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Abstract: Bacillus velezensis gram-positive bacterium, is frequently isolated from diverse niches mainly soil,
water, plant roots, and fermented foods. B. velezensis is ubiquitous, non-pathogenic and endospore forming.
Being frequently isolated from diverse plant holobionts it is considered host adapted microorganism
and recognized of high economic importance given its ability to promote plant growth under diverse
biotic and abiotic stress conditions. Additionally, the species suppress many plant diseases, including
bacterial, oomycete, and fungal diseases. It is also able after plant host root colonization to induce
unique physiological situation of host plant called primed state. Primed host plants are able to respond
more rapidly and/or effectively to biotic or abiotic stress. Moreover, B. velezenis have the ability to
resist diverse environmental stresses and help host plants to cope with, including metal and xenobiotic
stresses. Within species B. velezensis strains have unique abilities allowing them to adopt different life
styles. Strain level abilities knowledge is warranted and could be inferred using the ever-expanding
new genomes list available in genomes databases. Pangenome analysis and subsequent identification
of core, accessory and unique genomes is actually of paramount importance to decipher species full
metabolic capacities and fitness across diverse environmental conditions shaping its life style. Despite the
crucial importance of the pan genome, its assessment among large number of strains remains sparse and
systematic studies still needed. Extensive knowledge of the pan genome is needed to translate genome
sequencing efforts into developing more efficient biocontrol agents and bio-fertilizers. In this study, a
genome survey of B. velezensis allowed us to (a) highlight B. velezensis species boundaries and show that
Bacillus suffers taxonomic imprecision that blurs the debate over species pangenome; (b) identify drivers
of their successful acquisition of specific life styles and colonization of new niches; (c) describe strategies
they use to promote plant growth and development; (d) reveal the unlocked strain specific orphan
secondary metabolite gene clusters (biosynthetic clusters with corresponding metabolites unknown) that
product identification is still awaiting to amend our knowledge of their putative role in suppression of
pathogens and plant growth promotion, and (e) to describe a dynamic pangenome with a secondary
metabolite rich accessory genome.
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1. Introduction

The genus Bacillus include ubiquitous bacteria having countless advantages in indus-
trial, medicinal and especially in agricultural sectors [1–6]. The extensive use of Bacillus
strains was documented by several reasons such as the facility of isolation, replication and
cultivation, biofilm formation, and resistance to harsh environmental conditions through
spore forming potentials [7–12]. Recently a massive amount of B. velezensis strains have
been the focus of numerous studies [13–18]. B. velezensis is a Gram-positive, aerobic,
endospore-forming beneficial bacterium inhabiting diverse environments (soil, water, air,
plant rhizosphere, human, animal, fermented food, etc.). Among numerous other applica-
tions, B. velezensis strains have been especially applied for plant growth promotion and
biocontrol of phypathogens (fungi, bacteria, virus, nematodes, oomycetes, etc.) [19–24]. B.
velezensis type strain FZB42 was isolated in 2005 from the Vélez River at Torredelmar in
the province of Málaga, Spain [25] and its genome sequenced in 2007 [26]. So far, more
than 200 B. velezensis strains genomes sequences are available in GenBank. Genome se-
quencing efforts allowed us to clearly understand the secondary metabolites gene clusters
organization [27–29], this was especially the case with lipopeptides (LPs) biosynthesis
(surfactin, fengycin, iturin, and bacilysin families), bacteriocins biosynthesis (amylocyclicin
and amylolysin) and polyketides biosynthesis (difficidin, bacillaene, and macrolactin).
Genome mining of B. velezensis strains genomes proved effective in detecting plant growth
promotion and biocontrol genes [26,30–36].

The interesting features of B. velesensis strains isolated from various substrates through-
out time, led to a massive amount of work dedicated to the species. According to several
research reports B. velezensis strains were previously classified as B. amyloliquefaciens [37],
based on the 16S-rRNA gene sequence which exceeded 99% similarity between the two
strains [28,38]. The confusion in the taxonomic naming between these two species was
resolved by advanced genomic data analysis targeting the whole genome rather than a gene
subset to determine the exact taxonomy of the strain. The novel phylogenetic placement
of B. velezensis bacteria indicated that it shares a close phylogenomic resemblance with
B. amyloliquefaciens subsp. plantarum, B. methylotrophicus, and B. oryzicola [27,35,37,39,40].
In 2017, all these strains were regrouped in a ‘B. amyloliquefaciens operational group’ con-
taining three tightly linked branches including B. velezensis, B. amyloliquefaciens, and B.
siamensis [17,26].

In this report, using a selected collection of 130 B. velezensis bacterial genomes publicly
available in GenBank we performed phylogenomic analysis of the collection to decipher
infra-species diversity of B. velezensis. Additionally, genome mining of secondary metabo-
lites encoding gene clusters, as well as plant beneficial genes allowed us to shed the light
and to have clues to explain the species life style and its biotechnological relevance as a
biofertilizer. We clearly document that B. velezensis strains despite being isolated from
different substrates (soil, water and plant material) represent the same species. Addition-
ally, secondary metabolite clusters, as well as comparative genomic analysis allowed us
to conclude that the species is represented by a very dynamic open pan genome. These
findings legitimate the ongoing genomic sequencing efforts of newly discovered strains
that is shading the light on the full biotechnological potential of the species.

2. Materials and Methods
2.1. Selection and Phylogenomic Analysis of B. velezensis Genomes

One hundred thirty-two B. velezensis genome sequences and annotated datasets were
extracted from National Center for Biotechnology Information (http://www.ncbi.nlm.nih.
-gov; accession date: 4 September 2021) and used in subsequent analyses. The CheckM
program (1.0.9) [41] permitted estimation of completeness and contamination rates B.
velezensis isolates genomes. All collected genomes had high quality draft genome se-
quences with over 90% completeness and below 10% contamination which explain their
utilization in the current study. The global genomes alignments were performed using the
REALPHY tool (http://realphy.unibas.ch; accession date: 10 September 2021) [42]. The
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phylogenomic tree was constructed using a Maximum-Likelihood (ML) algorithm [43] in
the MEGA v. 6.0 software [44]. The evolutionary distances were measured by the kimura
2-parameter model [45]. The obtained tree branches were checked by bootstrap values
with 1000 replications [4]. The average Nucleotide Identity (ANI) calculation between
the selected B. velezensis strains genome sequences, was realized using the algorithm de-
veloped by [46]. The recommended cut-off was 95% between species members [47], as
implemented in the EzBioCloud server (http://www.ezbiocloud.net/tools/ani, accession
date: 25 September 2021) [46,48]. The genome-to-genome distance (GGDC) calculated by
DSMZ software available at http://ggdc.dsmz.de (accession date: 10 October 2021) was
used for genome-based delineation of species and subspecies [49]. The recommended
cut-off for species delimitation was set at 70%.

2.2. Comparative Genomics Study of B. velezensis Strains Assembled Genomes

Comparative genome analysis of a collection of 65 B. velezensis isolates was performed
using BPGA pipeline set at the recommended cut-off of 50% [50]. Appointment of core
and pan genomes functional genes into COG categories within the BPGA pipeline was
performed using the USEARCH program against standard COG database. For KEGG
Orthology (KO) functional annotation, the predicted proteins originating from the bacterial
B. velezensis genomes were analyzed by BlastKOALA software (http://www.kegg.jp/
blastkoala, accession date: 16 October 2021) [51].

2.3. Genome Mining of Secondary Metabolites Genes Clusters

Programs antiSMASH v. 3.0 [52], prediction informatics for secondary metabolomes
NapDos [53], NP.search [54], BAGEL3 [55] and (PRISM) [56], were all used to analyze and
predict secondary metabolite gene clusters existing in the draft genome sequences.

2.4. Mining of Genes Devoted to Plant Beneficial Functions on Homology Basis
Nutrient Acquisition

Genes nifHDK, nifS and nifU from Azospirillum, Burkholderia, and Bacillus were mined
in B. velezensis genomes [56]. The pqqBCDEFG genes resulting from Pseudomonas fluo-
rescens F113, Erwinia herbicola, and Enterobacter intermedium were used to mine the studied
genome collection [57,58]. SQR9 3-phytase gene from B. velezensis was also used in genome
mining [59]. Genes ureABC homologs of B. subtilis strain 168 were mined in B. velezensis
studied genomes [60]. Exoenzymes were blast searched using SignalP 4.1 for signal pep-
tide detection and sequences of exoenzymes detected in similar species [60,61]. Enzymes
targeted were lipases, proteases, xylanases, and amylases. Heat and cold shock protein
genes (dnaJ, dnaK groE, cspA, cspC, cspD and cspE) [62], osmoprotectant glycine betaine
synthesis genes (gbsAB) [63]. Genes encoding phenazine (phzADEFG) [64] were also mined
in the genome collection.

2.5. Genome Mining for Functional Genes Responsible for Growth Promotion and Root
Colonization

The flgBCDEGKLMN, flhABFOP and swrABC genes clusters were checked in the
genomes of B. velezensis collection [65]. Homologs of che/fla/fli/tlp/mcp, and their relative
clusters UCMB5113 and motABPS from the genomes of B. subtilis and B. velezensis, respec-
tively, were used in genome mining searches in all B. velezensis isolates [60]. The xerCD
genes were also mined [66]. Operon genes epsA-O from B. subtilis were mined according to
previously described procedures [67].

2.6. Hormones of Plant Growth Promotion

Auxin (indole acetic acid, IAA) phytohormone biosynthesis was mined through the
search for genes involved in the tryptophan-dependent pathway. The genes selected were
from B. velezensis FZB42 and B. velezensis SQR9 [59,68]. Several growth promoting pathways
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were mined by using genes responsible for their production [4], such as ipyA, patB, yclC,
yclB, dhaS, IAN, yhcX, ysnE, and ywkB.

2.7. Antioxidant Enzymes

In B. velezensis UCMB5113 several enzymes were effective against oxidative stress, the
identified genes were: SodA, SodC, SodF, KatA, KatE, KatX, YdbD, AhpC, AhpF, BASU_0830,
tpx, gpo, bpr, ggt, hmp, gacS, soxS, soxR, oxyR, and an operon ohrARB [60,69,70]. All these
genes were used in homology-based searches in the B. velezensis genomes collection.

2.8. Disease Resistance Induction in Plants

Genes pchBA resulting from P. aeruginosa were mined in the genomes collection.
Additionally, Bacillus genome collection strains have been mined using B. velezensis SQR9
genes [59].

2.9. Antibiotics and Other Related Compounds

Pseudomonas spp. genes hcnABC and phlACBD were utilized for B. velezensis genomes
mining [56]. gabD and gabT genes were also used to decipher the potential of the B. velezensis
genomes collection [71].

2.10. Drugs Resistance

Homologues of the proteins tetB, tetR, and tetA of B. subtilis were searched in all B.
velezensis genomes [72,73]. The streptothricin acetyltransferase encoding operon yyaACDE-
HJKLRST was used as a bait in the screening of homologues in the concerned genomes [74].
The gene fosB resulting from B. cereus was also used to search for homologs in the B.
velezensis genomes [75]. The B. licheniformis homolog gene ykcA was recovered for mined B.
velezensis strains genomes searching [76]. The β-lactamase gene penP originating from B.
subtilis strain 168 was used in homology search of the B. velezensis genomes collection [77].
Quinolone resistance homologs of the Staphylococcus norA was examined in the genomes
of B. velezensis [78]. The E. coli gene floR have been homologs mined in the B. velezensis
genomes [79]. B. subtilis 168 gene aadK, was mined in the targeted isolates [80]. B. subtilis
gene ycbJ was explored in the mined strains [81]. B. subtilis gene vmlR was utilized for
genome mining [82]. Multidrug exporter genes were mined from all genomes [60].

2.11. Heavy Metals Tolerance

Arsenic detoxification was searched through the use of genes arsABC and ywrK for
the detection of putative ability [83]. The copYZAB operon, the component regulators CueR,
CopY and CsoR [84], and ctpAB and ycnJ genes encoding copper resistance proteins [85]
were all mined.

Homologs of the ynbB gene from B. subtilis strain 168 have been used as a bait in blast
search for homologs in the Bacillus genome collection [77]. Homology of crcA, cspE, crcB,
yhdV genes was used as a bait in the search for homologs in Bacillus targeted genomes [86].
The yceGH and yaaN homologs have been searched in all Bv genomes [87]. CzcD gene
encoding cadmium, cobalt and zinc/H(+)-K(+) antiporter in B. subtilis and protecting cells
against elevated Zn(II), Cu, Co(II), and Ni(II) levels [88] have been used in a blast search
of homology in the Bv selected genomes. Homologs of gene ndoA (ydcE) and antitoxin
gene, ndoAI (ydcD) have been mined [89]. Sensors for metals; Fur, ArsR, MerR, NikR, DtxR,
mtnR, and yfmP family of metalloregulators of the B. subtilis genome were mined from the
different B. velezensis genomes [90].

2.12. Aromatic Compounds Degradation

Toxins, such as vanillate, 4-hydroxybenzoate, salicylic, ferulic, and p-coumaric pheno-
lic acids could engender stress responses in microorganisms. padC and bsdBCD (yclBCD)
phenolic acid decarboxylases of B. subtilis were mined. We also mined the bsdA (yclA) gene
upstream of the bsdBCD operon encoding the LysR-type regulator is the transcriptional



Forests 2021, 12, 1714 5 of 17

activator of bsdBCD expression in response to phenolic acids [91]. Dibenzothiophene (DBT)
is the model compound for sulfur-containing organic molecules. The operon dszABC of
Rhodococcus sp. [92] was used as a bait in homology-based searches in B. velezensis genomes.
Genome mining of genes encoding homologs of the B. velezenzis FZB42 azoR2, mhqADNOPE
was realized [93].

2.13. Determination of the Core and Accessory Genomes of the B. velezensis Isolates

The core genome, defined as the sequences present in nearly all genomes of a given
species, was determined using Spine from the B. velezensis isolates sequences. On the other
hand, the sequences of accessory genome of B. velezensis isolates were identified using
Agent [94].

3. Results

A phylogenetic tree of a total 130 B. velezensis bacterial genomes was constructed
(Figure 1A) based on the genome relationships among Bv genomes. Bacterial genome
size was in the range of 3.38 to 4.97 Mb and the average GC content was between 45.23%
and 46.8%. The bacterial collection was divided into four levels of genome sequencing
(Figure 1B), where 49% of Bv strains were completely sequenced, 36% were having contig
genomes, 11% with scaffold genomes, and 4% with chromosome genomes. Figure 1C
demonstrated that almost 38% of the assembled bacteria were isolated from China, 22%
were isolated from South Korea, 19% from Ukraine and 5% from the United States. The
16 remaining bacteria were isolated from several other locations, such as Poland, Germany,
and Canada. B. velezensis collection were isolated from various substrates (Figure 1D),
in fact, almost half of them originated from soil (44%), 6% came from the above ground
parts of plants, 4% from either slow sand biofilter or uncut heroin sample, 3% of the
totality of Bv bacteria were originally isolated from water or plants roots and bulbs or as
endophytes, 1% originated from air, and the remaining 32% came from other different
sources. Figure 1E shows that the studied bacterial collection was dotted with various
bacterial activities, in fact, 59% bacteria were having a role in suppressing plant and
animal pathogens, 31% has plant growth promoting abilities, 8% were successfully used in
environmental bioremediation and 2% were having anti-inflammatory activities.

Genomes of 65 strains of B. velezensis showed that the number of new genes decreased
conversely to the increase in analyzed genomes (Figure 2). Average nucleotide identity
(ANI) clearly showed that four putative species within B. velezensis group could be clearly
observed, with ≥98% cut-off between B. velezensis species (Supplementary Figure S1) [47].

Figure 3A evidently shows that the pan genome and the number of analyzed genomes
(75 genomes) are increasing proportionally. The pan genome of Bv species was increasing
with a value of 0.15 (α = 0.15), indeed, it could be described as an open pan-genome
according the Heap’s law [95]. The investigation of COG pathways showed that the
core genes were responsible for indispensable functions of the microorganism including
transcription, translocation, ribosomal structure, and biogenesis. The accessory genes
were controlling amino acid transport and metabolism. Lastly, the unique genes were
associated with the defense metabolisms and the secondary metabolites biosynthesis,
transport and catabolism (Figure 3B). The analysis of KEGG distribution of the B. velezensis
genomes were manifested in Figure 3C, where the metabolism of amino acids, terpenoids
and polyketides and the xenobiotic biodegradation were mainly positioned in the unique
genome. The metabolism of nucleotides, cofactors and vitamins and the signal transduction
were manipulated by the accessory genome, while the carbohydrate metabolism, the
excretory system, the cell motility and translocation were mainly located in the B. velezensis
core genome.
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assessed by bootstrap resampling of the dataset with 1000 replications. Each color corresponds to a 
“sister clade” that represent a putative new species, Percentages of (B) Levels of genome sequenc-
ing, (C) Bacterial activity, (D) Substrates, (E) Locations of isolation of biocontrol bacteria Bacillus 
velezensis strains.  

Figure 1. (A) Neighbor-joining phylogenomic tree of Gram-positive bacteria Bacillus velezensis
isolates. Bacillus subtilis subsp. subtilis isolate 168 was used as outgroup. Supports for branches
were assessed by bootstrap resampling of the dataset with 1000 replications. Each color corresponds
to a “sister clade” that represent a putative new species, Percentages of (B) Levels of genome
sequencing, (C) Bacterial activity, (D) Substrates, (E) Locations of isolation of biocontrol bacteria
Bacillus velezensis strains.
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Figure 2. Number of new genes identified in the genomes of the bacteria.

The genome mining homology of genes encoding beneficial functions to plants, was
conducted on the assembled B. velezensis collection (Supplementary Figure S2). Genes
encoding plant beneficial functions involve: (i) genes conferring PGPR fitness, (ii) genes
accorded to nutrient acquisition, (iii) genes responsible of root colonization and growth
enhancement, (iv) hormones promoting plant growth, (v) plant safeguard from oxidative
stress through antioxidant enzymes, (vi) assistance of disease resistance in plants mainly
salicylate, acetoin and 2,3-butandiol biosynthesis, (vii) antibiotics and related compounds,
(viii) tolerance to drugs and heavy metals, and (ix) aromatic compounds decomposition. Re-
sults shows that the majority of strains were endowed with PGP capacities (Supplementary
Figure S2) and that the presence of mined genes is independent of the stains association to
plant rhizosphere or of the average of the genome coverage.

3.1. Secondary Metabolites Biosynthesis Capacities of B. velezensis Pan, Core and Accessory Genomes

Clusters harboring secondary metabolites from 130 B. velezensis genomes were un-
covered using five distinct software antiSMASH version 3.0 [52], PRISM, NapDos [96],
NP.search, and BAGEL version 3 [55]. All mentioned programs confirmed that multiple Bv
bacteria were having diverse secondary metabolites clusters (Figure 4A and Supplemen-
tary Table S1). The identified secondary metabolites (Supplementary Table S1) included
either clusters whose structure has been sufficiently characterized/identified (Macrolactin,
Bacillaene, Fengycin, Difficidin, Bacillibactine, etc.) or clusters encoding new products. In
Figure 4B,C, both antiSMASH and PRISM programs demonstrated that there is no good
correlation between the genome size of B. velezensis bacterial collection and number clusters
evolved in secondary metabolites biosynthesis. The assembled B. velesensis genomes were
subjected to a rarefaction analysis of the clusters of genes encoding secondary metabolites
resulting (Figure 4D). Results underlined that saturation has not yet been attained.

3.2. Prediction of Secondary Metabolites Richness and Location within B. velezensis Genomes

Results demonstrated that the secondary metabolites prediction in the core- and
accessory- genomes of Bv collection underlined the big amount of unknown secondary
metabolites. Figure 5A shows that all secondary clusters were carried by the accessory
genome except for Basilysin and Amylocyclicin existing inside the core genome as well.
AntiSMASH program reveal that the size of the accessory genome is significantly correlated
to the number of secondary products genes clusters, with a percentage of 9.6% (Figure 5B).
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(A) Genome mining of secondary metabolite clusters illustrated by a heat map; (B) Linear relationship between antiSMASH
total hits and genome sizes (statistically non-significant); (C) Linear relationship between PRISM total hits and genome sizes
(statistically non-significant); (D). Evolution of the number of discovered secondary metabolites in relation to the number of
genomes sequenced.
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3.3. Prediction of Secondary Metabolites Richness and Location within B. velezensis Genomes

Results demonstrated that the secondary metabolites prediction in the core- and
accessory- genomes of Bv collection underlined the big amount of unknown secondary
metabolites. Figure 5A shows that all secondary clusters were carried by the accessory
genome except for basilysin and amylocyclicin existing inside the core genome as well.
AntiSMASH program reveal that the size of the accessory genome is significantly correlated
to the number of secondary products genes clusters, with a percentage of 9.6% (Figure 5B).

Results presented in Figure 6 showed that the highest percentage of genes were dedi-
cated for genetic information processing. Amino acid metabolism, cofactors carbohydrate,
and vitamins metabolisms were having an equal percentage of dedicated genes. Genes
involved in the nucleotide metabolism and energy metabolism are other important ones
with high percentages.

Supplementary Figure S3 presented the prediction of genes responsible for extracellu-
lar enzymes production. Almost all studied bacterial genomes were having both xylanases
and proteases encoding genes. However, amylase encoding genes were present in 74%
of studied bacterial genomes and lipases encoding genes were present in 34% of studied
bacterial genomes only.
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4. Discussion

In recent years, extensive studies have been reported on B. velezensis species due to
their possibility of utilization in agricultural, environmental, and industrial sectors [18,97].
The advanced technologies of genome sequencing facilitated the understanding of the
genetic relationships and the genomic and metabolic characteristics of B. velezensis bacte-
ria [13–16,35,98,99]. In fact, the genome of more than 200 species have been sequenced from
2007 till now [18,26,39,100]. In the current work, genomes sequences of 130 B. velezensis
strains were selected from the NCBI and comparatively studied. Our results demonstrated
that the majority of B. velezensis bacterial strains were isolated from soil and were devoted
to the biocontrol and plant growth promotion. Similar findings were earlier confirmed
by several authors, such as Meng et al. [101] and Grady et al. [102], who mentioned that
Bv has been extensively utilized as an antagonist agent against a wide range of microbial
pathogens in agricultural sector [101,102]. Additionally, Wu et al. [2] and Liu et al. [35]
reported that bio-formulation of B. velezensis was an effective alternative to chemical
pesticides [2,35]. This strain is not well exploited in the medicinal and industrial fields
as mentioned by Adeniji and Babalola [5] despite its anticancer properties [103] and its
capacity to and degrade harmful industrial products [104].

Here, we explore the genomic relatedness among assembled B. velezensis bacteria
through the average nucleotide identity (ANI) calculation. We speculate that it indicated
four prominent subspecies within B. velezensis species despite their genomic similarities
(98%) above the cut-off point. Genomic differences between closely related bacteria might
be explained by mutation and recombination phenomena [36,37,105]. In silico analysis of
the assembled B. velezensis strains had led to an open pan-genome that is increasing propor-
tionally to the addition of new sequenced genomes. This finding confirms that Bv bacteria
are in constant evolution and that saturation was not yet been established [4,106,107]. Ad-
ditionally, Adeniji and Babalola [5] mentioned that according to genomic analysis, isolated
Bv bacteria are still showing new distinct characteristics [5].

Figure 3B,C covers COG pathways and KEGG distribution, respectively. They indicate
that genes responsible for fundamental functions are distributed in the core genome, genes
encoding secondary metabolites biosynthesis are mainly located in the accessory genomes
and that the bacterial species diversity is in the unique genome. These finding are in
accordance with others obtained by Carlos Guimaraes et al. [4], Belbahri et al. [106], and
Slama et al. [108].

The genetic mechanisms of B. velezensis genes encoding beneficial functions to plants
were explored through genome mining (Supplementary Figure S2). The obtained results
were proved by various other reports indicating that B. velezensis strains were endowed
with plant growth promoting capacities [4,18,32,39,106,109]. Additionally, our results
showed that B. velezensis bacteria were able to produce diverse secondary metabolites
clusters endowed with antimicrobial activities. The clusters were identified through
antiSMASH, non-ribosomal peptide synthetases (NRPS), polyketide synthetases (PKS),
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trans-Acyl Transferase Polyketide Synthetase (TransATPKS), and several other tools. This
finding is in accordance with other reports confirming the secondary metabolites potentials
of B. velezensis strains [4,34,60,106]. The rarefaction analysis of the number of discovered
antibiotics underlined that saturation has not yet been attained which means that there
are clusters encoding novel metabolites that are not described yet. In the same way
Cai et al. [29] and Pandin et al. [10] have found clusters encoding new metabolites specific
to B. velezensis species.

Clustering of the B. velezensis core- and accessory genome resulted in a high number
of unknown secondary metabolites and proved that almost all secondary metabolites were
synthesized by the accessory genome (Figure 5). A set of secondary metabolites were
common in several B. velezensis bacteria, such as cyclic lipopeptides (surfactin, fengycin,
bacillibactin, and bacilycin), polyketides (difficidin, macrolactin, and bacillaene) and some
others were specific for few bacteria (locillomycin, subtilin, mersacidin, bacillomycin,
and amylocyclicin). All mentioned secondary metabolites were identified as effective
antibacterial and antifungal compounds [28,35,110–112]. Data from bioinformatic analysis
of Figure 6 demonstrated the percentage of genes given to a specific function (i.e., genetic
information processing, amino acid metabolism, vitamins metabolism, etc.) is related to
its importance (fundamental or secondary function). Similar results have been previously
reported [107].

The prediction of genes responsible for extracellular enzymes production (Supplementary
Figure S3) demonstrated that protease encoding gens were present in almost all bacteria
especially theses originating from fermented food. This finding is supported by several
other reports indicating that bacteria having strong proteolytic activities could accelerate
brewing and fermentation processes [113–117].

5. Conclusions

This study provide evidence that the collected B. velezensis bacterial strains were very
closely related despite the fact that they originate from different sources and locations.
Additionally, the comparative genomic analysis shed light on the secondary metabolites
richness which help in the plant growth promotion and biocontrol capacities of B. velezensis
strains and their possible bio-formulation as biopesticides.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12121714/s1, Supplementary Figure S1: Average nucleotide identity (ANI) hetmap of B.
velezensis group isolates, Supplementary Figure S2: Genome mining homology of genes encoding
beneficial functions of B. velezensis isolates to plants, Supplementary Figure S3: Heatmap of predic-
tion of genes responsible for extracellular enzymes production. Supplementary Table S1: Diverse
secondary metabolites clusters table of B. velezensis isolates.
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