might be based on non-allometric parameters
such as tree cover directly.

4.2. Other Studies and Other Tree Parameters

There is interest in developing relationships between remote sensing measurements
and individual tree attributions because robust models that use tree parameters visible to
remote sensing to estimate standard allometric parameters [46]. To evaluate the contribu-
tion of TOF systems to tree cover and carbon continuously across West African savanna
landscapes, we deployed a remote sensing approach for estimation of tree stem diameters.
This approach used VHR data to map tree crowns of individual trees, thus providing a di-
rect estimate of landscape cover area. These data were used to estimate tree stem diameter.
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Other parameters such as tree height could similarly be mapped using other remote sensing
sources such as LiDAR [47]. The relationship between tree height and stem diameter might
be a better predictor than using crown areas, and recent evidence suggests it does not [48]
due to several factors related to growth dynamics and species variations [49], especially
for larger trees, which may contribute more to landscape biomass than small trees and
where model sensitivities for larger trees create allometric uncertainties. Crown measures
offer a critical starting point for the estimation of stem diameter in naturally growing trees;
while height growth tends to slow rapidly in large trees, lateral crown expansion does
not [49]. There is evidence that crown area is strongly related to stem diameter, even in
large trees [50].

Using a global airborne laser scanning dataset, Juker et al. [49] found that joining both
crown diameter and tree height produced a better model of stem diameter than either one
alone. Adding height data from another sensor, or perhaps shadow length from the sensors
used in this study, would be something to consider and test in the future. Nonetheless,
the allometric estimate of stem diameter in [49] using both height and crown diameter
resulted in a RMSE of 9.7 cm and a bias of −0.012, which is comparable to our estimates
that used crown area only and had a RSME of 10 cm and a bias very close to 0.0. Isolating
the crown diameter only in [49] had a higher RMSE (17 cm) and bias (−0.045) than our
crown area model.

However, the validation of our model in a similar but more mixed species landscape
had a RMSE of 15.6 cm. This level of RMSE for the validation is close to the value (16.6 cm)
found in [49] for their model of stem diameter using only crown diameter, suggesting that
the model performance can vary from landscape to landscape, which is consistent with
the pan-tropical findings of [51], which notes the importance of stand, site, and geographic
variation, but generally at a global scale, and that savannas tend to have higher scaling
exponents for crown–stem relationship for that of forests. In our case, we found this
variation in performance to be reasonable. The national datasets within the very extensive
dataset collected and analyzed in [51] present a range of topical savanna crown–stem
diameter relationships, ranging in R2 from very low ~0.3 to high ~0.8, suggesting our
model is good compared to other locations, but cautions that these relationships might not
be universally applied with success.

The most similar analysis of crown based allometric scaling was Kuyah et al. [28]
in western Kenya for trees on farms. These are not savanna systems, and the regression
analysis were from destructive sampling. Those results were similar to our model, in that
the Kenyan farm TOF model of stem diameter (x) and crown area (y) had a R2 of 0.83,
which was close to our R2 of 0.84. A similar study by Kuyah et al. [41] that focused on
a model estimating stem diameter from crown area in individual trees on farms had a
significant R2 of 0.86 to 0.89, while the relationship between crown area and height was
not significant with R2 from 0.38–0.41. Adding height to crown area to a model of stem
diameter improved the coefficient of determination by 6%. The relationship between crown
area is a good correlate of biomass in open landscapes due to different growing conditions
than for dense trees and forests, and its inclusion improves allometric models based on
stem diameter alone or other parameters such as height.

4.3. Comparison of Our Dataset with That of Brandt et al.

We compared our results with the automated mapping reported by Brandt et al. [22]
in the same landscape and during approximately the same year (2010–2012). This provides
insight into the sensitivity of the mapping method, as opposed to the sensitivity of the allo-
metric mode. Brandt et al. [22] used automated processing of VHR data with deep machine
learning algorithms. Our total carbon estimate for the study area was 44.28 × 103 MgC
compared to 73.35 × 103 MgC from the Brandt et al. dataset, which was 66% higher than
ours. The difference appears to be due to three factors: Case 1: detection of trees; Case 2:
spatial mapping and size determination of tree crowns; and Case 3: multi-tree crown
clustering, which creates oversized trees.
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In Case 1, we evaluated the total tree inventories of our study against the Brandt et al.
dataset. In our study site, Brandt et al. detected more trees overall than we did (29,835
for this study compared to 44,070 for Brandt). The Brandt dataset includes small trees in
the 3–5.5 m2 CPA range that we excluded from our method. However, the number was
small, only 1852 trees. This represents only 4% of their inventory and being small trees, is
a negligible amount of carbon. However, their analysis also detected a larger number of
trees in other small tree classes (cf. 5.5 < CPA < 50 m2). The distribution of CPA and tree
carbon in both datasets are shown in Figures 8 and 9. The difference in the shape of the
distributions between the two studies is obvious. This study’s distribution of tree CPA was
modal around 50 m2 with two tails in the distribution. The Brandt dataset is skewed to
the left, mapping many more small trees compared to larger trees. However, because the
allometry returned low estimates of carbon in this smaller class and is insensitive in this
range of the non-linear function, the carbon contribution does not represent a large carbon
difference (Figure 10). Only an additional 1582 MgC was attributable to these smaller
trees. The carbon content in each interval of tree size was similar across most classes, and
these medium size trees accounted for an additional 6339 MgC in Brandt compared to our
analysis (Figure 10).
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However, while the number of trees was relatively low in the highest size class
compared to other classes (Figure 8), there were more trees in Brandt’s larger size class
(cf. CPA > 250 m2), which includes almost 4-fold more trees than our analysis (380 trees
vs. 96 trees). In this size class, the non-linear allometric equation is very sensitive and
slight tree size differences can create large differences in total carbon (Figure 10). Indeed,
the carbon difference in this size class accounts for a significant amount of the difference
between the two datasets. The inclusion, or exclusion, of large trees matters to carbon
estimation in these semi-arid tree landscapes.

The distribution of individual trees that are common to both datasets is presented in
Table 4. This was determined by spatial overlay analysis. Only 6279 trees (14%) mapped
by Brandt also had an associated tree in our mapping, largely due to Brandt’s very large
contribution of trees in the smaller size classes. In our map, 7211 trees spatially overlapped
with the Brandt dataset, representing a larger proportion of our dataset or 24%. However,
it appears that there are a large number of trees in each dataset that were unique to that
dataset. When we overlaid our trees on Brandt’s crown polygons and used a contingency
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matrix to identify omission and co-mission differences in carbon estimates, we found that
there was 31.87 × 103 MgC in trees that we mapped that were not mapped in Brandt and
32.67 × 103 MgC in crown polygons in Brandt that we did not map.

Table 4. Comparison of Brandt with this study.

CPA Size Class
(m2)

Number of
Brandt Trees

Number of Brandt Trees
also Mapped by This Study

% of Brandt Trees also
Mapped by This Study

MSU Centroids That
Overlap Brandt

251–300 380 322 84.7% 514
201–250 738 582 78.8% 846
151–200 1445 967 66.9% 1207
101–150 3473 1591 45.8% 1735
51–100 10,484 1923 18.3% 2010

1–50 27,550 894 3.2% 899

This is indeed a large incongruity between the two mapping analyses. However, it
is difficult to evaluate. A large amount of the difference appears to be based on the dates
of imagery, which were not the same. Additionally, automated processing may detect
more shrubs with large crowns than our analysis, although without a direct comparison
of the automated analysis with extensive field validation, it is difficult to determine how
important it is. Having other data such as height measures would help evaluate the
distinction between shrubs and trees. In terms of carbon, the omission and commission
differences were nearly the same in magnitude, so they resulted in a small contribution to
the difference in carbon estimates between the two analyses (1325 MgC more in Brandt).

For Case 2, we evaluated how crowns were spatially and geometrically delineated and
the differences in tree crown size estimation. The automated detection method appeared
to create larger crowns than our method for any given tree, except the smallest ones.
This likely reflects the difference between the forester’s canopy measurement protocol
using diameter axis measurements to estimate the area based on a circle or ellipse and
the automated mapping, which produces a polygon based on the canopy properties in
the image data. To evaluate this further, we spatially mapped all centroids of tree crowns
in our dataset onto the map of tree crown polygons in the Brandt dataset. This spatial
overlay process allowed us to evaluate the spatial geometry and size of all trees in common
between the two datasets. Here, we identified Brandt crown polygons where the centroid
of only one of our trees overlaid, so as not to be confused by multi-tree clusters.

Table 5 presents by canopy size class the total number of trees in common—the same
trees mapped in both datasets—and the carbon estimates for those trees. The first column
presents the instances in which one tree centroid from our dataset overlaid a crown polygon
in the Brandt dataset. These occurrences represent cases where both datasets mapped
the same tree, and we can examine the crown size and carbon estimates of each. Overall,
5497 tree crowns were coincidently mapped and, with the exception of the smallest crown-
area class, the Brandt dataset presented larger mapped crowns, and thus had higher carbon
estimates. The Brandt dataset included 17,640 MgC more than our study for trees that were
mapped in common.

Table 5. Sources of carbon estimation differences between this study and the Brandt et al. dataset.

CPA Size Class (m2)
1 Tree with Overlap (MgC)

Case 2: Size Measure
2 Trees with Overlap (MgC)

Case 3: Clustering
3–5 Trees with Overlap (MgC)

Case 3: Clustering

250–300 4540 3095 1408
200–250 5078 2747 868
150–200 4915 1432 232
100–150 3435 304 33
50–100 158 −11 2

0–50 −486 −4 −1

Total 17640 7563 2542
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We examined Case 3, where multi-tree cluster polygons were created in automated
processing of overlapping tree crowns, resulting in oversized trees. We observed that the
automated processing could over-produce large crowns in this way. A visual inspection of
the automated processing product revealed that many of the large size trees were in fact
several individual crowns. These augmented large tree crowns will result in very high
carbon estimates due to the nonlinear nature of the allometric equations and the extremely
high sensitivity in the larger DBH classes. Indeed, clustering can occur in our method, but
less frequently; actually, when encountering groupings of closely grown trees, our method
seemed to underestimate the individual tree crown size, producing more trees with smaller
DBH, which resulted in lower carbon stock estimates from the allometry.

We conducted a spatial overlay analysis to map instances in which the centroid of two
or more of our mapped trees overlaid a crown polygon in Brandt’s dataset. The results
are presented in Table 5. These results represent trees in the Brandt inventory, which had
crown areas less than 300 m2, a restriction imposed due to the valid limits of our allometric
equation. This limit of 300 m2 reduced the number of multi-tree clusters, but some clusters
were found in other crown size classes. Where Brandt clusters were present, we substituted
our individual crowns and used those to compute the difference between the datasets
attributed to cluster effects. In terms of carbon, clusters accounted for 10.1 × 103 MgC of
the difference in estimates from our analysis.

The total difference between our dataset and the Brandt dataset was 29.07 × 103 MgC.
The case overlay analysis suggests that 61% (17.64 × 103 MgC) could be attributed to Case 2
issues related to spatial mapping and tree size measurement, and 35% (10.1 × 103 MgC)
was attributed to Case 3 issues related to clustering of multiple tree crowns. An additional
4% (1325 MgC) was attributed to Case 1 aspects and tree detection, but this was a small net
difference of large commission and omission quantities. The Brandt dataset mapped more
trees, estimated larger crown areas, and created multi-tree clusters, all with the net effect
to estimate higher carbon stocks. Both datasets contained a significant, but nearly equal,
number of trees not found in the other dataset.

4.4. Comparison with Prominent Medium and Coarse Resolution Biomass Datasets

Although technical differences between these two methods for mapping TOF with
VHR data exist, they both demonstrate a new way to measure carbon in sparse tree
landscapes that have heretofore been minimized or omitted by most carbon accounting and
climate change mitigation efforts. One feature of a VHR satellite-based approach is that it
captures trees whose carbon stocks are not detected or resolved in coarse resolution remote
sensing methods. For instance, we compared the map of carbon from Baccini et al. [52],
which used a MODIS optical data and regression tree analysis built from a suite of ground
biomass measurements and checked with ICESAT GLAS LiDAR data. The Baccini et al. [52]
analysis was produced across the African continent at a spatial resolution of 500 m (25 ha
grid) as a carbon density map of aboveground live biomass. We converted their biomass
data to total carbon using a standard IPCC expansion factor of 1.26 and a carbon conversion
factor of 0.5 to be compatible with our analysis. We aggregated our individual tree carbon
maps to the 25 ha grid resolution of the Baccini dataset.

The coarse resolution mapping underestimated our total carbon in the study area and
exhibited markedly different spatial distribution. Our estimate of 44.28 × 103 MgC was
30% higher than their estimate of 33.6 × 103 MgC. Furthermore, as shown in Figure 11, the
spatial distribution of carbon stocks in our study was very different from the Baccini dataset,
as is the range of tree carbon stocks. The mean density of carbon in our 25 ha aggregated
dataset was 14 MgC ha−1, extending across a robust range of 0.02 to 70 MgC ha−1. On
the other hand, the Baccini dataset mean density was 10 MgC ha−1, extending across
a narrow range of 6–14 MgC ha−1. The range in carbon stock density in our original
0.5 m VHR dataset aggregated to 1 ha was even more pronounced, which was 0.02 to
209 MgC ha−1. Thus, there was much more variation in the carbon stocks in this landscape
than can be revealed by coarse resolution global map products. In terms of the relevance
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of these datasets for use in carbon interventions, projects, and markets, these variations
are important, because location specificity is required for activity data and the smoothed,
average carbon values in coarse maps are inadequate values for emission factors.
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The 500 m resolution biomass mapping has been updated to 30 m resolution from
Zarin et al. [53], which was based on Baccini et al. [54]. Even at this increased resolution,
these datasets do not map individual trees, but produce a continuous fields fractional cover
product based on Landsat rather than MODIS. In a comparison between our dataset of
individual trees and the 30 m dataset from Zarin [53] aggregated to 1 ha, we were surprised
to see that the differences were more pronounced than with the 500 m resolution product
(Figure 11). Our estimate of 44.3 × 103 MgC for the study area was 448% higher than the 30
m resolution estimate from Zarin et al. [53] of 9.9 × 103 MgC. Part of the discrepancy can be
attributed to different methods for scaling tree cover to carbon, but as is clearly apparent in
Figure 11, the mapping in the Zarin et al. data product was also very different. The mean
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carbon density in [53] for the study area was a low 3 MgC ha−1 (compared to 14 MgC ha−1

in our analysis), ranging from 0.5 to 44 MgC ha−1, compared to 0.02 to 209 MgC ha−1 in
our assessment. By not explicitly mapping individual trees, a considerable amount of
carbon was undetected and unaccounted.

We did not test other similar coarse resolution data such as Saatchi et al. [55] and
Spawn et al. [56], but we expected similar results. We recognize that the comparison was
over a relatively small area, but the results are indicative. It is clear from these cases that
coarse resolution data omit the “invisible” TOF cover and associated carbon stocks in
landscapes where TOFs are significant such as these African drylands and in agricultural
areas. TOF areas or even sparse woodlands and savannas can be overlooked in carbon
measurement and reporting efforts, and these landscapes and their communities are thus
at risk of being excluded from climate change mitigation and actions.

This is further elaborated by reviewing the tree cover dataset from Hansen et al. [1],
one of the most widely used and cited datasets (Figure 12). Hansen et al. was produced
using regression tree analysis of fractional cover based on 30 m Landsat data. In Figure 12,
red-colored areas are tree cover as mapped by Hansen et al. [1], where tree cover is between
10% and 20% (no areas were found to have tree cover more than 20%). Grey shaded areas
were all tree cover classes specified in the dataset from 1% to <10%. Green-colored areas
were individually mapped trees from our assessment. Total tree cover area in the study
site, measured as total crown area, was 192.4 ha for our analysis compared to 97.5 ha in the
Hansen dataset. The spatial pattern observed in the two datasets was very different; tree
cover in the Hansen dataset was mapped more extensively including in many areas with
no trees. The Landsat total cover was quantitatively less than the VHR total cover, which is
able to map areas of high concentration of tree cover and areas with more spatial variation
in tree densities.
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As the Landsat fractional cover mapping does not capture the spatial variation in tree
density, it would be insensitive to temporal variation due to land use change. This is likely
to be a characteristic problem for mapping changes in tree cover in sparse tree landscapes
and in landscapes with low carbon stocking densities. One of the most useful features
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of mapping with VHR data in these TOF landscapes is its ability to inventory individual
trees and thus estimate change in carbon density more accurately. This feature is critically
important for monitoring in landscape restoration projects and programs.

4.5. Limitations and Other Remarks

To increase the accuracy of the carbon mapping, future work should be directed at the
refinement of the allometric model for large tree size classes, or by developing stratified
or segmented sets of separate equations for multiple tree size classes, and for separate
equations by tree type. Moreover, this study demonstrates how important it is to deploy
the remote sensing mapping of tree cover with the development of field-based allometric
equations for both the CPA–DBH relationship and the carbon estimation. We relied on
existing allometric carbon equations, which is what most national inventories would also
have to do, but an integrated mapping and inventory framework for future analysis would
better inform the ground sample design and model specificity.

Improvements in the allometric scaling could be made with additional parameters.
An additional measurement of tree height has been shown by others [28,41,49] to improve
the allometry. The use of LiDAR might be a way to integrate more accurate estimation
into the allometric scaling. The use of a height measure would be useful for extending the
generalization of the models to more landscapes. It might also be useful for landscapes in
which TOF are found associated with dense forest and woodland cover. Moreover, height
would improve the stratification of tree types and sizes for more specific allometric models.

Although the scaling of canopy area to diameter was robust, the sensitivity of the
carbon allometric equations themselves, especially for larger tree size classes, introduced
important uncertainty. In future studies, a more in-depth examination of non-allometric
models could be important, especially frameworks that estimate carbon directly from
cover. This is because to scale to larger areas, as demonstrated by the dataset from Brandt
et al. [22], automated mapping would be needed. In these methods, as we show, there is
an additional crown clustering that needs to be resolved. Thus, an alternative to the CPA
allometry may be a model based directly on tree cover rather than individual tree allometry
since the clustering does not affect the performance of tree cover estimates.

By comparing our field-intensive analysis with an automated remote sensing method
using machine learning, we believe that these new tools can greatly advance our ability
to map individual tree crowns over large areas. The most important challenges to carbon
mapping using automated processing of cover at this stage is the problem of crown
clustering, which confounds the allometric approach. The other issue is having an accurate
means to separate tree versus shrub crowns, so that a specific and measurable definition
of tree cover and tree carbon can be well specified and consistently applied. Additional
parameters such as height could be extremely useful in this regard.

5. Conclusions

Mapping individual trees outside of forests in sparse landscapes reveals more cover
and more carbon than is often expected and shows the importance of considering TOF
in carbon measurement and climate change mitigation actions. The use of VHR data for
individual tree carbon estimation also revealed more carbon and a more robust spatial
heterogeneity than the often-used coarse resolution global datasets. There is demonstrated
potential for mapping carbon stocks of individual trees in landscapes with widely scattered
trees such as savannas and woodlands, and in systems of trees outside of forests (TOF)
such as agroforestry. This approach produces more accurate and spatially representative
carbon estimates in landscapes of TOF than previous coarse resolution global vegetation
and tree-cover datasets, capturing important and heretofore invisible carbon stock. It is an
important improvement over most fractional cover products for very sparse woodlands,
savannas, and trees outside of forests. Our analysis revealed important carbon in tree-based
systems in agricultural areas and as a result, suggests that we re-think the sector-based
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partitioning of natural climate solutions that has dominated the mitigation and adaptation
policy dialog related to forests.

Having robust measurement methods for mapping carbon stocks and changes in these
landscapes has the important potential to bring into consideration large areas of the world
for natural climate solutions that have heretofore been overlooked in favor of closed forest
systems [57]. Although these TOF landscapes have relatively low carbon densities, they
are vast in area. Large areas in Africa contain TOF that have great potential for engaging
many more countries in international efforts to mitigate carbon emissions from agriculture,
forestry, and other land uses. Furthermore, these same systems have direct connections to
livelihoods and therefore are also important for economic development, poverty alleviation,
and climate change resilience and adaptation. Many countries that are actively participating
in international programs for climate change mitigation are implementing forest landscape
restoration (FLR) measures aimed at increasing tree carbon stocks outside of forests such
as the Bonn Challenge [58,59] or AFR100, the African contribution to the Bonn Challenge,
which has set high targets for increasing tree cover over the next two decades. One critically
needed element of FLR programs is a robust framework for monitoring [60], assessing
impact, and scaling [61]. This study suggests such a framework and demonstrates potential
for it to be based on individual tree carbon mapping.
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