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Abstract: Vegetation coverage is very important in terrestrial ecosystems and climate systems.
However, the observational record of the normalized difference vegetation index (NDVI), which
started in the 1980s when satellites became widely used, is too short to investigate the history of
variation in vegetation coverage beyond the modern observation period. Here, we present a 189
y vegetation coverage series based on a total of 349 Mongolian pine (Pinus sylvestris var. mongolica
Litv) cores from seven locations from the central–western Da Hinggan Mountains (CW–DHM),
northeastern China. We found a significant relationship between tree-ring width and the regional
cumulative normalized difference vegetation index (CNDVI). The correlation between the ring-width
chronology and the regional June–July CNDVI (CNDVIJJ) was significant, with r = 0.68 (n = 32,
p < 0.001) and an explained variance of 45.8% (44.0% after the adjustment for the loss of the degree
of freedom). On this basis, we designed a transfer function to reconstruct the CNDVIJJ for the CW–
DHM region from 1825 to 2013 CE (Common Era). During the last 189 years, there were 28 years with
high CNDVIJJ values, and another 28 years with low values. We also observed CNDVIJJ fluctuations
at the inter-annual and decadal time scales, including eight low value periods and nine high value
periods. Based on our analysis, the variation in CNDVI is associated with climatic factors, such as
temperature, precipitation and the Palmer Drought Severity Index (PDSI), which combines both
temperature and precipitation. From 1950 to 2002 CE, the CNDVI showed a noticeable decreasing
trend in the CW–DHM region, whereas after 2003 CE, the CNDVI exhibited an apparent increase,
which has also been observed in southern Central Siberia, eastern Mongolia and northeastern and
eastern China, indicating that the CNDVI change in the CW–DHM is related to climate change in the
local region and in some parts of Asia.

Keywords: northeast China; tree-ring width; remote sensing; cumulative normalized difference
vegetation index (CNDVI); reconstruction; climate variability

1. Introduction

Vegetation is of great significance worldwide and is a major factor in the exchange of
substances and energy among the hydrosphere, atmosphere, pedosphere, and biosphere on
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the Earth’s surface [1,2]. Vegetation is also very sensitive to climate change. Since the 1980s,
with the rapid development of satellite remote sensing technology, remote sensing images
and data have been used to estimate vegetation parameters, such as vegetation coverage
and biomass [3] and to further explore the relationships between this variation and changes
in the climate and environment to assess the response and feedback of vegetation change
to climate variation.

In the study of surface vegetation, the normalized difference vegetation index (NDVI)
is considered to be the most effective indicator of terrestrial vegetation coverage and growth
conditions. However, the most significant problem at present is that the observational
dataset of the NDVI is too short (since the satellite was launched in 1982 CE, i.e., Common
Era) to accurately understand and evaluate the regional or global vegetation changes before
the 1980s, thus affecting the prediction of future changes in regional and global vegetation
under the scenario of global warming. Therefore, finding a reliable paleo-vegetation
variation proxy in the past has become a priority for terrestrial ecological system research.

Tree rings, with their high resolution, easy availability of samples and wide distri-
bution, play an important role in studying ancient centennial- to millennial-scale climate
changes and in future predictions. Moreover, tree-ring width data can be used to study
changes in the NDVI [4–9], and the history of regional vegetation change can be directly
obtained by establishing the correlation function between tree growth and a vegetation
index. Thus, this work is of great scientific significance for extending NDVI records and
better understanding the process of regional and global vegetation change.

The central–western Da Hinggan Mountains (CW–DHM), located in northeastern
China, feature dense forest and a high natural vegetation coverage that is significantly
influenced by the climate. Hence, this area is ideal for understanding variations in the
regional greenness coverage. In this area, tree-ring data have been used to reconstruct
precipitation [10,11], relative humidity [12] and Palmer Drought Severity Index (PDSI)
variations [13] for the last several hundred years. NDVI has also been studied using tree-
ring data from a single site [14–17]. However, no research has been performed on NDVI
variations at large spatial and temporal scales thus far. However, the large-scale spatial
and temporal variations in vegetation are very important in the study of the relationship
between vegetation and climate.

In this paper, tree-ring width data from seven sites in the CW–DHM were employed to
study the relationship of the regional tree-ring width and cumulative normalized difference
vegetation index (CNDVI, a new index that has a higher correlation with climate data
than the general NDVI). We established a response function and reconstructed the CNDVI
variation history over the CW–DHM region for the past 189 years and finally explored the
variation characteristics of the CNDVI over the CW–DHM region under the framework of
global change.

2. Materials and Methods
2.1. Tree-Ring Data and Ring-Width Chronology Development in the Central–Western Da
Hinggan Mountains Region

The CW–DHM, located in the transition zone between the arid area and the East Asian
monsoon area, are very sensitive to climate change [13,18]. In total, 349 Mongolian pine
(Pinus sylvestris var. mongolica Litv) cores from 7 locations (Figure 1) were used to establish
a tree-ring width chronology in the CW–DHM region. Among these, 6 locations (HLBE,
HWQ, SSQ, NGNE, BRT01, BRT02) have already been used to reconstruct the regional
PDSI index [13]; this paper adds a new site, SSQB (Shenshuiquanbei).
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Figure 1. The locations of the sampling sites in the Da Hinggan Mountains in this paper. The grey area in the small picture 
in the upper right represents the northern margin of the Asian Summer Monsoon. EASM denotes the pathway of the East 
Asian Summer Monsoon, EAWM denotes the pathway of the East Asian Winter Monsoon, ISM represents the pathway 
of the Indian Summer Monsoon and WL represents the Westerlies. 

All these individual cores were from the same tree species and the mean correlation 
between all individual series was very significant (r = 0.52, p < 0.001), therefore, we put all 
the individual ring-width series together [13] to generate a CW–DHM regionally repre-
sentative chronology using the ARSTAN program [19]. During the chronology develop-
ment process, we employed an exponential function or linear regression to remove the 
impacts of tree growth trends related to non-climatic factors and then synthesized these 

Figure 1. The locations of the sampling sites in the Da Hinggan Mountains in this paper. The grey
area in the small picture in the upper right represents the northern margin of the Asian Summer
Monsoon. EASM denotes the pathway of the East Asian Summer Monsoon, EAWM denotes the
pathway of the East Asian Winter Monsoon, ISM represents the pathway of the Indian Summer
Monsoon and WL represents the Westerlies.

All these individual cores were from the same tree species and the mean correlation
between all individual series was very significant (r = 0.52, p < 0.001), therefore, we put all
the individual ring-width series together [13] to generate a CW–DHM regionally represen-
tative chronology using the ARSTAN program [19]. During the chronology development
process, we employed an exponential function or linear regression to remove the impacts
of tree growth trends related to non-climatic factors and then synthesized these series
into a chronology that represented regional variation with its variance stabilized with the
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Rbar-weighted method. Rbar was the mean correlation coefficient between all the possible
pairs of ring-width series. Then, we acquired 3 types of chronologies using ARSTAN:
standard (STD), residual (RES) and autoregressive (ARS) chronologies. Among these, the
STD chronology preserved the low- and high-frequency signals. Thus, we employed the
STD chronology in this paper (Figure 2), and it was named CW–DHM7 (Central-Western
DaHinggan Mountains 7) for the period of 1748 to 2013 CE, spanning a total of 266 years.
In this study, an expressed population signal (EPS) equal or greater than 0.85 was iden-
tified as a reliable threshold for constructing a credible chronology [20,21]. Thus, the
receivable interval of our chronology was from 1825 to 2013 CE. The signal strength of
our STD chronology was estimated using a moving Rbar and the EPS [21]. The statistical
characteristics of the CW–DHM7 chronology were listed in Table 1.
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Figure 2. CW–DHM7 chronology. (A) standard (STD) chronology; (B) number of cores; (C) running
expressed population signal (EPS); (D) Rbar statistics.

Table 1. Statistical characteristics of the STD chronology of CW–DHM7.

Statistical Item Value

Mean sensitivity 0.14
Standard deviation 0.17

Skewness 0.01
Kurtosis 4.28

First order autocorrelation 0.52
Mean correlation between all series 0.52
Expressed population signal (EPS) 0.96

First year where EPS ≥ 0.85 (No. of Cores) 1825 (11)
Total number of trees (cores) 204 (349)

2.2. Climatic Data

The climate parameters, including monthly precipitation (P) totals and mean monthly
temperature (T), used in this paper, were acquired from the Climatic Research Unit time
series (CRU TS4.01) [22] in 0.5◦ × 0.5◦ gridded datasets (47.5◦ N–49.5◦ N, 119.0◦ E–120.5◦ E,
1951–2013 CE) and monthly PDSI data from the CRU scPDSI 3.26e in 0.5◦ × 0.5◦ gridded
datasets [23] (47.5◦ N–50.0◦ N, 117.5◦ E–122.5◦ E, 1982–2013 CE) were also used. In the
CW–DHM region, high temperatures generally correspond to more precipitation, and the
opposite is true as well. In this pattern, the precipitation and temperature vary at the same
time, and both reach their peaks during the June–August period in a given year (Figure 3).
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Figure 3. The meteorological data. The monthly mean temperature and mean precipitation from the
Climatic Research Unit time series (CRU TS4.01).01 in 0.5◦ × 0.5◦ gridded datasets (47.5◦ N–49.5◦ N,
119.0◦ E–120.5◦ E, 1951–2013 CE).

2.3. Remote Sensing Data

In this paper, we used a 15-day composite of the Advanced Very High Resolution
Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) NDVI
dataset, which had a resolution of 8 × 8 km, a range of 10 × 20 pixels and a coverage
period from 1982 to 2013. The variation in NDVI ranged from −1 to 1, with values less
than 0.1 corresponding to ice, inland water, desert and bare soil and values greater than
0.1 representing green vegetation coverage [24,25]. Here, the CNDVI data (119.34◦ E–
120.07◦ E, 47.78◦ N–49.24◦ N, 1982–2013) from the GIMMS satellite datasets were our study
target. We first extracted the maximum values from the whole time series data from each
month (there were two periods of data each month, and we extracted the maximum value).
Then, the NDVI values that were greater than 0.1 in the research area (10 × 20 pixel) were
accumulated, thereby obtaining the CNDVI [26], from 1982 to 2013 month by month and
year by year. The advantage of the CNDVI compared to the NDVI was that it prominently
reflected the regional vegetation variation situation, especially in places where vegetation
was inhomogeneously distributed or relatively sparse.

2.4. Statistic Method

To investigate the relationship among CW–DHM7, CNDVI and the climate parameters,
we calculated the Pearson correlation coefficient (r). The analyses were based on monthly
and seasonal (different combinations of consecutive months) climate data from the previous
August to current July. In addition, partial correlations among CNDVI, temperature
and precipitation were calculated. Because the data we gained from GIMMS satellite
dataset only span 32 years (1982–2013 CE), we applied the bootstrap [27] and jackknife [28]
methods to test the reliability and stability of the regression function during the calibration–
verification period. The idea behind the bootstrap resampling technique is that the available
observations of a variable contain the necessary information to construct an empirical
probability distribution of any statistic of interest. The bootstrap method can provide
standard errors of statistical estimators even when no theory exists. The jackknife technique
is also known as the leave-one-out test. This technique was defined as the correlation of
the time series after removing the values for one year progressively throughout the entire
time period. In this study, the annual growth of climate factors in different time periods
was calculated by slope analysis, and extremely high (low) CNDVI years were identified
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based on CNDVI values greater (less) than the mean plus one time the standard deviation
(mean minus one time the standard deviation) of the reconstructed CNDVI series.

In addition, to investigate the influence of large-scale sea–atmospheric factors on the
CNDVI variation, we calculated the correlations between the CNDVI and factors such as
the global average temperature, Northern Hemisphere temperature [29], the Atlantic Mul-
tidecadal Oscillation (AMO) [30], the Summer North Atlantic Oscillation (SNAO) [31] and
the Pacific Decadal Oscillation (PDO) [32]. The spatial correlation analysis was performed
between our region CNDVI and the GIMMS CNDVI data using the Royal Netherlands Me-
teorological Institute Climate Explorer. The multi-taper method (MTM) program was used
to perform the periodicity analysis for the reconstructed CNDVI sequence [33], and the
program simulates the amplitude and phase evolution of a quasiperiodic signal over time.

3. Results
3.1. Variability Statistics of Regional Observed Meteorological Data

Since the CNDVI variation is tightly associated with climate factors, such as the
moisture and temperature conditions [34], we investigated the changing trends of various
climatic factors in the CW–DHM region during the periods 1951–1999 CE and 2000–2013
CE, according to observed meteorological records (Table 2). Some hydrological factors, such
as precipitation [11], relative humidity [12] and PDSI [13], were already reconstructed on
the basis of tree-ring width in the CW–DHM, and such analyses have shown that apparent
abrupt changes from dry to wet conditions occurred in approximately 2000 CE. In addition,
the global warming hiatus also occurred in approximately 2000 CE and the warming hiatus
in northeastern China was more obvious [35]. During the periods 1951–1999 CE and 2000–
2013 CE, the climatic conditions in the study area changed markedly both throughout the
year and in the growing season. The climatic factors all improved to some extent during
the period 2000–2013 CE, thereby favoring vegetation growth.

Table 2. Trends in temperature, precipitation and Palmer Drought Severity Index (PDSI) in the
CW–DHM region during the periods 1951–1999 CE and 2000–2013 CE.

Observational
Parameters Period Trends of Annual Climate Trends of Growing Season

(May–October) Climate

Temperature 1951–1999 0.018 °C/year 0.006 °C/year
2000–2013 –0.01 °C/year –0.06 °C/year

Precipitation 1951–1999 –0.046 mm/year –0.065 mm/year
2000–2013 1.391 mm/year 2.752 mm/year

PDSI
1951–1999 0.002/year 0.001/year
2000–2013 0.168/year 0.202/year

3.2. Correlation between CW–DHM7 and CNDVI

There was a significant positive correlation between the CW–DHM7 chronology and
the CNDVI from June to July (CNDVIJJ), with r = 0.68 (p < 0.001, n = 32) (Figure 4A,B), the
correlation can be seen clearly in the scatter diagram (Figure 4C). It should be noted that
this correlation was improved by several extreme points. The situation that one point was
deleted when building the relationship between tree-ring indices and climatic factors was
common [36,37] and the deletion of several points will be debated as a regular scientific
problem in dendroclimatology and dendroecology.
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Figure 4. Correlations between the CW–DHM7 STD chronology and climatic factors: (A) with the regional precipitation
and temperature of each month; (B) with the cumulative normalized difference vegetation index (CNDVI) of each month;
(C) with CNDVIJJ during the period 1982–2013 CE. The CNDVI data from the Global Inventory Modeling and Mapping
Studies (GIMMS) satellite datasets (119.34◦ E–120.07◦ E, 47.78◦ N–49.24◦ N, 1982–2013 CE); the averaged CNDVI in June to
July (CNDVIJJ) is our reconstruction target. SHC in A and B indicates season with the highest correlation.

Partial correlation analysis (Table 3) showed that when precipitation was fixed, the
correlation between the CNDVIJJ and the June–July mean temperature was 0.43 (n = 32,
p < 0.017), while when the temperature was fixed, the correlation between the CNDVIJJ
and the June to July precipitation was 0.47 (n = 32, p < 0.008).

Table 3. Partial correlation between the CW–DHM region CNDVIJJ and precipitation (PJJ) and
temperature (TJJ) from CRU TS 4.01 (1982–2013 CE).

Controlled Variable CNDVIJJ vs. Mean PJJ CNDVIJJ vs. Mean TJJ

PJJ 0.43, p < 0.017
TJJ 0.47, p < 0.008

3.3. Correlations between CW–DHM Regional CNDVIJJ and Climate Parameters

The CNDVI reflects vegetation coverage variation in the CW–DHM region; however,
the CNDVI is explicitly influenced by regional climate change. Indeed, the calculation of
the response function shows that the CW–DHM regional CNDVIJJ is positively correlated
with monthly average precipitation from September of the previous year to July of the
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current year, and the total precipitation from the previous November to the current June
has the greatest impact, with r = 0.65 (p < 0.001, n = 32). The CNDVIJJ is negatively
correlated with the mean temperature from December to April and from January to April.
The CNDVIJJ is especially significantly correlated with temperature from January to April,
with r = –0.41 (p < 0.019, n = 32). Obviously, the CNDVIJJ is affected by both temperature
and precipitation. This finding is consistent with the PDSI, which is also influenced by both
temperature and precipitation in the CW–DHM region [13]. Therefore, we calculated the
correlation between the CNDVIJJ and the PDSI. We found that the CNDVIJJ is positively
correlated with the PDSI values of each month from August of the previous year to June
of the current year. After combining the months, the highest correlation between the
CNDVIJJ and the PDSI was found to occur from May to June, with r = 0.61 (p < 0.001,
n = 32) (Figure 5).
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3.4. CNDVIJJ Reconstruction for the CW–DHM Region during the Period 1825–2013 CE

Based on the relationship between tree-ring width and CNDVIJJ during the period
1982–2013 CE, we designed the following transfer function to reconstruct the CNDVIJJ
variation during the period 1825–2013 CE:

CNDVIJJ= 43.99 × STDt + 84.52 (1)

(n = 32, 1982–2013 CE, r = 0.68, p < 0.0001, R2 = 45.8%, R2
adj = 44.0%, sd = 9.82,

F = 25.39, D/W = 1.29)
Where STDt is the CW–DHM chronology value in year t, the explained variance is

45.8% (44.0% after the adjustment for the loss of the degree of freedom), and the Durbin–
Watson value (D/W) [38] is 1.29. The Durbin–Watson value is used to test whether there
is autocorrelation within the series; when n = 32, a D/W value between 1.28 and 2.72
indicates that there is no autocorrelation within the series. The D/W value of 1.29 in
this paper indicates slight autocorrelation. Additionally, the correlation after the first-
order difference of the observed and reconstructed series is 0.62 (n = 32, p < 0.001). Our
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reconstruction tracked the changes characteristic of the observed CNDVIJJ at both high and
low frequencies (Figure 6).
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With the software MATLAB R2015b, the bootstrap and jackknife methods were used
to verify our reconstruction model. The results demonstrated that the r, R2, R2

adj, F, p and
D/W values calculated by the bootstrap and jackknife methods are close to those of the
original dataset, indicating that the regression model is quite reliable and stable (Table 4).

Table 4. Results of the bootstrap and jackknife verifications.

Calibration (1982–2013CE)
Statistic

Verification (1982–2013 CE)

Bootstrap (100 Iterations)
Mean (Range)

Jackknife
Mean (Range)

r 0.68 0.66 (0.14–0.83) 0.68 (0.57–0.72)
R2(%) 45.8 44.3 (1.8–68.8) 45.8 (31.9–51.3)

R2
adj(%) 44.0 42.5 (–1.4–67.8) 43.9 (29.5–49.7)
F 25.40 27.65 (0.56–66.21) 24.65 (13.57–30.58)
p 0.0001 0.006 (0.0001–0.460) 0.0001 (0.0000–0.0009)

D/W 1.29 2.01 (1.26–3.00) 1.29 (1.10–1.47)

According to Equation (1), we reconstructed the CNDVIJJ variation history in the
CW–DHM region during the period 1825–2013 CE. The average value of CNDVIJJ from
1825 to 2013 CE was 127.94, and the standard deviation (1σ) was ±8.41. Therefore, the
values greater than 136.35 (mean + 1σ) in the reconstructed series were extremely high
CNDVIJJ years, the values less than 119.53 (mean–1σ) were extremely low CNDVIJJ years,
and the values between 119.53 and 136.35 were the normal years. Thus, in the entire
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reconstructed series, high and low CNDVIJJ values each occur in 28 years, each accounting
for 14.81% of the total. The proportion of extremely low CNDVIJJ years is equivalent to the
proportion of extremely high CNDVIJJ years. The top ten high and low CNDVIJJ values
are listed in Table 5.

Table 5. Top ten high and low CNDVIJJ years from the 189 y reconstruction.

Rank Year Low CNDVIJJ Year High CNDVIJJ

1 1856 101.76 2013 156.83
2 1907 105.15 1848 154.28
3 1987 106.25 1847 146.98
4 2007 110.87 1868 146.32
5 1892 111.66 1849 144.34
6 1951 111.66 1846 144.25
7 1857 111.97 1948 142.32
8 1893 112.89 1957 142.14
9 1865 114.65 1962 140.21
10 1836 115.71 1888 140.16

3.5. The Spatial Representation of CNDVIJJ in the CW–DHM Region

The spatial correlation results indicate that the CNDVIJJ in the CW–DHM, based
on both the observed and reconstructed series from 1982 to 2013 CE, has good spatial
representativeness and consistency in terms of larger regional vegetation change responses
(Figure 7).
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3.6. Periodicity Analysis of CNDVIJJ Variation over the Past 189 Years

The MTM results show that the CNDVIJJ in the CW–DHM region over the past 189
years had a number of significant cycles, such as 3.44 and 3.29 y quasi-cycles at the 99%
confidence level, and 20.88, 18.62, 6.87, 4.59, 3.59, 3.51 and 2.23 y quasi-cycles at the 95%
confidence level (Figure 8).
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Figure 8. Multi-taper method (MTM) analysis results. Multi-taper method (MTM) spectral estimates
of the reconstructed CNDVIJJ in the CW–DHM region from 1825 to 2013 CE, where the smoothed
black solid and dashed lines represent red noise spectra at 99 and 95% confidence levels, respectively.

3.7. The Connections between CW–DHM Regional CNDVIJJ Variation and Large-Scale
Sea–Atmospheric Factors

The results of correlations between the CNDVIJJ and large-scale sea–atmospheric
factors show that the CNDVIJJ is significantly correlated with these sea–atmospheric
parameters (Table 6). Notably, the correlation between the CNDVIJJ and the western
Pacific patterns is high, with r = –0.69 (p < 0.001, Figure 9). The teleconnection patterns
influence the vegetation variation through the influence of the sea surface temperature in
the western Pacific region on the large-scale regional atmospheric circulation, which in
turn influences the regional temperature and precipitation.

Table 6. The correlation between the CNDVIJJ and sea–atmospheric factors. The correlations be-
tween the CW–DHM regional CNDVIJJ and large-scale sea–atmospheric factors in the Northern
Hemisphere.

Climate Forcing. Month r, p

Atlantic Multidecadal Oscillation (AMO)
(HadSST) Previous October 0.40, p < 0.02

Global Average Temperature (HadCRUT4) May 0.41, p < 0.02
Northern Hemisphere Temperature June 0.49, p < 0.005

Summer North Atlantic Oscillation (SNAO)
(NCAR) Previous August–March –0.36, p < 0.05

Pacific Decadal Oscillation (PDO) (ERSST) February –0.55, p < 0.001
Teleconnection patterns (west Pacific region) April–July –0.69, p < 0.001
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4. Discussion
4.1. The Relationship between the CNDVI Changes and Tree-Ring Chronology in
CW–DHM Region

Previous studies show that the CNDVI is tightly associated with climatic factors, such
as the hydrologic and temperature conditions [35]. In the CW–DHM, the vegetation density
(CNDVI) is greatly influenced by the combined effects of temperature and precipitation. In
addition, tree-ring width was significantly affected by similar climate limiting factors [13].
CNDVI is an index generated by the reflection of plant leaves on the red and near-infrared
light bands, which mainly reflect the greenness of plant leaves. The index is also strongly
related to the photosynthetic activity of vegetation [39]. The width of the tree rings
indicates the radial growth of the tree, and its growth rate is mainly determined by the
net accumulation of photosynthesis and respiration. Chlorophyll is essential for plant
photosynthesis, and its amount will determine the photosynthesis accumulation in plants,
which in turn affects the radial growth of plants. When the limiting factor functions on
the vegetation, it will inhibit the photosynthesis of plant leaves, which slow the radial
growth of the plants, and control the tree ring width and CNDVI [40]. Moreover, trees are
important forms of vegetation and their own growth statuses represent a partial change in
vegetation coverage. Therefore, tree-ring chronologies reflect the summer CNDVI changes.

4.2. The Spatial and Temporal Variations in Vegetation during the Last 189 Years in the
CW–DHM Region

China is strongly influenced by the East Asian Summer Monsoon (EASM), especially
monsoon-related precipitation. During the summer monsoon season, the EASM brings a
large amount of water moisture from the Pacific Ocean to the inland of China. The stronger
the monsoon is, the greater the amount of moisture delivered to the interior. During the
northward progression of the EASM, the Da Hinggan Mountains hinder the northward
movement of the EASM.

In our study area, precipitation and temperature in June and July have basically the
same effect on vegetation coverage, although the precipitation effect is slightly stronger.
That is, the dry and wet conditions in June and July, which are related to the strength of
the EASM, seriously affect the vegetation coverage. Consequently, it is easy to understand
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why a weak EASM caused a well-known severe drought during the late 1920s in northern
China (1926–1931 CE) [41–45]. Our reconstructed CNDVIJJ data show low values, and the
vegetation coverage was significantly reduced at that time. Similarly, from 1876 to 1878 CE,
13 provinces in northern China suffered from a severe drought named the “Ding–Wu severe
drought” [46–48], and the serious reduction in vegetation cover caused by this drought
was also observed in our reconstructed series (Figure 6).

On the other hand, an intense EASM brings abundant precipitation, which is beneficial
to enhanced vegetation coverage. An intense EASM led to a nationwide flooding disaster
in 1954 [49], and high values are present at this time in our reconstructed CNDVIJJ series.
After 2000 CE, the EASM continued to strengthen, leading to increased precipitation in the
study area [13], which further increased the CNDVIJJ in the the CW–DHM region.

In our 189 year reconstructed CNDVIJJ series, there are 28 extremely high years
and 28 extremely low years, each accounting for 14.8% of the total sequence, with equal
proportions. The periods with high canopy greenness are 1830–1833 CE, 1842–1852 CE,
1865–1873 CE, 1884–1886 CE, 1898–1901 CE, 1913–1920 CE, 1934–1968 CE, 1975–1981 CE
and after 2003 CE, and the periods with low canopy greenness are 1834–1841 CE, 1853–
1864 CE, 1874–1883 CE, 1887–1897 CE, 1902–1912 CE, 1921–1933 CE, 1969–1974 CE and
1982–2007 CE.

The vegetation coverage, as represented by CNDVIJJ, clearly decreased in the CW–
DHM from 1950 to 2000 CE (Figure 6). At the same time, the PDSI index in the area also
decreased [13], and the climate exhibited drier conditions. Therefore, the observed and
reconstructed CNDVIJJ datasets exhibited consistent variation trends from 1982 to 2003 CE
(Figure 6A,B).

The meteorological conditions improved after 2000 CE (Table 2), and the vegetation
coverage increased significantly in our CNDVIJJ reconstruction. This trend not only
appears spontaneously with the regional PDSI index [13] but also coincides with the
results of the large-scale vegetation coverage increase obtained by previous research [50].
This illustrated that our reconstructed results can effectively reflect large-scale vegetation
coverage variation history in the past 189 years.

From the spatial correlation analysis, we found that the vegetation variation situation
in the CW–DHM region reflects a cosmopolitan phenomenon (Figure 7). The global green
land increased by 5% according to the analysis of satellite-derived global remote sensing
data from 2000 to 2017 CE, particularly in China [51]. This finding is in line with the
timing and the process of vegetation enhancement we observed in the CW–DHM region
(Figure 7). Furthermore, this finding is in accordance with our current investigation that
demonstrated that vegetation has increased during the last two decades in some parts of
the world [50,51].

Spatial correlation analysis results also reveal that our study area is positively cor-
related with southern Central Siberia, eastern Mongolia and northeastern and eastern
China. These results illustrate that the CNDVI values in these areas also decreased from
1982 to 2003 CE and increased from 2003 to 2013 CE. Our reconstruction captured this
phenomenon very well (Figure 7), and the spatial correlations between the observations
and the reconstructions are very good. Therefore, we thought that the changes of vegetation
coverage in these regions might reflect their common response to climate changes. In other
words, climate variability is, at least at present, beneficial to increasing vegetation coverage
in these areas.

4.3. Possible Mechanism of CNDVIJJ Variation in the CW–DHM Region

Precipitation and temperature are the fundamental elements that influence vegetation
coverage. Climate change in the CW–DHM region is also affected by large-scale sea–
atmosphere coupling. For example, the climate variation in the CW–DHM region is tightly
associated with the AMO, SNAO, and PDO [13]. However, these climate factors do not
directly affect CNDVIJJ variation in the CW–DHM region; instead, these large-scale climate
factors first generate regional climate changes, and then regional climate factors create
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CNDVIJJ changes. Therefore, it is not surprising that the CNDVIJJ in the CW–DHM region
is significantly correlated with AMO, SNAO and PDO. (Table 6). Notably, the correlation
coefficient between CNDVIJJ and teleconnection patterns in the western Pacific region
reaches –0.69 (p < 0.001, April–July, n = 32, Figure 9), indicating that the western Pacific
region has a very strong influence on the climate of the CW–DHM and CNDVIJJ.

Affected by the periodic climate variation in the study region [10,52,53], the CNDVIJJ
undoubtedly exhibits periodic changes. The cycles we detected, such as the 18.62 and
20.88 y quasi-cycles, correspond to two cycles of sunspot activity (~22 y) [54]. Hence,
there is an influence of sunspot activity on climate and the CNDVIJJ. Additionally, the
3.29 to 6.87 y quasi-cycles correspond to the El Niño-Southern Oscillation (ENSO) activity
period [55]. The correlation between our CNDVIJJ dataset and ENSO in the Niño 4 area
in the current July reaches –0.24 (p < 0.2), highlighting the influence that ENSO activity
imposes on the CNDVIJJ in the study region. The 2.23 y quasi-cycle corresponds to the
extensively documented tropospheric biennial oscillation (TBO) [56].

These calculation results clearly show that solar activity, surface temperature in the
Northern Hemisphere and sea–atmosphere coupling across large areas in all hemispheres
play some role in the climate change in the CW–DHM in multiple ways and thus influence
the CNDVIJJ variation in the CW–DHM area. In addition, these drivers not only affect
the change in the vegetation coverage variation in the CW–DHM but also affect the NDVI
changes in its adjacent regions as well, making the changes in the CNDVIJJ in the CW–
DHM area comparable to larger regional CNDVI fluctuations (Figure 7).

5. Conclusions

In this paper, we obtained a CNDVI sequence using 32 y NDVI data recorded by
existing satellite observations, combined with tree-ring width data from the CW–DHM
region. We found that the chronology in the CW–DHM was significantly correlated with the
June–July CNDVI, with an explained variance of 45.8% (r = 0.68, n = 32, p < 0.0001) and an
explained variance of 44.0% after the adjustment for the loss of the degree of freedom. On
this basis, we designed a transfer function to reconstruct the vegetation changes in the CW–
DHM region over the past 189 years. The CW–DHM regional greenness change was closely
related to the local climate conditions. Less precipitation and drier climate conditions
resulted in sparser vegetation. After the year 2000, the CNDVIJJ in the CW–DHM region
showed high values, indicating that the dense vegetation was consistent with the increase
in vegetation growth in some parts of Asia at the same time. Therefore, excellent spatial
and temporal consistency existed between the vegetation change in the CW–DHM and
the vegetation change in the southern Central Siberia, eastern Mongolia and northeastern
and eastern China, which was also confirmed by the results of spatial correlation analysis.
Interestingly, the CNDVIJJ variation in the CW–DHM area was significantly influenced by
climate change; therefore, factors affecting regional climate change, such as sunspot activity
and large-scale ocean–atmosphere coupling factors, such as AMO, SNAO, PDO and ENSO,
are transmitted through climate change, further influencing the fluctuations in vegetation
density in the study region. These ocean–atmosphere coupling factors not only affect the
climate–vegetation coverage variation in the CW–DHM region but also affect the NDVI
changes in its adjacent regions simultaneously. Thus, it is not difficult to understand why
the CW–DHM regional vegetation variation is significantly connected with these regions
in Asia. This study is of great significance for improving our understanding of the process
of vegetation change and the local ecological situation in the CW–DHM region.
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