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Abstract: Entomopathogenic fungi (EPF) in Croatian forests are known only from observations of
insect cadavers that show obvious signs of disease. To date, their presence in soils has not been
investigated. The aim of this study was to investigate their occurrence, diversity, and distribution,
and to assess their density in tested soils. Soil samples were collected during 2018, 2019, and 2020
at different localities throughout the country, and analyzed by using a method of isolation of fungi
on selective culture media. To assess the density of EPF in tested soils, colonies of individual fungal
species were counted and recorded; the results were expressed as the number of colony-forming units
(CFU) per gram of dry soil. After morphological and molecular analysis, five entomopathogenic
fungal genera were identified: Beauveria spp., Metarhizium spp., Purpureocillium spp., Lecanicillium
spp., and Paecilomyces spp. Results also showed that the range of a total EPF colony density in the
soil varies from 4 × 103 to 27.4 × 103 CFU g−1. The most common were EPF of the genus Beauveria,
which were recorded at four of five locations, and at 16 of 25 sampling points, but the highest average
number (density) of colonies belonged to the genus Metarhizium. Since this type of research was never
conducted in Croatia previously, this is the first evidence that insect pathogenic fungi are present
in soils of different natural forest habitats. Such research can be useful in selecting and utilizing
entomopathogens that are suitable for biological pest control in certain target areas.

Keywords: Beauveria; Metarhizium; Purpureocillium; Lecanicillium; Paecilomyces; entomopathogens;
selective culture media; colony-forming units; biological pest control; natural forests

1. Introduction

Entomopathogenic fungi (EPF) have a wide distribution and live in almost all terres-
trial ecosystems in the world. Their highest diversity has been recorded in tropical forests,
but they can also be found in extreme habitats such as the Arctic [1,2] and Antarctica [3,4].
They are an important factor in the regulation of insect pests that can cause great levels of
mortality, and they are capable of breaking down pest populations during outbreaks in for-
est habitats [5–8]. Among these fungi, Beauveria spp., Metarhizium spp., Isaria (=Cordyceps)
spp., and Lecanicillium spp. are common genera found in agricultural and forest soils and
have the greatest potential for biological control [9–12].

Many hypocrealean EPF are adapted to the soil, where they spend most of their life cy-
cles, a feature that allows them to infect and utilize not only typical soil-inhabiting pests but
also a large group of insect pests that use soil as a site for hibernation, pupation, or periodic
diapause [12–15]. It is estimated that soil plays habitat to more than 90% of all insect pests
at some point in their development cycle [16]. Entomopathogenic fungi can exist in the soil
as saprophytes, colonizing fragments of insect cadavers and organic matter [17]. Soil is a
stable structure that mitigates the fluctuation of their populations and protects them from
harmful abiotic influences such as temperature, solar radiation, or drying [18,19]. Many
species can be recovered from conventional isolation sites by using specific methods such
as isolation on selective culture media [20] or insect-baiting methods [21]. Since a wide
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range of fungi that inhabit soil can grow on artificial media, isolation of certain groups
of microorganisms’ specific media have been developed, including media for selective
isolation of EPF [22].

In Croatia, EPF are known only from observations done on insect cadavers that are
showing obvious signs of disease [8,23,24], where in some cases a significant potential
to reduce the population [24,25] or even to stop a pest outbreak [8] was demonstrated.
However, the presence of EPF in soils has not yet been investigated.

This study is the first overview of EPF in the forest soils of Croatia. The aim of this
study was to investigate their occurrence, diversity, and distribution, and to assess their
density in tested soils at different locations throughout the country. Results obtained tend
to encompass the dominant EPF species and to provide a basis for future investigations,
such ase their associations with soil types, pH, tree species composition, dominant pests
present, selection, utilization of species suitable in biological pest control, etc. All study
sites chosen were natural and climatogenic forests with no tree species that were introduced
and cultivated.

2. Materials and Methods
2.1. Sampling Sites and Collection of Soil Samples

Soil samples were collected during 2018, 2019, and 2020 at different localities in
different forests throughout Croatia, which were chosen according to previously studied
sites where various insects infested with EPF of genus Beauveria were found [24]. The time
of the soil material collection was chosen randomly, according to our ability to do the field
survey in the particular locations, as well as the longevity of the laboratory analyses of
collected samples. An overview of the locations, including information on insect hosts and
identified fungi, is provided in Table 1.

Table 1. Information on sampling sites in Croatia.

Sampling
Sites Coordinates

Time of
Collection
of Insects

Dominant
Tree

Species
Insect
Host

Development
Stage

Identified
Fungus

Soil
(Type, pH,
Moisture)

Time of
Collection

of Soil

Skradin 43◦49′08.1′′ N
15◦53′57.7′′ E

October/
2014

Pinus
halepensis

Dendrolimus
pini larvae Beauveria

bassiana

Lithosol
pH 8.4

very dry

June/2019
(summer)

Požega
(Milan Lug)

45◦23′47.8′′ N
17◦58′37.4′′ E

January/
2017

Quercus sp.
Fagus

sylvatica
Calliteara
pudibunda larvae Beauveria

bassiana

Colluvial
pH 7.7

semidry

March/2020
(spring)

Mrkopalj
(Sungerski

Lug)

45◦19′57.9′′ N
14◦47′31.6′′ E

February/
2017 Picea abies Ips

typographus adults Beauveria
bassiana

Dystric
cambisol
pH 4.9

semidry

July/2019
(summer)

Dugi otok
(Nature

Park
Telašćica)

43◦53′19.4′′ N
15◦09′41.9′′ E

September/
2017

Pinus
halepensis

Dendrolimus
pini larvae Beauveria

bassiana

Regosol
pH 8.0

dry

November/
2018

(autumn)

Spačva
(Manage-
ment Unit
Ceranski
lugovi)

45◦10′41.3′′ N
18◦43′54.9′′ E

May/
2018 Quercus robur Corythucha

arcuata adults
Beauveria

pseu-
dobassiana

Mollic
humogley

pH 7.8
very wet

February/
2019 (winter)

From each sampling site, samples were taken at five randomly chosen points, at
least 100 m away from each other. Five samples per point were taken from each site, so
altogether 125 soil samples were collected. Before soil sampling, surface particles and
leaf litter were removed from the soil surface. The samples were taken using a shovel
(which was disinfected in 70% EtOH between each sampling), from a depth of 10–15 cm.
The samples were then placed in sterile plastic vessels (10 × 10 cm) and brought to the
Croatian Forest Research Institute for further laboratory analysis. They were kept at a
temperature of 3–4 ◦C until isolation and were processed within 48 h of collection, according
to Tkaczuk et al. [26]. The soil samples were mixed thoroughly, sieved with 3 mm mesh



Forests 2021, 12, 1690 3 of 12

to separate debris (e.g., pebbles, twigs, and roots), and dried to a moisture content of
approximately 25–30%.

2.2. Isolation of Fungi

Fungi were isolated from the soil using a selective medium method adapted from
Strasser et al. [20]. The medium was prepared with 1 L of distilled deionized water, 20 g
of glucose (Difco™, Becton Dickinson and Company, Franklin Lakes, NJ, USA), 18 g
of agar (Bacto™, Becton Dickinson and Company, Franklin Lakes, NJ, USA), 10 g of
peptone (Difco™, Becton Dickinson and Company, Franklin Lakes, NJ, USA), and selective
components (i.e., components that inhibit the growth of saprophytic fungi and bacteria,
and permit the uninhibited growth of entomopathogenic fungi): 0.6 g of streptomycin
sulfate (Sigma-Aldrich®, St. Louis, MO, USA), 0.05 g of chlortetracycline (Sigma-Aldrich®,
St. Louis, MO, USA), 0.05 g of cycloheximide (Alfa Aesar™, Thermo Fisher Scientific,
Haverhill, MA, USA) and 0.1 g of dodine (Pestanal®, Sigma-Aldrich, St. Louis, MO, USA).
Two grams of soil from each sample were weighed and then mixed with sterile distilled
water with the added surfactant Tween (0.05%), in a ratio of 1:10 or 1:100. Tubes (Corning®,
New York, NY, USA, 50 mL) with the solutions were shaken vigorously for about 30–40 s,
after which 100 µL of the solutions were pipetted and evenly distributed with a sterile
triangular spatula into Petri dishes with a selective nutrient medium. Three replicates for
each solution were prepared and incubated at 23± 1 ◦C for 10–14 days. To assess the density
of EPF in tested soils, colonies of individual fungal species were counted and recorded, and
results were expressed as a number of colony-forming units (CFU) of fungi per 1 g of dry
soil. Colonies were subcultured in a potato dextrose agar (PDA) medium to obtain pure
cultures for further analysis. After dividing the fungal cultures into morphotype groups, a
total of 42 representative isolates were selected for further morphological and molecular
analysis. Fungal cultures were deposited in the Laboratory of Phytopathological Analysis
at the Croatian Forest Research Institute (Jastrebarsko, Croatia).

2.3. Identification of Fungal Species

The initial identification of fungal species was made by macroscopic (colony mor-
phology) and microscopic (microstructure morphology) characteristics, using standard
identification keys [27,28]. Fungal genomic DNA was prepared from fresh plate cultures of
all 42 fungal isolates with the NucleoSpin Plant II Kit (Macherey-Nagel, Düren, Germany),
following the manufacturer’s instructions.

The primers ITS 1-F (5′-CTTGGTCATTTAGAGGAAGTA-3′) [29] and ITS4 (5′-TCCTCC
GCTTATTGATATGC-3′) [30] were used to amplify the fungal ITS (internal transcribed
spacer) regions. PCR conditions were as follows: initial denaturation at 95 ◦C for 5 min;
34 cycles of 95 ◦C for 15 s; 52 ◦C for 30 s; 72 ◦C for 1.5 min; and final elongation at 72 ◦C
for 7 min. All reactions were checked for amplification by gel electrophoresis, visual-
ized with UV illumination, and the PCR products were sequenced by Macrogen Europe
(Amsterdam, The Netherlands). The resulting sequences were delivered electronically, and
sequence reads were analyzed and edited using Geneious Prime. The obtained sequences
were submitted to a GenBank and compared with similar sequences through the Basic
Local Alignment Search Tool (BLAST) of NCBI Gene Bank. Unfortunately, since we used
only the ITS region for the identification of fungi in this study, there was not sufficient
variation for differentiating among some of the species, so the study was performed only
at a genus level for all the analyzed sequences.

2.4. Statistical Analysis

Statistical analysis of obtained results was conducted using software Windows Excel
Ink. The differences among the mean numbers of colony-forming units (CFU) of ento-
mopathogenic fungi per 1 g of soil were tested for different fungal genera obtained in
five localities in Croatia by two-way analysis of variance (ANOVA), using Tukey’s honest
significant difference test. Values of p < 0.05 were considered statistically significant.
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3. Results

A total of 42 representative fungal isolates obtained from soil samples at five locations
in forests in Croatia were selected for further analysis: Dugitok (8), Skradin (11), Spačva (7),
Mrkopalj (8), and Požega (8). After morphological and molecular analysis, it was confirmed
that 26 of them belong to five genera of EPF: Beauveria spp., Metarhizium spp., Purpureocil-
lium spp., Lecanicillium spp., and Paecilomyces spp.; two belong to genera Tolypocladium spp.
and Trichosporon spp. (fungi with potential entomopathogenic abilities); and 14 belong to
fungal genera that have not yet demonstrated pathogenicity on insects, but which may be
pathogenic on other organisms (e.g., species of the genus Pochonia that are pathogenic on
harmful soil nematodes and are developed and commercialized as biological pesticides)
(Table 2). This also shows that the selective nutrient medium intended for the isolation of
exclusively entomopathogenic fungi [20] is not selective for these species.

Table 2. Identified fungal species and the density of their colony-forming units (CFU × 103 g−1) in soil.

Identified
Species

Average Number of CFU in 1 g of Soil at Different Sampling Locations (CFU × 103 g−1)

Location 1
(Dugi Otok)

Location 2
(Skradin)

Location 3
(Spačva)

Location 4
(Mrkopalj)

Location 5
(Požega)

Entomopathogenic fungi

Beauveria spp. 2.6 5.3 4 6.2 -
Metarhizium spp. 0.4 - - 11 20

Purpureocillium spp. 4.4 17 - 0.6 -
Lecanicillium spp. 1 0.3 - - 1
Paecilomyces spp. - - - - 6.4

∑ 8.4 22.6 4 17.8 27.4

Fungi with potential entomopathogenic abilities

Tolypocladium spp. - - - 0.2 -
Trichosporon spp. - - - - 1.6

Fungi of unproven entomopathogenic abilities

Pochonia spp. 10 3.3 8.7 5.4 -
Absidia spp. 0.08 - - 5

Pseudogymnoascus
spp. - - 0.6 - -

∑ 10.1 3.3 9.3 5.6 6.6

Total ∑ 18.5 25.9 13.3 23.4 34

The density of colony-forming units (CFU) of EPF was obtained by calculating the
average number of colonies in 1 g of soil, per replicate and at points in each location. The
calculations showed that the range of total EPF colony density in the soil varies from 4× 103

to 27.4 × 103 CFU g−1. The highest overall average number (density) of entomopathogenic
fungal colonies was recorded at Location 5 (Požega), while the lowest was recorded at
Location 3 (Spačva) (Table 2).

The highest average number (density) of colonies belonged to the genus Metarhizium,
with 6.28 × 103 CFU g−1, but this was not significantly different from the density of
Beauveria (3.24 × 103 CFU g−1) or Purpureocillium (3.09 × 103 CFU g−1 ), while Paecilomyces
and Lecanicillium were clearly less abundant in Croatia (Tables 3 and 4, Figure 1).
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Table 3. Comparison of the number of colony-forming units (CFU g−1) in soil, by entomopathogenic fungi and localities
using a two-way analysis of variance (ANOVA).

Scheme SS Df MS F p-Value F Crit

Entomopathogenic fungi 510.3603 4 127.5901 5.027412 0.000984 2.462615
Locality 335.4643 4 83.86608 3.304562 0.013775 2.462615

Entomopathogenic
fungi*Locality 2015.057 16 125.9411 4.962436 2.15 × 10−7 1.745647

Error 2537.888 100 25.37888
Total 5398.77 124

Table 4. Comparison of the mean number of fungal colony-forming units (CFU g−1) in soil in the localities, using the
Tukey’s method to compare CFU estimates (* indicates significance at p < 0.05).

Comparison Absolute Difference Critical Value

Beauveria vs. Lecanicillium 2.72 3.6303
Beauveria vs. Metarhizium 3.12 3.6303
Beauveria vs. Paecilomyces 1.28 3.6303

Beauveria vs. Purpureocillium 3.096 3.6303
Lecanicillium vs. Metarhizium 5.84 * 3.6303
Lecanicillium vs. Paecilomyces 0.76 3.6303

Lecanicillium vs. Purpureocillium 2.576 3.6303
Metarhizium vs. Paecilomyces 5.08 * 3.6303

Metarhizium vs. Purpureocillium 3.264 3.6303
Paecilomyces vs. Purpureocillium 1.816 3.6303
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2), and 35% (Location 4), respectively, while at Location 5 these fungi were not found at 
any sampling point. The largest total share of identified fungi belonged to the genus 
Metarhizium (38%), followed by genera Purpureocillium (27%) and Beauveria (22%). At 

Figure 1. The amount of colony-forming units (CFU g−1) in soil, considering species of ento-
mopathogenic fungi found. Letters above the bars indicate significant differences between treatments
at p < 0.05 when compared using Tukey’s test (x-mean; box 25% and 75% quartile; whiskers-minimum
and maximum).

The most common were EPF of the genus Beauveria, which were recorded at four of
the five locations, and at 16 of the 25 sampling points. Their total share was 22%. Only at
Location 3 was their share 100%; at other locations it was 31% (Location 1), 24% (Location
2), and 35% (Location 4), respectively, while at Location 5 these fungi were not found
at any sampling point. The largest total share of identified fungi belonged to the genus
Metarhizium (38%), followed by genera Purpureocillium (27%) and Beauveria (22%). At
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Locations 1, 4, and 5, a higher diversity of EPF was observed than at Locations 2 and 3
(Figure 2).
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4. Discussion

In studies of the natural occurrence of EPF in the soil, specific methods are being used
to recover fungal isolates. Although the insect bait method [21] is a commonly used and
sensitive method for detection [31–33], it requires an investment of more time and effort
than the method of isolation on a selective culture medium [20], and in some research
where both methods were used the selective medium was more effective and provided a
higher overall detection rate [34,35]. Here, we used a selective medium method not only
to identify the diversity of entomopathogens and their distribution in soils throughout
Croatia, but also to determine the number of colony-forming units (CFU) per gram of
dry soil. Given that molecular analyses were conducted with primers ITS 1-F and ITS 4
(internal transcriptional spacer), which for many groups of fungi are not sufficient for exact
delimitation of species within the genera (especially those that are closely related [36]), the
isolates were identified at the genus level.

The results demonstrated that different species of EPF are present in the sampled
soils in Croatia, and their diversity and density of occurrence varied depending on the
study localities. Their adaptation to soil life represents the potential to infect harmful
insects that spend parts of their life cycles right there, as demonstrated in a study by
Matek and Pernek [8], where the entomopathogen Beauveria bassiana (Balsamo) Vuillemin
(Hypocreales: Cordycipitaceae) caused mortality in over 98% of the population of the
pine-tree lappet moth Dendrolimus pini (L.) (Lepidoptera: Lasiocampidae), during their
overwintering in the soil. After complete defoliation of about 20 ha of Aleppo pine stands,
the fungus broke down the population of that pest, which was followed by an almost
complete recovery of the trees. This shows the great contribution that EPF can make in
maintaining the natural balance of a single biocenosis. Results in this research show that
these fungi are naturally present in the soil at locations where larvae became infected,
and detailed inspection of needles that were initially suspected of representing a source
of infection showed no evidence of fungal endophytic presence [24], which confirms
that infections most likely occurred through the soil. Although B. bassiana can provide



Forests 2021, 12, 1690 7 of 12

protection from different pests and diseases in some plants, as a naturally occurring [37,38]
or artificially inoculated endophyte [39–41], in some plants endophytic colonization of this
fungus cannot be established [42,43], or the colonization remains in the root zone where it
can persist for a longer period of time [44,45] and thus provide protection from insects that
spend at least part of their development cycle in the soil.

In a fir bark beetle study close to the locality of Mrkopalj (Location 4 in our study),
the mortality of the beetles Pityokteines spp. (Coleoptera: Scolytidae) caused by B. bassiana
was 9% on average [25]. In this study, B. bassiana was the most reductive factor among
entomopathogens, where infected beetles were found under bark covered by mycelium.
Fir bark beetles overwinter under the bark of trees, but whether a part of the population
stays in the soil (as is the case for other bark beetles [46]) is uncertain. Possibly, they come
into contact with spores and transport them in the bark, where other beetles get infected.
Combinations of pheromone traps with spores of B. bassiana in a catch-and-release context
have shown the possibility of transporting spores under the bark [47].

The largest total share of identified fungi in this research belonged to the genus
Metarhizium, followed by genera Purpureocillium and Beauveria. Those hypocrealean fungal
genera are ubiquitous components of forest soils in temperate regions [34,48,49]. Although
the highest average number (density) of colonies belonged to the genus Metarhizium, those
fungi were found in three of the five localities, in comparison with genus Beauveria that
was found to be naturally present in forest soils in most of the investigated localities (i.e.,
four of the five) and at the highest number of sampling points (16 of the 25). The dom-
inance of B. bassiana in soils collected from various types of forests is also confirmed by
studies conducted in Denmark [50], Finland [51], Poland [12,52,53], Japan [54], Italy [55],
Spain [56,57], Austria [58], Mexico [59], Brazil [60], and Portugal [61]. In other research,
Metarhizium was also the most abundant fungal genus detected [e.g., 31,35,58,62,63], with
variable proportions of other species. Tkaczuk et al. [35,58] and Kleespies et al. [62] found
that species from the genus Isaria was the second-most commonly detected fungus, with
Beauveria in third place;Keller et al. [31] and Bidochka et al. [63] found that Beauveria
was the second most prevalent genus, and Paecilomyces was the third. Popowska-Nowak
et al. [64] found that Metarhizium anisopliae (Metschn.) Sorokin and Isaria fumosorosea (Wize)
Brown and Smith were also the most frequent species of EPF in soils of forest plantations
in Poland, especially in spring. Interestingly, Isaria, Paecilomyces, and Purpureocillium are
taxonomically very closely related, and those genera went through a turbulent taxonomic
history [65]. Samson [66] transferred all species in Isaria to Paecilomyces Bainer (1907),
whereas Luangsa-ard et al. [67] moved Paecilomyces lilacinus (Thom) Samson to Purpure-
ocillium in Ophiocordycipitaceae. In this research, the genus Purpureocillium was most
abundant in localities in the Mediterranean part of Croatia, and second most abundant in
the total share of identified species in the study. Niu et al. [68] demonstrated a prevalence of
the Purpureocillium fungi in the soil of all sampled regions, with P. lilacinum as an absolutely
dominant species. That study was conducted in the southern part of China, located in
tropical and southern subtropical areas characterized by hot summers and mild winters,
climatic conditions that can be compared to those of the Mediterranean Basin. It is believed
that more Purpureocillium species will be discovered in the future [68]. Fungal species from
those genera have been previously evaluated as entomopathogenic towards different insect
pests, with great potential for use in biological pest control [10,19,45,59,69–72].

Fungi from the genus Lecanicillium W. Gams & Zare occur on a diverse range of
insect species, and have been isolated from forest soils around the world [12,49,64,73,74]
and utilized for the control of different pests [75,76]. This genus was found at three
studied locations, with a 12% share at Location 1, but in the total share of the identified
entomopathogenic fungal species at all locations, it represented only 3%.

Genus Trichosporon Behrend is widely distributed in nature and can be found in soils
mostly in tropical and temperate areas [77,78]. Some species are commonly recognized as
opportunistic pathogens, and several species were isolated from insects [79–81]. Species
from the genus Tolypocladium W. Gams are known inhabitants of soils [82], with some com-
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monly found in cold soils [83–85]. Many species produce compounds with demonstrated
insecticidal and antifungal activity [86]; some research indicates that their alternate hosts
in the soil can be nematodes [87]. In this study, those two genera were found in small
shares (2% and 0.2%) of the identified species, compared to a total share at all locations,
with Trichosporon found only at Location 5 and Tolypocladium found only at Location 4. The
entomopathogenic potential of these fungi should be further investigated. Due to their rare
occurrence, these genera were not included in the statistical analyses.

Species composition, frequency, and the number of colonies depends on different fac-
tors such as geographical location, type of habitat, microclimatic conditions (temperature
and humidity), and time of year (which determines the activity of insects in the soil environ-
ment and the transfer of spores and other forms of fungal propagation) [11,12,51,63,64], as
well as the use of chemical pesticides, especially fungicides that can change the occurrence,
infectivity, and population dynamics of EPF in the soil [68,88–90]. In general, EPF are more
abundant in soils that have less disturbance [1,34,91]. To some extent, this could explain
why at Location 3 there was the least diversity of species recorded, in comparison with
other locations; however, more research would be needed to clarify this result. In this type
of study, a larger number of soil samples, a reduction in the distances between sample
points, and a denser sampling grid (i.e., a higher number of points and locations) can
change the final result of the number and diversity of EPF in an area [33,68]. This would
probably be the case here, so a more detailed investigation is necessary. Nevertheless, these
results are the first to provide an insight into the occurrence, distribution, and diversity of
soil EPF in Croatia, and establish a basis for future similar research, including the inclusion
of the influence of other features such as soil type, pH of the soil, tree species, potential host
density, etc. Results of our study clearly show that future research of entomopathogens
in forest soils should take into account the forest type, to involve variability in relation
to the dominant pest species and host trees. the Conduction of pathogenicity assays that
would prove the infectivity potential of EPF found is crucial. Such studies can be useful
for selecting and utilizing entomopathogens that are suitable for biological pest control
in certain target areas, and may designate candidates for suppression of major forest pest
threats in Croatia, such as the Mediterranean bark beetle [92], the oak lace bug [24], and
jewel beetles associated with bacteria [Pernek, in prep.] in an effective but ecologically
acceptable way.
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92. Pernek, M.; Lacković, N.; Lukić, I.; Zorić, N.; Matošević, D. Outbreak of Orthotomicus erosus (Coleoptera, Curculionidae) on
Aleppo Pine in the Mediterranean Region in Croatia. South-East Eur. For. 2019, 10, 19–27. [CrossRef]

http://doi.org/10.1016/0022-2011(84)90130-7
http://doi.org/10.1080/09583159730622
http://doi.org/10.1007/978-1-4020-4401-4_9
http://doi.org/10.1371/journal.pone.0133613
http://doi.org/10.15177/seefor.19-05

	Introduction 
	Materials and Methods 
	Sampling Sites and Collection of Soil Samples 
	Isolation of Fungi 
	Identification of Fungal Species 
	Statistical Analysis 

	Results 
	Discussion 
	References

