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Abstract: Broadleaf deciduous forests (BDFs) or dry dipterocarp forests play an important role in
biodiversity conservation in tropical regions. Observations and classification of forest phenology
provide valuable inputs for ecosystem models regarding its responses to climate change to assist forest
management. Remotely sensed observations are often used to derive the parameters corresponding
to seasonal vegetation dynamics. Data acquired from the Sentinel-1A satellite holds a great potential
to improve forest type classification at a medium-large scale. This article presents an integrated
object-based classification method by using Sentinel-1A and Landsat 8 OLI data acquired during
different phenological periods (rainy and dry seasons). The deciduous forest and nondeciduous
forest areas are classified by using NDVI (normalized difference vegetation index) from Landsat
8 cloud-free composite images taken during dry (from February to April) and rainy (from June
to October) seasons. Shorea siamensis Miq. (S. siamensis), Shorea obtusa Wall. ex Blume (S. obtusa),
and Dipterocarpus tuberculatus Roxb. (D. tuberculatus) in the deciduous forest area are classified
based on the correlation between phenology of BDFs in Yok Don National Park and backscatter
values of time-series Sentinel-1A imagery in deciduous forest areas. One hundred and five plots
were selected during the field survey in the study area, consisting of dominant deciduous species,
tree height, and canopy diameter. Thirty-nine plots were used for training to decide the broadleaf
deciduous forest areas of the classified BDFs by the proposed method, and the other sixty-six plots
were used for validation. Our proposed approach used the changes of backscatter in multitemporal
SAR images to implement BDF classification mapping with acceptable accuracy. The overall accuracy
of classification is about 79%, with a kappa coefficient of 0.7. Accurate classification and mapping
of the BDFs using the proposed method can help authorities implement forest management in the
future.

Keywords: broadleaf deciduous forests; forest classification; sentinel; Landsat; multiresolution
segmentation algorithm

1. Introduction

Dry dipterocarp forest (DDF) or broadleaf deciduous forest (BDF) is a typical forest
of Southeast Asian countries dominated by humid tropical climate with a rainy and a
severe dry season. Generally speaking, BDFs are distributed in Laos, Cambodia, Thailand,
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Indonesia, Malaysia, Philippines, and some other South Asian countries. In Vietnam, BDFs
are dominated by Dipterocarpaceae with deciduous season in the dry season. BDFs play
an important role in the life of flora and fauna in the Central Highlands, Vietnam. In
recent years, BDFs have been gradually replaced by industrial trees that are expected to
generate higher economic values [1]. Nevertheless, it has been found that both natural
and human-made disturbances could deteriorate the ecosystems. For instance, it has been
found that Asia’s ecoenvironment is very vulnerable to massive changes in the land use and
land cover [2]. It is thus suggested that environmental protection is crucial by controlling
the access to forestry, limiting agricultural activities, and enhancing green industry to
improve environmental facilities and restore ecological values [3]. Evidently, observation
and classification of forest phenology provide valuable information for the improved forest
management to achieve environmental sustainability. Forest phenology is the first-order
control on terrestrial carbon and energy budgets, while Earth observations are usually
utilized to derive parameters of the seasonal vegetation dynamics in ecosystem models.

Vegetation phenology is defined as the study of a plant’s life cycles influenced by
the environmental seasonality [4]. The long-term in situ observations have been used to
demonstrate the plant phenology at the species level [5], while satellite-based observations
have been used to analyze ecosystems’ leaf phenology at global scale [6]. For the long-term
timespan over large-scale areas, Landsat time-series data and the Moderate Resolution
Imaging Spectroradiometer (MODIS) are valuable sources of datasets to support forest
mapping and studies [7–9]. At global scale, MODIS products were designed to consis-
tently provide spatiotemporal global vegetation conditions to assist change detection and
phenological and biophysical interpretations [10,11]. In contrast, at smaller scale, Landsat
data are used for studying forest phenology. The Landsat satellite is an instrument for
monitoring and identifying patterns of forest land cover and land use change. In the past,
the use of Landsat data to derive forest information significantly contributed to the global
system database for further investigating environmental issues [12–17]. Analysis of the
plant phenology using remote sensing data is based on the seasonal trajectory of vegetation
indices, such as the normalized difference vegetation index (NDVI) or enhanced vegetation
index (EVI) [18–22]. Moreover, the timing of phenological transition was determined by
the vegetation index threshold [23,24].

Many studies have been proposed to discriminate tree species and crops based on
multitemporal optical data [25,26], hyperspectral data [27,28], and radar data [29,30].
The information of the species is mainly extracted based on the correlation between the
phenology of plants and spectral reflection or backscatter signal in satellite images. The
multitemporal Sentinel-1A data have been useful in monitoring phenology and classifying
deciduous forests [29,31]. Marius et al. [29] utilized multitemporal Sentinel-1A to monitor
phenology and classify two forest types as deciduous and coniferous forests in northern
Switzerland with classification accuracy of 86%. To improve accuracy, simultaneous use of
optical and radar images, either multitemporal optical images or a single SAR image [32],
or multitemporal SAR images and a single optical image [33], is adopted. Using Advanced
Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar
(PALSAR) combined with Sentinel-2A data to determine forest cover and biomass variation
has been presented in the literature [34–36]. The classification methods as pixel-based
and object-based methods were used for vegetation species classification [25,28,29,37]. An
object-based method is applied for image classification or land cover and forest mapping
using a time series of satellite images.

According to the Global Forest Report [38], Vietnam is one of the top leading countries
in forest cover loss, although various forest protection and reforestation programs have
been implemented. It is estimated that from 2001 to 2007, Vietnam lost 2.42 Mha of
tree cover, equivalent to a 15% decrease since 2000 and 256 Mha of CO2 emissions [38].
Therefore, there is a need to have a better forest management solution with detailed
observation of forest tree species to assist forest officials and local authorities in advancing
forest management and restoration.
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This research proposes an object-based classification method to identify BDFs by
integrating multitemporal Sentinel-1A images with a spatial resolution of 10 m and Landsat
8 OLI images with a spatial resolution of 30 m. Yok Don National Park, located in Central
Highlands, Vietnam, is selected as the study site. Since it is characterized by a rich
ecosystem of dry open dipterocarp forest mixed with broadleaved tropical evergreen
forests with high plant diversity in high mountainous areas, the intersection and mixing of
diverse forest species result in challenges for forest monitoring and management. It is the
first time the integration of multitemporal Sentinel-1A and Landsat images is adopted to
identify dominant deciduous forest species in the Central Highlands and tropical region
based on the correlation between backscatter values of multitemporal Sentinel-1A images
and the phenological difference in leaf regeneration periods of dipterocarp trees. The
outcomes of this study will contribute to further applications of combining freely accessible
optical and radar satellite images in studying forest tree species in tropical regions.

2. Study Site

Yok Don National Park is one of the largest protected areas, situated in the Dak Lak
and Dak Nong provinces, Central Highlands, Vietnam. It lies between latitudes 12◦45′ and
13◦10′ N, and longitudes 107◦29′30′ ′ and 107◦48′30′ ′ E (Figure 1).

Figure 1. The study area in Yok Don National Park, Dak Lak Province, in the Central Highlands of Vietnam. (a) Vietnam
administrative boundary; (b) administrative boundary of Dak Lak Province at district level and the study area located in
red rectangle; and (c) topography of Yok Don National Park.

The total area is 115,545 ha, divided into three zones, including strict protection zone
of 80,947 ha, ecological restoration zone of 30,426 ha, and administrative service zone of
4172 ha. The buffer zone covers an area of 133,890 ha, including the communes surrounding
the national park. The terrain is relatively flat with an average elevation of about 200 m
above sea level. In the study area, there are three peaks, including Chư M’lan (502 m), Yok
Don (482 m), and Yok Da (466 m) mountains (Figure 1). The average annual rainfall of
the study area is less than 1600 mm. The climate in Yok Don is divided into two seasons,
i.e., the rainy season from May to October and the dry season from November to April.
The annual average temperature is about 24.5 ◦C with the highest temperature of the year
about 37.5 ◦C and the lowest temperature at about 11 ◦C. The highest average temperature
occurs typically in April and the lowest average temperature usually appears in January.
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Yok Don National Park was selected as a test site with typical and conserved BDFs.
Primary forest accounts for over 90% of the total area of the park, an ideal habitat for
plant and animal species. Especially, Yok Don is the only area in Vietnam that preserves
the forest type of dipterocarp forest (http://yokdonnationalpark.vn). BDFs have large
valuable timber species and nontimber forest products, such as oil and medicinal herbs,
and they are habitats for animal groups. They play a crucial role in the livelihoods of many
local ethnic minority communities. Yok Don National Park is one of the places to preserve
the biodiversity of deciduous forests so that dominant species are relatively homogeneous
and less affected by human activities and ecological succession, mainly based on natural
habitats. Hence, it is a good site for testing multitemporal remote sensing data for studying
the deciduous forest.

The vegetation within Yok Don National Park is mainly a combination of BDFs,
semi-evergreen forests with a smaller evergreen forest area, which grows mainly on hills
and along with watercourses. The BDFs primarily consist of members of the family
Dipterocarpaceae, including Dipterocarpus tuberculatus, Shorea siamensis, Shorea obtuse, and
Dipterocarpus obtusifolius Teijsm. ex Miq. [39].

3. Materials and Methods
3.1. Satellite Data and Image Preprocessing

Due to the climatic and topographical features of Yok Don in the rainy season, clouds
often occur and cause difficulties in obtaining cloudless images. Hence, we collected six
scenes of Landsat 8 images in the dry season during the timeframe from January to March
2015 and 12 scenes of Landsat 8 images in the rainy season from June to October 2015 and
from June to August 2016, as shown in Table 1, to create a Landsat 8 cloud-free composite
image for each season. The Yok Don National Park’s forest status was unchanged during
2015–2016 since it is strictly protected and forests have steadily grown.

Table 1. Landsat 8 images used in this study.

Specifications Landsat 8/T1_TOA

Acquisition time

In dry season (6 scenes) 01 January 2015; 17 January 2015; 02 February 2015;
18 February 2015; 06 March 2015; 22 March 2015

In rainy season (12 scenes)

10 June 2015; 26 June 2015; 12 July 2015; 28 July 2015;
13 August 2015; 29 August 2015;

30 September 2015; 16 October 2015; 12 June 2016;
14 July 2016; 30 July 2016; 15 August 2016

Path/Row 124/51
Level Level-1
Band Blue, Green, Red, NIR, SWIR-1, and SWIR-2

Resolution 30 m
Bit depth 16 bits

The Landsat 8 images were preprocessed by using the Google Earth Engine (GEE)
platform. The main processing steps include (i) acquisition of the surface reflectance
product from the USGS, (ii) selection of the input target scene and reference scenes, (iii)
detection of clouds and masking their shadow areas on the images, and (iv) replacing the
cloud and cloud-shadow pixels on the target image with cloudless pixels from the reference
image corresponding to their coordinates, which ensured that the output composite images
were filled by cloud-free pixels to serve for image classification. Figure 2 shows the result
of the output composite images (red = SWIR1 band, green = NIR band, blue = RED band)
of Landsat 8 over the study area.

http://yokdonnationalpark.vn
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Figure 2. Landsat 8 cloud-free composite images in the rainy (a,c) and dry (b,d) seasons in Yok Don National Park.

Sentinel-1A provides active microwave data that are not affected by weather con-
ditions, day and night. The repeat cycle of Sentinel-1A is 12 days. To classify the forest
species, we selected nine scenes of Sentinel-1A monthly from February to December in
2015, as seen in Table 2.

Table 2. Multitemporal Sentinel-1A data used in this study.

Specifications Sentinel-1A Data

Acquisition time
22 February 2015; 30 March 2015; 17 May 2015; 28 July 2015;

21 August 2015; 14 September 2015; 08 October 2015;
01 November 2015; 19 December 2015

Ascending/Descending Ascending
Mode IW (Interferometry Wide Mode)
Band C-band (5.46 Hz)

Polarization VV and VH
Level processing Level-1 GRD (Ground Range Detected)

Resolution 10 × 10 m
Bit depth 16 bits

The Sentinel-1A dataset was used to classify deciduous forests based on differential
backscatter values (dB) corresponding to the phenology of dominant deciduous species.
Thus, it is necessary to have satellite images at the right time of the season to analyze sea-
sonal variation of phenology and differences in forest species’ leaf regeneration. Therefore,
we selected multiple scenes and chose one scene for each month. However, Sentinel-1A
data in Dak Lak Province, Vietnam, were missing for some months, namely January, April,
and June.

The multitemporal Sentinel-1A images are preprocessed by the Sentinel Application
Platform (SNAP) toolbox provided by the European Space Agency (ESA). The prepro-
cessing consists of the following steps: (i) calibrating data to sigma naught value (σ0), (ii)
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performing terrain correction by using the Shuttle Radar Topography Mission (SRTM) Dig-
ital Elevation Model (DEM), (iii) performing dB value conversion, and (iv) implementing
multitemporal speckle filtering. In order to integrate the data for further analysis, all the
images need to be in the same resolution and projection, so that all images were setup in
the the WGS-84 UTM Zone 49N projection, and the Landsat images were resampled to be
10 m resolution, the same as the resolution of Sentinel-1A data.

In general, the study area’s terrain is relatively flat, so that we used the SRTM DEM
with 30 m resolution for geometric distortion correction. It was found that only some
hilly areas and mountains were affected by foreshortened slopes in the SAR image, which
caused the brightness reflectance features on the image. Therefore, we had difficulties
distinguishing the vegetation in the high mountains with Sentinel-1A. In contrast, the
vegetation in the high mountains can be classified by using optical satellite images. We
chose to classify the vegetation species in these mountainous regions by Landsat 8 OLI
images to solve this difficulty.

3.2. Field Survey Data

The surveying data collected at Yok Don National Park, Dak Lak Province, in April
2015 in the dry season were used for finding the dominant species of broadleaf decid-
uous forest and validating the result. One hundred and five plots (12 plots of semi-
evergreen/evergreen forest, 15 plots of Shorea siamensis, 36 plots of Shorea obtusa, and
42 plots of Dipterocarpus tuberculatus) were selected as shown in Figure 3. Among them,
39 plots (four plots of semi-evergreen forest, 8 plots of S. siamensis, 13 plots of S. obtusa, and
14 plots of D. tuberculatus) were used for training and 66 plots were used for validation
of the classification result. Each plot size covers an area of 20 m × 20 m. In each sample
plot, we collected parameters, including specimen, tree height, tree diameter at breast
height, vegetation type, number of individuals and cover that represent the main dominant
species (or broadleaf deciduous forest) plots, and their coordinates. The selected plots had
to represent the main dominant species, spatial distribution, density, and structure. The
distance between plots was usually chosen to be at least 200 m and the location at least
100 m close to the other dominant species.

Figure 3. (a) Distribution of field survey data: (a) plots used for training are shown in green and plots used for validation are
shown in red and (b) spatial distribution of the 39 field survey plots of the four types of deciduous forest used for training.

In order to determine certain forest states in which species are dominant in a plot, the
basal area was applied for this study [40]. The basal area is one of the chief characteristics
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determining dominance and nature of the community. It refers to the ground actually
penetrated by the stems. Basal area can be measured through:

BA(spm) = πr2 =
3.1416× (diameter)2

4
(1)

RBA (%) =
BA of individual species

Total BA of all species
× 100 (2)

where BA is basal area and RBA is relative basal area. Thus, in plots, the species with the
largest RBA will be the dominant species.

3.3. Methodology
3.3.1. NDVI Images

NDVI images were generated from Landsat 8 cloud-free composite images for the dry
and rainy seasons, as shown in Figure 4. The formula for determining NDVI is shown in
Equation (3):

NDVI =
(NIR− RED)

(NIR + RED)
(3)

where NIR is the surface reflectance value of the near-infrared band and RED is the surface
reflectance value of the red band of Landsat images.

Figure 4. Normalized difference vegetation index (NDVI) images generated from Landsat 8 cloud-free composite images:
(a) NDVI image in the dry season and (b) NDVI image in the rainy season.

NDVI is one of the widely used indices for image classification, monitoring, and rapid
assessment of forest quality [5,10,18,20,21,28]. The highest NDVI values correspond to
dense vegetation, such as evergreen forests, deciduous trees in the rainy season, or crops at
their peak growth stage. Based on the characteristics of the growth, deciduous forest and
evergreen forest can be extracted by the difference in NDVI values between the dry and
rainy seasons.

Figure 4 shows NDVI values significantly vary between two phenology periods. In
the study area, the dry season starts in November and ends in April of the next year, while
the rainy season starts in May and ends in October. The time of significant leaf regeneration
is from June to October of the year. The NDVI image can discriminate between evergreen
and semi-evergreen forests in the dry season because the NDVI values of evergreen forests
are much higher than those of the BDFs and the other vegetation types. Evergreen and
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semi-evergreen forests are typically distributed in the mountains, on steep slopes, and next
to streams or rivers crossing the national park. However, BDFs can be easily mixed with
barren land, shrubs, and dried water surface. Thus, it is infeasible to classify them even
if only the NDVI image in the dry season is used. On the other hand, NDVI values of
vegetation in the rainy season are significantly high and can be easily identified from the
other land cover types, such as water and other bare lands. Nevertheless, it is challenging
to discriminate between evergreen forests and semi-evergreen forests with BDFs because
all types of vegetation in this season grow healthy. Therefore, the combination of NDVIs in
the dry and rainy seasons is proposed to resolve the difficulties. Then, the evergreen and
semi-evergreen forests, BDFs, and water can be classified by optical images.

3.3.2. Determining the Dominant Species of Broadleaf Deciduous Forest Using
Multitemporal SAR Images

The dominant species of DBFs were defined on Sentinel-1A color composite image
(where red = images acquired on 17 May 2015, green = images acquired on 30 March 2015,
blue = images acquired on 22 February 2015), as shown in Figure 5. February and March
is the timeframe for BDF leaves falling, while May is the time for them to revive. The
difference in leaf cover of the dominant species during this time period led to the change
in the backscatter values on SAR images and the color of the composite image. Analysis
of unchanged areas indicates that the combination color is white or black, corresponding
to semi-evergreen or evergreen forest and water. Semi-evergreen or evergreen forest is
mainly distributed in high mountains or near the Srepok River. In contrast, the locations
of deciduous forests are colorful. Figure 5 shows the main dominant species in Yok Don,
which appear in different colors on the composite image.

Figure 5. Analysis of deciduous forest species in the composite image: (a) Shorea siamensis, (b) Shorea obtusa, (c) semi-
evergreen/evergreen, and (d) Dipterocarpus tuberculatus.

Backscatter values correspond to the growth process at appropriate locations of the
deciduous species on multitemporal SAR images, as shown in Figure 6. It can be clearly
seen that Figure 6a–c show the low peak backscattering values in the interval of Date of
the Year (DOY) 233 (Day Of the Year of the Julian calendar), the middle of August, and
the heaviest rainy time of the year, while Figure 6f,g exhibit the differences in standard
deviation and average backscatter values of BDF and semi-evergreen forest. The standard
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deviation of semi-evergreen was lower than that of BDF species because there was no
change in the backscatter value of semi-evergreen in the period. As a result, the color in
the composite multitemporal SAR images of the semi-evergreen area is gray (Figure 6c).
In contrast, standard deviations of BDF species were higher, and the average values
were lower than semi-evergreen because backscatter signals in SAR image depend on the
phenology of trees, ground moisture, and stand structure.

Figure 6. Backscatter profiles of BDFs on multitemporal Sentinel-1A images: (a) Shorea siamensis, (b) Shorea obtusa, (c) Dipte-
rocarpus tuberculatus, (d) evergreen/semi-evergreen, (e) standard deviation backscatter value of BDFs and evergreen/semi-
evergreen, (f) average backscatter value of BDFs and evergreen/semi-evergreen, and (g) comparison of backscatter profile
of BDFs and evergreen. DOY (Day of the Year of the Julian calendar).

Semi-evergreen forest and deciduous forest can be interpreted by standard deviation
and composite RGB of multitemporal Sentinel-1A images. Features of BDF species were
classified based on the field surveying data and the correlation between backscatter values
of BDF patterns on multitemporal SAR images and the phenology of deciduous species in
Yok Don National Park within the deciduous forest classified area. Because of elevation in
this area, Dipterocarpus obtusifolius is mixed with semi-evergreen or evergreen. BDF1, BDF2,
and BDF3 are assigned as Shorea siamensis, Shorea obtusa, and Dipterocarpus tuberculatus,
respectively. Figure 6g shows the growth of deciduous species with the low peaks of
backscatter values in fall leaves in February, March, and December because flora status at
this time is mainly grass and shrubs. May and July are the times of deciduous tree leaves
to bud, with leaves reaching a peak in September. Accordingly, the backscatter signal
increases in May and reaches its peak in July to September.
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In Figure 6g, S. siamensis has the lowest backscatter value compared with the other
deciduous species because S. siamensis grows in dry land and sparse shrubs. S. obtusa
has a similar phenology with S. siamensis, as shown in Figure 6g. Nevertheless, average
backscatter values were higher for S. obtusa than S. siamensis. As a result, the mean
backscatter value in May was a condition to distinguish S. siamensis and S. obtusa. Figure 6c
shows that D. tuberculatus is heterogeneous with many differences among plant species. D.
tuberculatus, which distributes near the bottom of the mountains, has a high density so that
the backscatter values are higher than those of the others. Therefore, D. tuberculatus was
classified by average backscatter values of February and March (Figure 6g).

3.3.3. Proposed Method

Based on the difference in NDVI values between dry and rainy seasons and the corre-
lation between backscatter values of multitemporal SAR images and family Dipterocarpaceae
growth, we propose an object-based classification scheme as shown in the flowchart given
in Figure 7.

Figure 7. Identification scheme of deciduous forest species by using Sentinel-1A and Landsat 8 images. NDVI_D is the
NDVI in the dry season and NDVI_R is NDVI in the rainy season. In this flowchart, M2 is the mean backscatter value in
February, M3 in March, and M5 in May.
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The classification process was conducted through two main steps: (i) segmentation
of 11 bands (including two bands of NDVI images and nine bands of Sentinel-1A images)
to define the homogenous objects based on their spectral properties, and (ii) using the
threshold of mean values of each homogeneous pattern to classify each object.

First, we tried to identify homogeneous patterns using multiresolution segmentation
algorithms based on NDVI images and time-series Sentinel-1A images. Numerous ex-
periments were conducted with different segmentation parameters in the multiresolution
segmentation algorithm: (i) keep the same weight of all bands, (ii) scale the parameter to be
10 corresponding to the 10 m spatial resolution of the experimental materials, (iii) change
the shape and compactness parameters. Numerous scripts were applied to determine the
parameters of the multiresolution segmentation algorithm. Results were compared with
reference data and expert knowledge. Final parameters of the multiresolution segmentation
algorithm were selected: scale parameter, 10; shape, 0.4; compactness, 0.8; and the same
weighted image channels. The homogeneous pattern’s segmentation is shown in Figure 8.

Figure 8. Multiresolution segmentation applied for NDVI (rainy and dry seasons) and multitemporal
Sentinel-1A data with parameters: scale, 10; shape, 0.4; compactness, 0.8.

Water, semi-evergreen forest, and evergreen forest were classified by comparison
of NDVI values for both dry and rainy seasons. BDFs were classified by the differences
between average of backscatter values of multitemporal Sentinel-1A images in February,
March, and May. February and March have extremely dry weather and are the time of
family Dipterocarpaceae leaves falling. May is the time of regeneration of the family
Dipterocarpaceae. It can be seen from Figure 6a–c from July onwards that the BDF leaves
strongly regenerate, and the BDFs in this time look like evergreen forests because of higher
backscatter values of BDFs, which are similar to backscatter values of evergreen forests.
Therefore, we choose the three most typical moments of deciduous trees, including the
time of entirely deciduous (February and March) and when the trees start to regenerate
leaves (May) to distinguish the three dominant BDF species. The threshold values are
shown in Figure 7.

Broadleaf deciduous forests in Yok Don are also known as Dipterocarpaceae family by
low density. Their canopies do not intersect. During the dry season, the leaf falling duration
of BDF species lasts from 2 to 4 months. The density of trees is about 260–1100 per ha with
a diameter of 20 cm. It usually has only one wood canopy with a height from 7 to 25 m.
The carpet is not dense. Characteristics of some dominant species in the national park are
given in Appendix A.
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4. Result and Discussion
4.1. Broadleaf Deciduous Forest Map

Figure 9 shows the classification result and statistics of some BDF types in Yok Don
National Park. The spatial distribution of deciduous forest consists of 24% (of the national
park’s total area) S. obtusa, 45% D. tuberculatus, 17% S. siamensis, 13% semi-evergreen/evergreen,
and 1% water.

Figure 9. (a) Map of BDFs and (b) pie chart of area percentage for the classified objects in Yok Don National Park.

4.2. Accuracy Assessment

Accuracy assessment was performed by comparing the classified BDFs with statistical
BDFs from the checking plots of field surveying data. In the study area, the dominant
deciduous species, such as S. obtusa, D. tuberculatus, and S. siamensis, were analyzed in the
sample plots. We used 66 field survey plots to evaluate the classification accuracy results.
The location of the validation points and field photos are shown in Figure 10. Among the
66 validation points, there were 8 semi-evergreen/evergreen plots, 7 S. siamensis plots,
23 S. obtusa plots, and 28 D. tuberculatus plots.

A confusion matrix of broadleaf deciduous forest classification with the user accuracy
and producer accuracy per class is shown in Table 3. Results show that 14 plots are
misclassified, accounting for 21%. S. obtusa has the most misclassification points with seven
points. These misclassifications often have many broadleaf deciduous species in a plot
with RBA values of 50% to 60%. The overall accuracy of the classification is 79% with a
kappa coefficient of 0.7.

Table 3. Accuracy assessment of the proposed method.

Field Surveying Data

Classes Semi-Evergreen
/Evergreen S. siamensis S. obtusa D. tuberculatus Total User Accuracy (%)

Semi-evergreen
/Evergreen 7 0 1 2 10 70.0%

S. siamensis 0 7 1 1 9 77.8%
S. obtusa 0 0 16 3 19 84.2%

D. tuberculatus 1 0 5 22 28 78.6%
Total 8 7 23 28 66

Producer Accuracy % 87.5% 100% 69.6% 78.6%

Overall accuracy: 78.8%; kappa: 0.7.
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Figure 10. Location of 66 field survey plots for validation and field photos: (a) Shorea siamensis, (b) Shorea obtusa, (c) Diptero-
carpus tuberculatus, and (d) semi-evergreen/evergreen forest.

4.3. Discussion

We utilized different techniques, including Google Earth Engine, optical imagery,
and SAR imagery to derive seasonal composite NDVI imagery. An object-based classifi-
cation method was applied for the BDF classification. The Landsat images were used to
classify broadleaf deciduous forests (BDFs), semi-evergreen/evergreen forest, and water.
Optical images are affected by clouds, resulting in infeasibility of generating monthly
composite images to observe seasonal variation in phenology. Therefore, multitemporal
radar Sentinel-1A images were employed to resolve this problem. Conversely, using radar
images alone will face difficulties, such as speckle noise and foreshortening, layover, and
shadow distortion in mountainous areas. Thus, the combined optical and radar images
effectively improve broadleaf deciduous forest classification in the study area.

The proposed method was the combination of optical and SAR images for BDF
classification. It took advantage of the two types of images. The relation of backscat-
tering profiles from time-series SAR images and phenological features of the broadleaf
deciduous forest provides us more detailed information about dominant species compo-
sition and its evolution. However, foreshortening and layover on a radar image cause
misclassification with semi-evergreen/evergreen forests in the mountainous areas. The
semi-evergreen/evergreen forest is usually distributed in the high mountain belts and
near a water source. In addition, the wetland in the study area changed in the dry season.
Hence, Landsat 8 data were used to classify water and semi-evergreen/evergreen forest.

NDVI images of dry and rainy seasons were resampled to 10 m resolution to be
integrated with Sentinel-1A images and compared with sample plots (size 20 m × 20 m).
The combination of optical images and multitemporal SAR image was used as input data for
the object-based classification method’s multiresolution segmentation algorithm to create
the segmented homogeneous patterns. Each dominant species has a different time of leaves
falling and this characteristic corresponds to backscatter signals. The broadleaf deciduous
forest species were identified by taking an average value of segments in each Sentinel-1A
image in February, March, and May. The relation of backscatter values of multitemporal
Sentinel-1A images and the growth of BDFs were analyzed. The semi-evergreen forest
has stable intensity and low standard deviation values, while the dominant species of
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BDFs have much fluctuation between the dry and rainy seasons. Backscatter values in
the interval of DOY 233 (middle of August—the heaviest rainy time of the year) are lower
than those in July and September, likely because the BDFs exhibit healthy growth in this
period. Backscattering values derived from the SAR images are influenced by humidity
and heavy rain.

The accuracy of classification significantly depends on the homogeneity of deciduous
species in the checking plots. Classification results were compared with the BDFs in field
surveying data with the assumption of homogeneous species at the checking plots. It
is necessary to examine the homogeneous level in the plot sites. Thus, we were able to
determine the homogeneous level of BDF species by about 70% in the checking plots. The
misclassification only appeared in checking plots with numerous BDF species, and the
homogeneous level is less than 50%. Besides, there are exceptional mixed classes. Table 3
shows that the highest accuracy is 84.2% for S. obtusa and the lowest accuracy is about
70.0% for semi-evergreen/evergreen forest because of mixed deciduous forests. Based on
the field survey data, S. obtusa and D. tuberculatus are the major BDF species in Yok Don
National Park.

This study has further demonstrated that time-series Sentinel-1A imagery can classify
deciduous forest species in tropical regions. It indicates a definite relationship between
backscattering on Sentinel-1A images and the phenology of deciduous forest species. Mar-
ius et al. [9] proved that use of time-series Sentinel-1A images is able to classify deciduous
and coniferous forests in northern Switzerland with an accuracy of 86% and kappa coef-
ficient of 0.73. Overall accuracy for individual vegetation species in the study area was
72% with a kappa coefficient of 0.58. Notably, the forest features in northern Switzerland
are more homogeneous (80%) compared with that in a tropical forest (homogeneity in our
study area is about 50%), which has many layers with the mutual intersection, resulting
in misclassification. Thus, it is of more challenge to obtain very high accuracy in forest
classification in the tropical region in a deciduous forest. In addition, as far as we know,
there is no study in Vietnam using Sentinel-1A for dry dipterocarp forest classification; for
other countries in Asia, we searched and found limited references on this same issue.

Our study contributes to enriching the guidance and materials for forest management
in Vietnam, which have never been found in the literature since only limited traditional
inventory data are currently used [41–44]. Our classification map of deciduous forest in
Dak Lak, Central Highlands of Vietnam, and the proposed classification scheme using
Sentinel-1A imagery can be applied to the other regions of interest to achieve reliable
information and reduce the human workforce.

5. Conclusions

Forest phenology observation and classification is commonly viewed as a vital diag-
nostic of climate variation, and it is also the first-order control on biosphere–atmosphere
interaction. Consequently, Earth observation data have been instrumental in monitoring
and mapping the forest phenology over the past decades. Since most efforts are attempted
on single data or at larger scales, local-scale investigations with tropical forests are still rare.
In this paper, we proposed integrating the multitemporal Sentinel-1A and Landsat 8 images
using object-based classification methods to classify the broadleaf deciduous forests with
the aid of Google Earth Engine. Then, dominant species in Yok Don National Park can be
identified and used for improved management and conservation of the deciduous forest
ecosystem in the Central Highlands, Vietnam.

In summary, three key points can be concluded: (i) Experimental results show that
reliable classification between water, deciduous forest, and nondeciduous forest can be
achieved by using NDVI images of dry and rainy seasons, based on multitemporal SAR
images classified for BDF species based on backscatter values. (ii) The proposed method
results are compared with field survey data, showing a 79% overall accuracy. (iii) The
accuracy of the proposed classification method depends on the level of homogeneity of
the species in the study area with the representaive species in the checking plots. We rely
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on NDVI and backscattering values derived from time-series optical and SAR images,
respectively, to enhance the accuracy of forest species identification in the tropical region.
However, to best utilize the available data and further advance the classification schemes,
some aspects of efforts should be considered or implemented in the future studies, such
as using Sentinel-2 data and analysis of the texture, assessment of canopy water availabil-
ity [45], calculation the mean spectral band values, and utilization of principal component
analysis or machine learning methods, together with the acquisition of knowledge about
the vegetation’s biophysical characteristics, such as tree height, tree density, and biomass.
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Appendix A

a. Dipterocarpus tuberculatus

Dipterocarpus tuberculatus distribute at elevations from 150 to 250 m above sea level,
on the ancient alluvium plain or low mountain foot and poor land, and shallow soil
(Figure A1). It is rare for them to occur at the top or the ridge of a mountain. It has simple
species composition in which the species of Dipterocarpaceae family and Lagerstroemia spp.
family have the most numbers of individuals. Three common species that are mixed with
Dipterocarpus tuberculatus are Terminalia, Shorea siamensis, and Shorea obtusa. This type of
forest has a simple hierarchical structure with a one-floor woody canopy and carpet of
fresh bushes and shrubs.

b. Shorea siamensis

Shorea siamensis distribute at elevations of 150–200 m above sea level, on dry land, low
hills, slopes below 25 degrees, and shallow soil (Figure A2). Shorea siamensis usually grow
mixed with two common species, Dipterocarpus tuberculatus and Pterocarpus macrocarpus,
and some other species such as Xylia xylocarpa, Canarium, and Aporosa villos, which are
involved in the tree floor and form the stand. In terms of population, there are 95%
deciduous individuals with a simple hierarchical structure. This dominant composition
has a strong regenerative ability, especially Shorea siamensis.

c. Shorea obtuse

Shorea obtuse is characterized by its distribution characteristics and formation con-
ditions, similar to those of Shorea siamensis (Figure A3). Therefore, these two dominant
compositions are often interleaved and set up as simple flora species. Shorea obtusa pre-
dominates, with up to 50% of individuals and 55% of the total cross-sectional population.
This forest type has a simple structure and strong regenerative ability. Shorea obtusa is a
large timber tree with 25–35-m height, 90-cm in diameter, drought tolerance, and forest
fire resistance.
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d. Dipterocarpus obtusifolius

Dipterocarpus obtusifolius distribute at elevations from 200 to 400 m above sea level
(Figure A4). The component of forest species is more complicated because of higher
distributional height than those of the others. Dipterocarpus obtusifolius is mixed with
semi-evergreen or evergreen in more elevated positions.

Figure A1. Dipterocarpus tuberculatus.

Figure A2. Shorea siamensis.
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Figure A3. Shorea obtuse.

Figure A4. Dipterocarpus obtusifolius (mixed semi-evergreen forest).
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