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Abstract: Forest roads are an important element in forest management as they provide infrastructure
for different forest stakeholder groups. Over time, a variety of road assessment concepts for better
planning were initiated. The monitoring of the surface cross-section profile of forest roads particularly
offers the possibility to take early action in restoring a road segment and avoiding higher future
costs. One vehicle-based monitoring system that relies on ultrasound sensors addresses this topic.
With advantages in its dirt influence tolerance and high temporal resolution, but shortcomings in
horizontal and vertical measuring accuracy, the system was tested against high resolution terrestrial
laser scanner (TLS) data to find and assess working scenarios that fit the low- resolution measuring
principle. In a related field test, we found low correct road geometry interpretation rates of 54.3% but
rising to 91.2% under distinctive geometric properties. The further applied line- and segment-based
method used to transform the TLS data to fit the road scanner measuring method allows the transfer
of the road scanner evaluation principle to point-cloud or raster data of different origins.

Keywords: ultrasound sensors; road scanner; terrestrial laser scanning; TLS; forest road maintenance;
forest road monitoring; crowned road surface

1. Introduction

Information about forest road condition has become increasingly important. Not only
basic road accessibility, but also an intensified use of forest roads by other forest stakeholder
groups [1] can thereby influence the need for maintenance intensity and frequency [2].
Questions, from basic usability and stability, up to the assessment of high- quality road
construction standards needed for, e.g., recreational aspects [3,4], can therefore be driving
factors for collecting additional information about a road condition status to be able to take
action within given financial constraints [2].

The therefore selected parameters describing the road condition vary with the quality
standards and maintenance concepts. Thus, destruction-free monitoring concepts can
include the road surface roughness in its different definitions and recording methods [3,5,6],
direct wear expressions of the road surface [7–9], or the road geometry in comparison
with a targeted road design. The road geometry, however, is an especially important part
of road quality assessment. Its design determines the drainage of the road surface and
is crucial for avoiding longitudinal water accumulation which can result in accelerated
erosion effects [4,10–12]. Thus, it helps to identify potential construction problems even
before severe damage in the form of wear expressions on a forest road surface appears.

One data source that is used to describe forest road geometries is originated from
airborne laser scanning. Caused by the given spatial resolution, the area of application is
found on larger-scale road geometries [13] or focuses on strong geometrical expressions
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such as the ditch as drainage system [7]. Higher potential and more possibilities in monitor-
ing the road geometries can be achieved by changing the recording distance, and therefore
the resolution of the data [14]. Specially equipped vehicles for road condition monitoring
which are mostly based on LiDAR systems already exist, but are mostly designed for sealed
road surfaces [15], creating data with low temporal resolution, as a separate, cost-intensive
measuring vehicle is required for data collection. To utilise the advantage of the close-range
recording with higher temporal resolution, alternative measuring principles have emerged
in the forest sector with the aim to close the gap between temporal and spatial resolution
to serve alternative monitoring concepts.

In this context, a different vehicle-based and low-cost road scanning concept, which
is applied as an ultrasound sensor-based setup, was developed [16,17]. The aim of this
system is to be used in the day-to-day business when mounted on the back of a forester’s
car to collect frequent information about the road condition status by describing the road
surface geometry in combination with its surface roughness. In comparison with other
near-range sensor setups suitable for forest use, most of which are based on LiDAR or
photogrammetric systems [3,9], this system alternatively operates with ultrasound distance
sensors to detect the cross-section profile of a forest road’s carriageway surface, and so
addresses annual maintenance concepts to detect and further restore a functional lateral
water drainage of the carriageway [18]. The lens-less ultrasound measurement principle
allows the user to continue measurements under muddy or dusty measuring conditions,
but again limits the resolution of the measurement. This drawback was already noted in
earlier tests conducted under laboratory conditions [19].

The present study focuses on the recording of the carriageway cross-section profiles
on forest roads, particularly of a single-laned design. In a field testing, vehicle-based data
from the ultrasound sensor setup of the road scanner are compared with high resolution
data collected with a terrestrial laser scanning (TLS) system, to find areas of application to
substitute high resolution data with low-cost and -quality data of high temporal resolution.
For the data comparison, the recording method of the road scanner was adopted to TLS
data to describe cross-sections within defined road segments in order to assess lateral water
flow over parallel lane sections. The specific objectives of the study were:

(a) to adopt the lane-based measuring principle of the ultrasound sensor-based road
scanner to high resolution LiDAR data, to assess the quality of the lower resolution
data of the road scanner, and to transfer the lane-based recording method to other
data sources; and

(b) to use data filtering to identify data application scenarios for using the road scanner
setup for forest road surface monitoring purposes.

2. Materials and Methods

For the study, a gravel road surface was recorded with two measurement principles:
the ultrasound-sensor-based, low resolution road scanner, installed at the back of a car and
measuring in movement, and the terrestrial laser scanner in a static measuring setup. To
accommodate the different data resolutions, the road was split into equally sized segments
in longitudinal direction to obtain comparable road segments for further evaluation. The
road characteristic per segment was then described through the height differences between
sensor position related lanes on the road surface that are used to describe an inclined or
crowned road surface profile. Subsequently, the algebraic sign of the lateral road inclination
was compared between the measurement principles to describe the direction of potential
water flow. The percentage of equal classification of both principles was then evaluated to
find a comparable road description setup.

The study was carried out in Switzerland on a gravel road (46◦59′27.6′′ N 7◦27′50.4′′ E),
separating two agricultural fields in an open area on flat terrain (∆zmax = 3.35 m for the
whole road), to focus on the surface recording principle and to rule out forest canopy
influences. The road had a total length of 440 m and a width of 2.2 m (outer edges of the
visible lanes). It was straight, but with one 90-degree-exceeding corner at two thirds of the
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length (segments no. 29, 30). The cross-section profile did not follow a distinct crowned
profile, but was characterized by existing or emerging vegetation in the middle of the road,
combined with a beginning of rut expression. In the area of two local vertical drainage
installations (segments no. 19, 29), road surface erosion expressions started appearing.
There was no subsequent water drainage for lateral nor longitudinal direction.

The road was first measured with a TLS system followed by the low-resolution ultra-
sound sensors (US). With 5 US (MaxBotics Inc., Fort Mill, Brainerd, MN, USA: MaxSonar
MB7040) that are built into the road scanner [19,20], the vertical distance between the
scanner bar and the road surface was measured and the cross-section profile of the road
recorded. The sensor distance was equally set up with a 0.45 m spacing (Figure 1) and
the scanner was mounted in a height of 0.4 m on the car hitch for vertical measuring
towards the road surface. Four of the sensors used were the MB7040 XLI2C-MaxSonar-WR
type. At position 4, a MB7040 XLI2C-MaxSonar-WRC sensor equipped with a ceramic
cone head was mounted and expected to provide a more focused measuring cone of the
road surface. The sensors were triggered in a round-robin measurement principle and a
10 Hz trigger frequency of each sensor to minimize reflection interference between the
sensors. All sensors provided a resolution of 1 cm in vertical direction [20] where the
distance value is calculated by the sensor internally in a pre-processing step. Erratic values
above 0.65 m were excluded in advance of the data evaluation step, as these values relate
to technical errors and cannot be explained by specific, distance-related situations. With
a u-blox NEO-M8N GNSS sensor, the spatial reference was added simultaneously to the
measurements in a 1 Hz resolution, with location interpolation for in-between recordings.
For higher accuracy, an external active magnetic antenna was used, which was mounted
on the car roof. This setup reaches an accuracy of at least 1.5 m in driving direction, which
was verified by a shock-inducing control point for the built-in acceleration sensor, that was
placed on the test track. The road was then recorded in 14 overall passes (repetitions) at a
strived constant driving speed of 20 km h−1. In total, 13 passes contained valid GPS values
for the further spatial evaluation.
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Figure 1. Ultrasonic sensor setup and dimensions of the mounted road scanner bar (cm), including 
the spacing of the ultrasound sensors (red), with a central mounting point at sensor 3, in combina-
tion with their maximal detection beam width (grey). 

For reference measurements, the road was scanned with a TLS system FARO 3D X330 
in a chained scanning setup of 21 scans, positioned on the carriageway in a scanning 
height of 1.5 m and a varying scanning distance of around 25 m. For the point-cloud reg-
istration and to improve the basic internal GPS referencing, the position of 13 scanning 
targets were additionally calculated from theodolite measurements, referenced to an offi-
cial geographic survey point, located near the road entrance. 

After the separate scans were combined to a single point cloud, road scanner related 
sensor lanes were constructed following the known sensor spacings built up after one 
manually defined sensor lane. After the lanes were located, subsets of the point cloud 
were extracted as 0.05 m wide strips (Figure 2). 

Figure 1. Ultrasonic sensor setup and dimensions of the mounted road scanner bar (cm), including
the spacing of the ultrasound sensors (red), with a central mounting point at sensor 3, in combination
with their maximal detection beam width (grey).

For reference measurements, the road was scanned with a TLS system FARO 3D X330
in a chained scanning setup of 21 scans, positioned on the carriageway in a scanning height
of 1.5 m and a varying scanning distance of around 25 m. For the point-cloud registration
and to improve the basic internal GPS referencing, the position of 13 scanning targets were
additionally calculated from theodolite measurements, referenced to an official geographic
survey point, located near the road entrance.

After the separate scans were combined to a single point cloud, road scanner related
sensor lanes were constructed following the known sensor spacings built up after one
manually defined sensor lane. After the lanes were located, subsets of the point cloud were
extracted as 0.05 m wide strips (Figure 2).



Forests 2021, 12, 1191 4 of 11Forests 2021, 12, x FOR PEER REVIEW 4 of 12 
 

 

(a) (b) 

  
(c) (d) 

 
 

Figure 2. Data processing and evaluation steps: (a) combination of terrestrial laser scanning (TLS, grey background area) 
and road scanner measurements (orange); (b) reference sensor lane extraction (black) from the TLS data background 
(grey); (c) longitudinal segmentation of both data sources with 2 m spacing; and (d) calculating the mean height difference 
(dz) to represent the lateral water-flow between two sensor lanes, visualized between sensor 4 (S4) and sensor 5 (S5) of 
one segment. 

Next, the recordings of both measurement types were similarly segmented into 44 
sections of 8 m with a spacing of 2 m between the segments. The spacing was used to 
minimize GPS inaccuracies that may influence adjacent sections and could not be ex-
cluded with the open field setup. The minimum segment length of 8 m is limited by the 
number of sample points that are collected by the road scanner and are expected to be 
counted within one road segment. Despite the multiple repetition of the measurements of 
the road scanner, the created input data are differently characterised by number of data 
points, referenced to all 44 road segments (Table 1). 

Table 1. Overview of the collected data, including the number of valid data points per sensor lane within the defined 
segments. 

 TLS Measurements Road Scanner Measurements 
Recording date 4 July 2019 5 July 2019 

Number of scans 21 single scans 13 repetitions 
Number of segments 44 44 

Number of data points 769′537 (for extr. sensor lanes) 25′814 
Sum of valid data points Sensor 1 → 174′711 Sensor 1 → 5′473 

 Sensor 2 → 145′448 Sensor 2 → 4′996 
 Sensor 3 → 137′993 Sensor 3 → 5′039 
 Sensor 4 → 140′674 Sensor 4 → 5′324 
 Sensor 5 → 170′711 Sensor 5 → 4′982 

As the lateral geometrical expression of the road is the focus of the study, the relative 
height differences in z direction (dz) between the mean sensor values of two sensors each 
were compared (Figure 2). For each segment separately, the result could then be inter-
preted as direction for a potential lateral waterflow between the related two sensor lanes 
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Figure 2. Data processing and evaluation steps: (a) combination of terrestrial laser scanning (TLS, grey background area)
and road scanner measurements (orange); (b) reference sensor lane extraction (black) from the TLS data background (grey);
(c) longitudinal segmentation of both data sources with 2 m spacing; and (d) calculating the mean height difference (dz) to
represent the lateral water-flow between two sensor lanes, visualized between sensor 4 (S4) and sensor 5 (S5) of one segment.

Next, the recordings of both measurement types were similarly segmented into
44 sections of 8 m with a spacing of 2 m between the segments. The spacing was used to
minimize GPS inaccuracies that may influence adjacent sections and could not be excluded
with the open field setup. The minimum segment length of 8 m is limited by the number of
sample points that are collected by the road scanner and are expected to be counted within
one road segment. Despite the multiple repetition of the measurements of the road scanner,
the created input data are differently characterised by number of data points, referenced to
all 44 road segments (Table 1).

Table 1. Overview of the collected data, including the number of valid data points per sensor lane
within the defined segments.

TLS Measurements Road Scanner Measurements

Recording date 4 July 2019 5 July 2019

Number of scans 21 single scans 13 repetitions

Number of segments 44 44

Number of data points 769′537 (for extr. sensor lanes) 25′814

Sum of valid data points Sensor 1→ 174′711 Sensor 1→ 5′473

Sensor 2→ 145′448 Sensor 2→ 4′996

Sensor 3→ 137′993 Sensor 3→ 5′039

Sensor 4→ 140′674 Sensor 4→ 5′324

Sensor 5→ 170′711 Sensor 5→ 4′982

As the lateral geometrical expression of the road is the focus of the study, the relative
height differences in z direction (dz) between the mean sensor values of two sensors
each were compared (Figure 2). For each segment separately, the result could then be
interpreted as direction for a potential lateral waterflow between the related two sensor
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lanes with an information gap reflecting uncertainty in between the sensor lanes and the
data averaging for the segment length. For the evaluation, the algebraic sign of the dz
value from the different data sources was used. This characterises the inclination direction
with the minimum required resolution for water flow interpretation. When comparing the
different data sources, a “positive match” was noted in case of a match of the sign of the
relative heights. This means, for the US sensor data, respectively the TLS sensor lanes n,
k = 1,2,3,4,5:

(STLS (n) − STLS (k))·(SUS (n) − SUS (k)) > 0⇒ pos. match (1), with n < k, (1)

(STLS (n) − STLS (k))·(SUS (n) − SUS (k)) < 0⇒ no match (0), with n < k, (2)

with S(n) as relative mean z value per segment of the road surface of the first, and S(k) the
mean elevation of the second sensor (lane) considered.

As a last evaluation step, and to overcome low mean detection percentage, the intro-
duction of an evaluation threshold as data filter was further tested. For this, all sensor
combinations and segments were grouped for a combined dataset to separate thresholds
that influence the height difference recognition.

All statistical analyses were carried out with the statistic software R (R Development
Core Team 2020). To check the repetition accuracy of the recordings, the Dunnett’s Test was
used for multi-group comparison. Further, the effects of different scenarios that influence
the matching rate of the data were tested with the Wilcoxon Rank Sum Test, which suited
the testing preconditions.

3. Results
3.1. Data Quality and Mean Detection Rate

On average, 9.75 values (SD = 13.2, min = 1, max = 273, 1.22 points m−1) per segment,
repetition, and sensor were recorded with the road scanner. This point density equals
24.4 points m−2, upscaled from the sensor lane area and ignoring spaces between the
sensor lanes. For the TLS data, 3497.9 (SD = 3997.6, min = 45, max = 18549) values per
segment and sensor lane (8745 points m−2) were taken. The difference between the mean
values of the segments were characterized with a SD = 2.17 cm for the road scanner and
SD = 3.06 cm for the TLS data.

The repetition accuracy of the road scanner shows constant results. For all sensors, the
repetition measurements do not differ significantly (p < 0.05) regarding the mean values
per segment (Dunnett’s Test, with first recording as control data). In a confidence interval
with α = 0.1, sensor 4 with the ceramic cone shows significant differences in the repetition
in two cases. It has the lowest SD = 1.89 cm of vertical values compared to the other sensors
(total sensor SD = 2.06 cm).

The average recorded height differences between the sensors and recording types
for the entire road are shown in Figure 3 and Table 2. The crown profile (S1_3 and
S3_5) is expressed with, on average, 3.54 cm between these sensor lanes, which equals a
lateral inclination of 3.93% of the carriageway from the highest point in the middle to the
lowest point on the outer lane. The related ultrasound sensors recognized a lateral height
difference of 1.23 cm on average, with its highest peak on sensor 2 showing a different
picture (Figure 3). The TLS-derived mean profile shows higher inter-quantile ranges for all
sensors compared to the US-derived road profile.

For all possible sensor combinations, a matching of the sensor pairs of the different
data origins averaged 54.3% (SD = 22.3) for the mean segment values. A possible connection
between the detection percentage and the mean dz value is visible for the higher correlated
sensors referring to a maximum expected dz value (S1_3, S3_5, Table 2, Figure 4). These
sensor combinations reach a detection percentage of 72.1%.
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When plotting the dz value and the detection percentage of only one sensor pair, the
correlation behaviour between the TLS and the US data becomes visible (Figure 4). When a
certain dz value is exceeded, the detection rate tends to sharply increase (segments 17–24,
Figure 4). A moderate positive correlation between the absolute, mean TLS–dz values per
sensor pair and the matching percentage (0.48) supports this connection.

3.2. Threshold Value Filtering Effects

For a minimum evaluated mean difference of +1 cm, the detection rate rises signifi-
cantly from 54.3% to 78.8% (p = 0.005, Wilcox Test) (Figure 5a). When applying an absolute
value as a filter to consider negative and positive deviations, or setting the filter on the
US data, no further sudden increments of the rate of detection matches are observed. The
difference of setting filters on positive or absolute values on the lower resolution road
scanner data has a minor effect compared on the TLS data, and is still characterized by a
high standard deviation of values.
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As for application purposes only internal data filter are usable; a maximum detection
percentage with 62.5% can be reached by applying a 2.5 cm threshold for evaluation.

3.3. Sensor Lane Filtering Effect

As some sensor combinations are expected to show no height differences due to the
road profile expression, these combinations can be excluded before applying the system
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when the basic road geometry is known. In a single-laned, crowned road profile, these
combinations are the same height levelled sensor-pair 1 and 5 and, respectively, sensor-pair
2 and 4. The best results can thus be reached with 71.6% in combination with a 3 cm height
difference filter (Figure 6).
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When differently applied, the maximum expected height difference of a crowned road
profile is observed with the system over the highest and the lowest sensor point locations
(S1_3 and S3_5), the detection rate rises from 54.3% without filter to 72.2%, and reaches
a maximum of 91.2% with an additional 4 cm dz filter applied. For higher filter rates,
the remaining sample size (n = 35) cannot be considered as high enough to keep up the
trend. Evaluating a filter up to 4 cm, the according regression model shows a 5.2% higher
matching rate per 1 cm dz filtering (adj. R-squared = 0.97, p < 0.000).

4. Discussion

With the segment- and lane-based method applied, we presented a way to simplify
LiDAR data and make it comparable with different data sources as the road scanner
measurements. The concept of directly describing the lateral inclination thereby substitutes
the method of data comparison over quality parameters as used in further studies [21]
due to the earlier integration of false positive and false negative values considered as
incorrect interpretation.

Longitudinal geometry parameters that could override lateral geometry expressions in
the evaluation process are minimized in advance, as the road inclination in driving direction
is considered equal for all lanes. A balanced distribution of datapoints in longitudinal
direction is thereby important for a successful data preparation. With the point density of
24.4 points per square meter, upscaled from an assumed 5 cm sample-stripe that represents
the minimal detection width of the sensor, the road scanner data point density was relatively
high in comparison with airborne laser scanning (ALS) data with up to 16 points per m2 [22].
This sample drawing method could therefore also be a possible enhancement of ALS-based
evaluation concepts in steeper terrain [8].

Between the different data sources, the mean road profiles showed basic similarities
in their geometric expression, but with lower average values in z direction at the middle
sensor position of the ultrasound sensor data. As this sensor lane was partly influenced
by emerging vegetation, the relation between the ultrasound measuring principle and
the vegetation could have caused that effect. This observation is supported by the results
of earlier tests under laboratory conditions, where the detection of vegetation with the
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ultrasound sensors was also not possible [19]. This difference in the measuring principles
between ultrasound and LiDAR can lead to an advantage of this sensor selection, as the
direct road surface can potentially be separated with the ultrasound measurements.

The limited vertical resolution of the US sensors, caused by the sensor-internal distance
calculation, made the comparison of the measurement principles challenging. When a filter
from −1 to +1 cm as factory resolution of the sensor was set separately on each dataset,
only small improvements of the matching data percentage were observed. Only with the
filter set exclusively on positive height difference expressions did a significant rise of the
matching percentage appear. This can be caused by multiple influence factors, such as a
missing homogenous distribution of the sample data within the segments, in combination
with a longitudinal road inclination, a broken sensor, or a missing horizontal alignment
of the scanner bar. As no one-sided expressed road inclination was noted, and the sensor
data showed no inconsistencies, the alignment of the scanner bar seems to cause the trend
of the measured data.

To discuss a suitable application of the system with the identified measuring pecu-
liarities, the consideration of typical forest influences and deviating road construction
parameters seem necessary. As the study was conducted in open terrain, the aimed ad-
vantage of high accuracies achieved within the spatial referencing exceeded accuracies
reachable under forest canopy conditions [23]. As the lane-based information of the road
scanner is relative information dependent on the sensor spacing, this issue only affects
the allocation accuracy in driving direction, or the basic spatial join of the data with the
road assessed. Accuracy limitations are, thus, not crucial for an implementation of the
system, as segment lengths can be adjusted independently of statistical evaluation intervals.
Furthermore, to transfer the road scanner results to forest conditions, common lateral road
inclinations of forest roads must also be known, as road construction variants that can influ-
ence the earlier noted data quality are common, related to the expressed dz values observed.
Former studies mention that, in road construction, a carriageway inclination in lateral
direction should be expressed with a slope of 5–8% for crowned road surfaces [24,25]. For
the given sensor spacing, this would imply an expected dz value of 2.25 cm for neighboured
sensor pairs, or 4.5 cm when only every second sensor is considered. In the present study,
the mean dz value of the road was below 1.77 cm. The reference road that was selected
for this study can thus be rated as ambitious, regarding its overall profile characteristics
and the given measuring behaviour of the system. When applying the system in these
situations, higher detection rates related to the raw data can therefore be assumed.

As a further measure to raise data reliability, filters can alternatively be set on dz values
for specific sensor combinations to focus on the road’s maximum dz expressions. When
the road is designed as a single driving lane, and the vehicle used for the measurement
can pass the road in the middle of the crowned surface profile, the highest dz values
are given between the middle sensor and the outer sensors. Applied in this manner, the
previously mentioned skipping of one sensor lane raised the detection percentages of the
true geometry up to over 91%, and with this showed good results for application. On the
downside, geometric information in between the longer sensor distances is thereby lost,
which needs to be considered in the overall monitoring purpose.

A fundamental absence of a crowned profile, however, makes the application of the
system challenging. As the detection rates rise with dz filters used, the targeted geometry
or road damage of the observation must at least exceed the thresholds of the filters applied.
Additionally, the valuably recognized sensor-skipping approach to raise the dz value can
no longer be used, which forces the system to be used with US data filtering only.

5. Conclusions

The method of a striped and segment-based analysis for assessing different cross-
section monitoring principles was demonstrated to also be possible on a LiDAR-based
road recording concept. This method can be especially helpful for comparing measurement
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principles with one dataset missing exact horizontal spatial reference, or for overcoming
longitudinal inclination influences on existing methods.

The road scanner presented itself as diverse working system. With its characteristic to
screen vegetation on the road surface, advantages in comparison with the reference TLS
measurements occurred that need further attention. Satisfying data quality for application
was found for a geometry expression threshold of 3.5 cm. This is in accordance with
literature-based suggestions of a lateral road inclination for single laned crowned road
profiles in the existing sensor setup, which makes the system best fitted for these situations
to record a forest road carriageway geometry with high temporal resolution.
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