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Abstract: Peatland drainage based on ditch systems is a widely used forestry management practice in
the boreal and hemiboreal forests to improve tree growth. This study investigated the morphological
variation in absorptive roots (first- and second-order roots) across the distance gradient from the ditch
with four sampling plots (5, 15, 40, and 80 m) in six drained peatland forests dominated by Downy
birch and Norway spruce. The dominating tree species had a significant effect on the variation in
absorptive root morphological traits. The absorptive roots of birch were thinner with a higher specific
root area and length (SRA and SRL), higher branching intensity (BI), and lower root tissue density
(RTD) than spruce. The distance from the ditch affected the absorptive root morphological traits
(especially SRA and RTD), but this effect was not dependent on tree species and was directionally
consistent between birch and spruce. With increased distance from the ditch (from plot 5 to plot 80),
the mean SRA increased by about 10% in birch and 5% in spruce; by contrast, the mean RTD decreased
by about 10% in both tree species, indicating a potential shift in nutrient foraging. However, soil
physical and chemical properties were not dependent on the distance from the ditch. We found
a species-specific response in absorptive root morphological traits to soil properties such as peat
depth, pH, and temperature. Our results should be considered when evaluating the importance of
morphological changes in absorptive roots when trees acclimate to a changing climate.

Keywords: absorptive roots; morphological variation; drained peatland forests; distance to ditch;
Downy birch; Norway spruce

1. Introduction

Peatland drainage has been an essential component of forestry management practices
in boreal and hemiboreal zones [1,2]. In Estonia, approximately 20% of the forests grow
on peatlands, from which 14% are drained [3]. The artificial drainage in peatlands based
on ditch networks was carried out to lower the water table level and promote aeration of
the root zone [1]. Improved tree growth was observed as a result of peatland drainage in
many boreal coniferous forests [4,5]. Much research has reported the stimulating role of
distance from the ditch on tree growth; sites located near to the ditch result in a higher
tree growth [6,7]. This is due to the enhanced aeration of the substrate and more rapid
decomposition rate of organic matter, caused by lowered water table levels at distances
near ditches [6,8]. Truu et al. [9] showed that the distance from drainage ditches affected
soil microbial communities; however, such an effect was dependent on the dominant tree
species and the specific site conditions. Fine roots (diameter < 2 mm) are key peat-forming
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elements in peatland ecosystems [10] but are understudied in most trait-related research in
peatland forest ecosystems. Most of the available research is concerned with studying fine
root production, fine root growth, and phenology in forested peatlands [11,12], while very
little is known about the morphology of fine roots, especially the absorptive roots (defined
as first- and second-order roots) [13,14] of trees growing in peat soils. These studies are
also scarce in the drained peatland forests.

Absorptive roots with primary development and their ectomycorrhizal (ECM) fun-
gal associates are the most physiologically active parts of the fine root system and are
responsible for resource acquisition [15,16]. Absorptive roots with their small diameters
and short lifespan are the most responsive component of the fine root system to changes
in environmental factors [14,17]. Recent studies have shown that absorptive root mor-
phological traits can vary widely across plant species [18] and soil nutrient patches, such
as pH [19,20], carbon-to-nitrogen ratio (C/N), as well as available phosphorous (P) [21],
and water resources [22,23]. Growing evidence suggests that trees optimize their resource
uptake by modifying absorptive root morphological traits [18,24]. Several root morpho-
logical traits have been commonly used as potential indicators of the resource acquisition
efficiency of trees [25]. For example, specific root area (SRA) and specific root length
(SRL) are used to evaluate the relationship between root resource acquisition and root
construction costs [26,27]. A reduction in absorptive root diameter leads to increases in
SRA and SRL, and finally to enhanced resource uptake and intensive growth [28,29]. Root
tissue density (RTD) is associated with root lifespan and survival [28,30]. Branching in-
tensity (BI), which is also referred to as branching pattern [31], root tip frequency [18], or
specific root tip density [32], determines the plastic responses of the absorptive roots to
nutrient patches, influencing water and nutrient uptake rates and function [33]. Overall,
knowledge of the absorptive root morphological responses of trees growing at drained
histosols is insufficient. Understanding the root response characteristics of trees at drained
peatlands not only contributes to the elucidation of the resilience of different tree species,
and drained peatland forest’s functioning, but also helps in the better management of
practices in peatland forest ecosystems.

Downy birch (Betula pubescens Ehrh.) is a deciduous early-successional pioneer tree
species [34], and Norway spruce (Picea abies (L.) H.Karst.) is a late-successional conifer in
boreal forests [35]. Recently, it has been shown that forests dominated by birch and spruce
growing at initially similar drained histosols caused tree-species-specific changes in the
soil chemical properties, including pH, nitrogen content (N), and C/N ratio, and affected
the soil bacterial communities [9]. This study investigated the effect of distance from the
ditch on the morphological variation in absorptive roots at drained histosols of forests
dominated by Downy birch and Norway spruce. The relationship of the absorptive root
morphological variation in trees with forest stand and soil properties was assessed in this
study. We proposed the following hypotheses: (1) the effect of distance from the ditch on
absorptive root morphological variation is similar between birch and spruce; (2) the mean
SRA and SRL increase, while the mean RTD decreases, with distance from the ditch.

2. Materials and Methods
2.1. Characteristics of the Stands

Six drained peatland forests in the Järvselja experimental forest area in the eastern
part of Estonia were selected as study sites. Three stands dominated by Downy birch
(Betula pubescens), and three stands dominated by Norway spruce (Picea abies), were under
investigation in 2018. The abbreviations B1–B3 and S1–S3 were used for birch and spruce
stands, respectively (Table 1). In each stand, a gradient with four sampling plots at distances
of 5, 15, 40, and 80 m from the ditch was selected. In one of the spruce stands (S3), the
most distant plot from the ditch was at 40 m, and plots at 5 m and 15 m were duplicated
toward the next ditch at the same stand. A detailed description of the study sites and soil
properties (Table 1) is available in a previously published paper by our team [9]. Briefly, all
stands were classified as a drained Oxalis forest site type [36] and soils were classified as
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histosols [37]. All studied stands were drained in the 1970s using open-ditch networks [38].
At each sampling plot, the stand density (trees ha−1), stand basal area (BA, m2 ha−1), and
diameter at breast height (DBH, cm) of all trees with DBH > 5 cm were measured on a
5 × 20 m rectangular area (short side parallel to the distance gradient) (Table 2).

Soil temperature (Ts, ◦C) was measured at a 10 cm depth using a temperature logger
(Comet Systems Ltd., Rožnov pod Radhoštem, Czech Republic). Soil volumetric water
content (VWC, m3 m−3) was recorded monthly at a 5–10 cm depth by a ProCheck reader
equipped with a GS3 sensor (Decagon Devices Inc., Pullman, WA, USA) at four sam-
pling plots of all stands during April–October 2015 (Figure S1A–F). In addition, soil VWC
was measured with water content reflectometers (model CS615, Campbell Scientific Inc.,
Logan, UT, USA) collected in 1 min intervals and stored as 10 min averages on a data
logger (CR1000, Campbell Scientific Inc., Logan, UT, USA) at two sampling plots (5 and
40), of two stands (B2 and S1), in 2015 (Figure S1B,D) and 2018. In 2018, the mean annual
air temperature during April–October was 13 ◦C, and the sum of monthly precipitations
during August–October was 145 mm in Järvselja (Figure S2). To compare the precipitation
dynamics in 2015 and 2018, the sum of monthly precipitation (mm) was averaged over
ten weather stations in South Estonia (ilmateenistus.ee, accessed on 1 December 2021) for
2015 and measured at SMEAR station (smear.emu.ee, accessed on 1 December 2021) for
2018 (Figure S2). Soil physical-chemical parameters, including pHH2O, total C (TC), total N
(TN), total P (TP), dissolved organic carbon (DOC), potassium (K), sulfur (S), water-soluble
ammonium and nitrate nitrogen (NH4-N and NO3-N, respectively), and phosphate phos-
phorus (PO4-P) and calcium ion (Ca2+) concentrations, were measured with the standard
methods [39] in the lab of the Estonian Environmental Research Centre. In addition, the
concentrations of dissolved organic carbon (DOC) were measured from soil using a Vario
TOC equipped with a TNb detector (Elementar GmbH, Langensenbold, Germany). All the
chemical parameter values were presented based on dry soil.

Table 1. Geographical coordinates, and means ± standard errors of fine root biomass and soil
characteristics of the four sampling plots per stand (B1–B3, birch stands; S1–S3, spruce stands) and of
the three replicate stands per birch and spruce [9].

Replicate
Stands

Geographical
Coordinates

Fine Root
Biomass (g m−2)

Peat Depth
(cm) pH-H2O

Soil Temperature
-10 cm (◦C)

Soil Water Content
-10 cm (m3 m−3)

B1 N 58◦18′24.8
E 27◦15′23.1 222 ± 33 43 ± 2 4.38 ± 0.05 11.76 ± 0.04 0.21 ± 0.02

B2 N 58◦17′21.4
E 27◦19′3.2 206 ± 50 87 ± 1 5.68 ± 0.05 12.00 ± 0.21 0.23 ± 0.03

B3 N 58◦18′37.0
E 27◦21′11.8 251 ± 25 77 ± 3 4.85 ± 0.03 11.86 ± 0.08 0.30 ± 0.06

Means for birch 226 ± 20 69 ± 6 4.97 ± 0.16 11.87 ± 0.07 0.25 ± 0.03

S1 N 58◦18′6.3
E 27◦16′54.0 242 ± 40 49 ± 2 5.08 ± 0.13 11.68 ± 0.18 0.32 ± 0.03

S2 N 58◦17′49.3
E 27◦14′53.4 289 ± 71 36 ± 5 4.93 ± 0.30 10.76 ± 0.10 0.24 ± 0.03

S3 N 58◦15′14.5
E 27◦17′44.2 140 ± 42 65 ± 6 4.04 ± 0.05 11.23 ± 0.07 0.19 ± 0.02

Means for spruce 217 ± 33 51 ± 4 4.63 ± 0.16 11.23 ± 0.12 0.25 ± 0.02

2.2. Collection of Root Samples and Preparation

Root sampling from three birch and three spruce stands in the Järvselja forest area
were carried out in September–October 2018. We collected five root samples per sampling
plot at distances of 5, 15, 40, and 80 m from the ditch with a spade from the 20 cm deep
topsoil layers at random locations. A total of 125 root samples were collected from all
six stands, packed in plastic bags, transported to the lab, and stored at 4 ◦C until further
processing in the lab. In the lab, five to six approximately 10 cm long fine root segments

ilmateenistus.ee
smear.emu.ee
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of birch and spruce were removed from each root sample. Tree fine roots were separated
from the fine roots of understory vegetation visually according to their morphology and
color. Fine root segments of each sample were washed free of soil particles, kept with
water in plastic containers, and stored in the freezer (−18 ◦C) until further absorptive root
morphological analysis.

Table 2. Means ± standard errors of the stand characteristics of four sampling plots per stand (B1–B3,
birch stands; S1–S3, spruce stands) and of the three replicate stands per sampling plot at the distances
of 5, 15, 40, and 80 m from the ditch. BA—basal area; DBH—diameter at breast height. Small letters
show a statistically significant difference (one-way ANOVA, followed by Tukey’s HSD; p < 0.05)
of the mean stand characteristics among three birch and three spruce stands, and also among four
distances from the ditch.

Stand
Characteristics Species Replicate Stands Stand Values

(Per Stand)
Distances from
the Ditch (m)

Stand Values
(Per Sampling Plot)

Stand density
(trees ha−1)

Birch

B1 2000 ± 294 5 1400 ± 0
B2 2100 ± 268 15 1633 ± 260
B3 1325 ± 229 40 1867 ± 546

80 2333 ± 233

Spruce

S1 1075 ± 138 b 5 1200 ± 178
S2 1900 ± 183 a 15 1600 ± 289
S3 1340 ± 169 ab 40 1433 ± 376

80 1550 ± 150

BA (m2 ha−1)

Birch

B1 25 ± 4 5 24 ± 1
B2 20 ± 3 15 23 ± 5
B3 18 ± 3 40 21 ± 6

80 16 ± 1

Spruce

S1 32 ± 6 5 30 ± 7
S2 28 ± 4 15 29 ± 3
S3 22 ± 1 40 20 ± 2

80 25 ± 4

DBH (cm)

Birch

B1 15 ± 2 5 15 ± 0 a

B2 14 ± 1 15 16 ± 2 a

B3 14 ± 1 40 16 ± 1 a

80 11 ± 0 b

Spruce

S1 20 ± 1 5 19 ± 1
S2 17 ± 1 15 17 ± 2
S3 16 ± 2 40 16 ± 2

80 17 ± 0

2.3. Absorptive Root Morphology

First- and second-order roots, defined as absorptive roots [13,14], were assessed in
this study. Four random subsamples were created from fine root segments of a sample.
Absorptive roots of each subsample (about 20–40 tips) were randomly taken from fine
root segments and counted under the microscope. Subsequently, absorptive roots were
cleaned with a small soft brush to remove all soil and organic debris. The total number
of absorptive roots sampled and analyzed per stand ranged from 2026 to 2335 and from
2054 to 2546 in birch and spruce stands, respectively. Absorptive roots of each subsample
were placed in a transparent water-filled tray with minimum overlap and scanned. The
length (L, cm), surface area (SA, cm2), and volume (V, cm3) of a sample and the mean
absorptive root diameter (D, mm) were directly measured by the WinRHIZO™ Pro 2003b
image analysis system (Regent Instruments Inc., Chemin Sainte-Foy, QC, Canada). The
absorptive roots of each subsample were oven-dried at 65 ◦C for 4 h to constant weight and
weighed to 0.05 mg accuracy. All root morphological parameters were calculated on the
subsample level. The mean absorptive root length (L, mm) and dry weight (W, mg) were
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calculated by dividing the length and dry weight of the absorptive roots by the number
of absorptive roots in a subsample, respectively. Specific root area (SRA, m2 kg−1) was
calculated as the surface area divided by the dry weight of absorptive roots. Specific root
length (SRL, m g−1) was calculated as the absorptive root length divided by the dry weight
of absorptive roots. Root tissue density (RTD, kg m−3) was calculated as the dry weight
divided by the calculated volume of the absorptive roots [15]. Branching intensity was
expressed as the number of absorptive roots per unit of length (BIL, cm−1) and per unit of
dry weight (BIw, mg−1) [33,40].

2.4. Data Analyses

Statistical analyses were carried out using the STATISTICA 7.1 software (StatSoft
Inc., Tulsa, OK, USA). In all cases, a level of statistical significance of p < 0.05 was ac-
cepted. The normality of the variable distribution was verified using the Shapiro–Wilk
and Kolmogorov–Smirnov tests. A one-way analysis of variance (ANOVA), followed by
Tukey’s HSD, was performed to test the differences of absorptive root morphological traits,
stand and soil characteristics between sampling plots, replicate stands, and tree species. The
multiple stepwise regression analysis was applied to determine which soil and root-related
properties significantly influenced absorptive root morphology in birch and spruce. For
this aim, three groups of soil factors were examined: (1) soil temperature, soil water content,
peat depth, and soil pHH2O; (2) soil chemical factors (C/N ratio, DOC, N, K, P, Ca, and S);
and (3) tree-related factors (FRB, FRB per stand BA (kg m−2), fine root turnover (yr−1), and
ratio of tree/understory root biomass). A linear regression analysis was further used to
determine the relationship between absorptive root morphological traits and the significant
factors of the stand and soil characteristics within birch and spruce. A correlation matrix
(Pearson’s r; p < 0.05) was constructed to observe the correlations between the stand and
soil characteristics, as well as between absorptive root morphological traits and stand and
soil properties. A type III general linear model (GLM) was used to assess the impacts of the
forest stand and distance from the ditch (m) on absorptive root morphological traits in birch
and spruce. Redundancy analysis (RDA) (CANOCO program; ter Braak and Smilauer,
2002) was used to describe the relationships between absorptive root morphological traits,
tree species, forest stands, sampling plots, stands, and soil characteristics.

3. Results
3.1. Stand and Soil Characteristics

The average stand density and BA were similar between birch and spruce stands
(Table 2). The mean DBH was significantly smaller in birch than spruce stands (p < 0.01,
Table 2). The seasonal variation in mean soil VWC was comparable between birch and
spruce stands (Figure S3A,B). Among the spruce stands, the stand density in S2 was
significantly higher than that in S1 (p < 0.01, Table 2), while the stand density in S3 was
similar to those in S1 and S2 (Table 2).

Among the studied sampling plots, the mean DBH in birch stands at plot 80 was
significantly lower than those in the rest of the sampling plots (p < 0.05, Table 2). Spruce
fine root biomass per stand basal area (FRB/BA) tended to be lower in plots close to the
ditch and increased significantly between plot 15 and plot 40 (49 ± 5 and 119 ± 8 kg m−2,
respectively, p < 0.05, Figure 1B). FRB in spruce was positively related to BA (r = 0.60;
p < 0.05, Figure S4). Soil VWC was similar along with distances from the ditch in all
stands in 2015 (Figure S1A–F). The exception was S1, where the mean soil VWC was
significantly lower at plot 40 than plot 5 (p < 0.001, Figure S1D). However, in B2, the mean
soil VWC was significantly greater at plot 40 than plot 5 measured in 2018 (0.41 ± 0.09
and 0.19 ± 0.04 m3 m−3, respectively, p < 0.05). The seasonal variation in mean soil VWC
in the studied stands in 2015 and 2018 was similar, especially during September–October
(Figure S2). There was no significant relationship between the precipitation and soil VWC
in 2015 and 2018 (Figure S2). The mean soil temperature was also similar between sampling
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plots of the stands during April–October 2018, ranging from 8.9 ± 2.0 to 16.6 ± 1.8 ◦C
between S1 at plot 5 and B2 at plot 5, respectively.
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Figure 1. Means of the fine root biomass per stand basal area (FRB/BA, kg m−2) with the standard
error bars of three replicate stands per sampling plot at the distances of 5, 15, 40, and 80 m from
the ditch in Downy birch (A) and Norway spruce (B). Small letters indicate a statistically significant
difference (one-way ANOVA, followed by Tukey’s HSD; p < 0.05) of the mean spruce FRB/BA
between four sampling plots.

3.2. Variation in Absorptive Root Morphology across Tree Species and Distance from the Ditch

Absorptive root morphology was significantly different between birch and spruce (Table 3).
The absorptive roots of birch tended to be thinner (0.227± 0.002 vs. 0.274± 0.003 mm), shorter
(1.14 ± 0.05 vs. 1.84 ± 0.02 mm), and have a lower RTD (258 ± 5 vs. 293 ± 6 kg m−3) than
spruce. The mean absorptive root W was 2.6 times lower in birch than spruce (Table 3). The
mean absorptive root SRA and SRL were higher for birch than spruce (Tables 3 and S1).
Similarly, BIL and BIw were higher in birch than spruce (Tables 3 and S1).

Along the distance gradient from the ditch, the mean SRA increased significantly
toward plot 80 in birch and spruce (Table 3). The mean SRL of birch increased significantly
from plot 15 to 80, while the mean SRL of spruce was higher at plot 15 than 5 (Table 3).
The mean RTD decreased significantly with distance from the ditch (from plot 5 to plot 80)
in birch and spruce stands (from 262 ± 11 to 242 ± 10 kg m−3 and from 295 ± 6 to
276 ± 1 kg m−3, respectively, Table 3). The mean absorptive root D of birch was similar
between four sampling plots, while it varied between plot 15 and plot 80 in spruce stands
(Table 3). A significant decrease in the mean L and W of the absorptive root of birch was
found from plot 15 to plot 40. The mean absorptive root L of spruce was comparable
between four sampling plots, while the mean W varied significantly between plot 5 and
plot 15 (Table 3).
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Table 3. Means ± standard errors of absorptive root morphological traits of the three replicate stands
per sampling plot at the distances of 5, 15, 40, and 80 m from the ditch and of the four sampling plots
per birch and spruce. D—diameter (mm), L—length (mm), W—dry weight (mg), BIL—branching
intensity per length (cm−1), BIw—branching intensity per mass (mg−1), SRA—specific root area
(m2 kg−1), SRL—specific root length (m g−1), and RTD—root tissue density (kg m−3). Small letters
indicate a statistically significant difference (one-way ANOVA, followed by Tukey’s HSD; p < 0.05)
of the mean absorptive root morphological traits between four sampling plots within birch and
spruce. Capital letters denote a statistically significant difference (one-way ANOVA, followed by
Tukey’s HSD; p < 0.05) of the mean absorptive root morphological traits of four sampling plots
between birch and spruce.

Distances from the Ditch (m)

Root Traits Stands 5 15 40 80 Means of Four
Sampling Plots

D (mm) Birch 0.227 ± 0.013 0.231 ± 0.012 0.221 ± 0.003 0.229 ± 0.011 0.227 ± 0.002 B

Spruce 0.278 ± 0.007 ab 0.265 ± 0.004 c 0.272 ± 0.005 abc 0.281 ± 0.009 ab 0.274 ± 0.003 A

L (mm) Birch 1.12 ± 0.14 abc 1.27 ± 0.09 a 1.01 ± 0.19 c 1.16 ± 0.13 abc 1.14 ± 0.05 B

Spruce 1.90 ± 0.06 1.82 ± 0.07 1.86 ± 0.07 1.78 ± 0.02 1.84 ± 0.02 A

W (mg) Birch 0.0124 ± 0.0035 abc 0.0141 ± 0.0026 a 0.0105 ± 0.0025 c 0.0123 ± 0.0027 abc 0.0124 ± 0.0007 B

Spruce 0.0339 ± 0.0021 a 0.0301 ± 0.0012 c 0.0324 ± 0.0020 abc 0.0305 ± 0.0016 abc 0.0317 ± 0.0009 A

BIL (cm−1)
Birch 9.58 ± 1.10 bc 8.45 ± 0.67 bc 11.26 ± 1.90 a 9.40 ± 1.15 bc 9.67 ± 0.58 A

Spruce 5.44 ± 0.12 5.60 ± 0.23 5.53 ± 0.23 5.73 ± 0.03 5.58 ± 0.06 B

BIw (mg−1) Birch 99.0 ± 22.9 abc 82.2 ± 15.4 c 121.4 ± 24.6 ab 106.3 ± 26.8 ab 102.2 ± 8.1 A

Spruce 31.1 ± 1.6 c 34.3 ± 1.4 a 32.5 ± 2.3 abc 34.6 ± 1.6 abc 33.1 ± 0.8 B

SRA (m2 kg−1) Birch 69 ± 6 abc 68 ± 4 c 71 ± 4 abc 75 ± 6 a 71 ± 2 A

Spruce 50 ± 1 bc 51 ± 1 abc 50 ± 1 bc 53 ± 2 a 51 ± 1 B

SRL (m g−1) Birch 100 ± 14 abc 95 ± 11 c 105 ± 4 abc 108 ± 14 a 103 ± 3 A

Spruce 57 ± 2 c 62 ± 1 a 59 ± 2 abc 60 ± 3 abc 59 ± 1 B

RTD (kg m−3) Birch 262 ± 11 ab 262 ± 4 ab 264 ± 17 ab 242 ± 10 c 258 ± 5 B

Spruce 295 ± 6 ab 300 ± 7 ab 300 ± 4 ab 276 ± 1 c 293 ± 6 A

3.3. Relationships between Absorptive Root Morphology and the Characteristics of Soil and Stands

Multiple stepwise regression analysis revealed that the mean RTD had a significant
negative relationship with peat depth among birch stands; the mean RTD was higher at
the stand with a thinner peat layer (Figure 2A). In spruce, the mean absorptive root D
had a positive relationship with soil pH, while RTD was negatively related to soil pH
(Figure 2B,C). The mean absorptive root D also showed a positive relationship with FRB
(R2 = 0.43, p < 0.05), while RTD was negatively related to FRB (R2 = 0.38, p < 0.05). Among
the studied soil chemical factors, RTD in spruce was related to soil C/N, P, and Ca (R2 = 0.89,
p < 0.05). The mean absorptive root BIw in spruce showed a significant relationship with
soil temperature, with fewer branched absorptive roots toward warmer soils (Figure 2D).

According to Pearson’s correlation analyses, the peat depth in birch stands had a
positive correlation with soil pH (r = 0.87; p < 0.001) and Ca concentration (r = 0.87;
p < 0.001) (Table S2). Soil pH in spruce stands was negatively correlated with peat depth
(r = −0.70; p < 0.01) and C/N ratio (r = −0.077; p < 0.01), while it was positively correlated
with soil Ca concentration (r = 0.69; p < 0.01) (Table S2).

The general linear model (GLM) showed that forest stands had a significant effect on
the variation in absorptive root morphological traits such as L, BIL, and RTD only in birch.
Distance from the ditch also influenced the mean RTD in birch (Table S3).
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Figure 2. Relationships between absorptive root morphological traits of studied stands in birch
(A) and all sampling plots (5, 15, 40, and 80) in spruce with the soil characteristics (B–D). The soil
temperature was measured from a depth of 10 cm.

Based on RDA forward selection analysis, a total of 65.4% of the variation in absorptive
root morphological traits was explained by tree species, B1 and S2 stands, sampling plots lo-
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cated 15 m and 80 m from the ditch, and stand density, BA, FRB, soil N and P concentration,
and soil water content (p < 0.05, Figure 3A). The first axis described 63.2% of the root trait
variation, which was strongly related to the variations in BIw, SRA, W, and L of absorptive
roots depending on the tree species (Figure 3A). RTD was weakly related to the second
axis of the biplot that explained only about 1.5% of the root trait variation and indicated a
lower value of RTD toward a 80 m distance from the ditch (Figure 3A). However, when
analyzed separately by species, the BIw and root tip mass were most strongly related to
the first axis and explained significantly by soil C/N ratio and Ca concentration in birch
(Figure 3B) and soil temperature in spruce (Figure 3C). A significant relationship between
turnover rates and absorptive root diameter was depicted in both tree species; thicker roots
revealed higher turnover rates (Figure 3B,C).
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Figure 3. The ordination biplot based on redundancy analysis (RDA, manual forward selection)
of absorptive root morphological traits, including D—diameter (mm), L—length (mm), W—dry
weight (mg), BIL—branching intensity per length (cm−1), BIw—branching intensity per mass (mg−1),
SRA—specific root area (m2 kg−1), SRL—specific root length (m g−1), and RTD—root tissue den-
sity (kg m−3) (black arrows) for both studied tree species, Downy birch and Norway spruce (A),
and separately for birch (B) and spruce (C). In all figures, absorptive root morphological traits were
shown in relation to the tree species (blue triangles), forest stands (purple triangles), sampling plots
(green triangles), and studied stand and soil characteristics (red arrows). The relative eigenvalues of
axis 1 and axis 2 were 63.2% and 1.5%, respectively, and in total, the model described 65.4% of the
variation in absorptive root traits (Figure 3A, p < 0.05).

4. Discussion
4.1. Absorptive Root Morphological Variation in the Tree Species at Drained Peat Soils

Absorptive roots exhibit several morphological traits that determine the plant’s re-
source uptake strategies and mediate plant feedback to ecosystem functioning [17,24].
However, the morphology of absorptive roots of different tree species in hemiboreal peat-
land forests with organic soils has been poorly characterized.

We observed that the considerable variation in the absorptive root morphological
traits is linked to the different tree species (i.e., deciduous vs. coniferous). The absorptive
roots of birch were thinner and had a lower RTD; thus, their SRA and SRL were 1.4 and
1.7 times higher than those of spruce, respectively. Our results observed from the drained
peat soils are congruent with an earlier study performed at the alkaline soils, which showed
that the absorptive root SRA and SRL of deciduous trees (black alder and silver birch)
were 1.5–2.5 times higher than those of conifer (Scots pine) tree species [18]. Species with
contrasting root morphology may exhibit different nutrient foraging strategies [41,42].
Compared to the deciduous trees, evergreen conifers typically exhibit thicker roots and
lower SRL for soil resource acquisition [43]. Root branching intensity per length and mass
unit was also influenced by tree species identity, being 2 and 3 times higher in birch than
spruce, respectively, aligning with previous studies [33,40].
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However, the mean SRA and SRL of birch at drained peat soils were lower than the
same values of deciduous trees at alkaline soils, while the mean SRA and SRL of spruce were
of the same order of magnitude as those reported for conifer at the alkaline soils [18]. The
mean root BIL of birch and spruce at drained peat soils was identical to those reported for
deciduous broadleaved (5.4–9.6 cm−1) but higher compared to coniferous species (3.3 cm−1)
under mesic mesotrophic site conditions, respectively [33]. Differences in species identity
and studied soil type can also account for the conflicting results mentioned above.

4.2. Absorptive Root Morphological Variation along with the Distance from the Ditch

Even though the morphology of the absorptive roots varied substantially among tree
species, the response patterns of some root traits, such as SRA and RTD, to distance gradient
from the ditch were directionally consistent for tree species. This is in agreement with our
first hypothesis, suggesting that the effect of distance from the ditch on morphological
variations of absorptive roots is similar between birch and spruce. The mean SRL also
varied with distance gradient from the ditch, but it was only evident in birch. Similar
to our result, Werger et al. [44] showed that the effect of wind intensity on the fine root
morphological traits, such as SRA, SRL, and RTD, was uniform in all grassland species.
However, our results contradict previously reported species-specific root morphological
responses to adverse soil conditions [23,45].

Absorptive roots are functionally important for the acquisition of soil resources and
are highly plastic to changes in soil properties [46]. In line with our second hypothesis,
we found that the mean SRA increased while RTD decreased with distance from the ditch.
This finding highlights the morphological adjustment of absorptive roots to the local soil
properties at different distances from the ditch and possibly a shift in nutrient foraging.
However, in our study, the soil physical and chemical properties were not dependent on
the distance from the ditch. This result is in contradiction with previous studies that found
that at spatially higher distances from the ditch, soil properties are becoming poor [6,8].
For instance, the aeration of the substrate, decomposition of organic matter, and nutrient
availability reduced, which were attributed to the higher water table level at sites located
far away from the ditch [6]. In the present study, we observed a statistically similar soil
water content along with distances from the ditch, but water content tended to be higher
toward plots far away from the ditch, ranging from 0.22 m3 m−3 at plot 5 to 0.27 m3 m−3

at plot 80 in the studied stands. On the other hand, many studies reported that the soil
microclimate and hydrology of peat soils can be noticeably influenced by other factors than
ditch distance, for example, topography, vegetation characteristics, tree stands, climatic
conditions, as well as peat and subsoil hydraulic properties [47–49]. It will therefore be
important to explore those effects to better determine soil moisture at peatland forests.

An increase in SRA and a decrease in RTD toward higher distances from the ditch
observed in this study can support the more efficient acquisition of soil resources. Indeed,
strategies that increase the absorptive surface area per unit mass are thought to be more
effective at increasing the potential of a root system to uptake resources [28]. Moreover, we
found that at drained spruce peatland forests, FRB per stand BA tended to be lower at sites
close to the ditch, and this could probably reflect more advanced root foraging near the
ditch than farther distances, as fewer roots in the belowground supported the same basal
area unit in the aboveground at sites close to the ditch.

The soil microbial communities are essential drivers in the mineralization of organic
matter and mediate soil nutrient cycling [50]. Previous studies showed shifts in the soil
bacterial and fungal communities with distance gradient from the ditch [9,51]. For example,
Qiu et al. [52] revealed that fungal diversity was higher at a plot 5 m from the ditch
related to the well-drained soil condition and the improvements in nutrient availability
compared to the plot at a 75 m distance with poor drainage condition. Therefore, changes
in fungal community structures in peat soil might serve as a sensitive indicator for changes
in soil properties. Given also the complementarity between absorptive roots and associated
mycorrhizal fungi in nutrient foraging, further investigation should pay attention to both
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root and root-associated-fungi traits to better identify tree growth responses and peatland
forest functioning.

4.3. Absorptive Root Morphological Variation with the Stand and Soil Properties

Here, the absorptive root morphology was substantially influenced by the soil physical
and chemical properties, including peat depth, pH, and temperature. However, all of these
soil factors were similar along with distances from the ditch. The two examined tree species
growing at similar drained histosols showed different responses in their absorptive root
morphological traits to the local soil properties. Correspondingly, several studies revealed
that the response of the absorptive root morphological traits to the soil conditions varies
across plant species [18,23]. Similarly, we found that absorptive root morphology varied
between stands of the same forest type, but such variations differed between birch and
spruce. For example, forest stands affected the variations in absorptive root morphological
traits such as L, BIL, and RTD only in birch. The mean RTD in the three birch stands was
negatively related to the peat depth, which varied from 43 to 57 cm between B1 and B2,
respectively. Among all studied spruce stands, soil pH was the main soil factor affecting
absorptive root morphological variation. Mean absorptive root D was lowest, while RTD
was highest in the most acidic spruce forest soils (pH = 3.8–4.0). Similar to our findings, the
significant negative relationships between RTD and soil pH were shown previously [53,54].
In addition, in this study, soil pH was negatively correlated with peat depth in spruce
stands. This suggests that at more acidic soils with thicker peat depths, the decomposition
rate and available nutrients were probably lower. Therefore, producing thinner roots
with low RTD at acidic soils in spruce stands could support the more resource acquisition
strategy. Doi et al. [20] also showed the production of thinner second-order roots at more
acidic soils, attributed to the higher nutrient absorption efficiency.

Soil temperature ranged from 10.6 to 12.1 ◦C at spruce forests. Root branching intensity
(per mass unit) exhibited a high sensitivity following the soil temperature range at drained
peat soils of spruce stands. Decreased soil temperature significantly increased the root
branching intensity of spruce, consistent with previous research in spruce stands [55].
In a recent analysis of root traits, Liese et al. [33] showed that the root BI is a key trait
determining the root plastic responses to a changing environment. Low soil temperature
influenced nutrient availability by low mineralization rates [56]. The high branching
intensity of the absorptive roots at the less warm soils was probably due to the rapid and
extensive proliferation into peat soils to enhance resource uptake.

5. Conclusions

Here, we detected tendencies in absorptive root morphological traits, such as SRA,
SRL, BI, and RTD, in both examined tree species, Downy birch and Norway spruce, along
with distance gradient from the ditch. Irrespective of tree species, SRA increased while RTD
decreased toward higher distances from the ditch, indicating an acclimation in absorptive
roots of trees to soil differences along with distances from the ditch. However, in this study,
we could not show the variability in soil properties caused by distance from the ditch.
There may exist other factors that influenced the soil local hydrology and microclimate
rather than ditch distance, and these should be taken into consideration by future studies
in drained peatland forests. We also pointed out the influence of soil physical and chemical
factors, such as peat depth, pH, and temperature, on the species-specific responses of
absorptive root morphology in birch and spruce growing at similar drained histosols.

Nevertheless, we showed that evaluating absorptive root morphology alone is not
a good indicator for describing changes in root foraging along with distances from the
ditch. These absorptive root morphological traits should be further used in much wider
analyses, such as root nutrient uptake capacity and with the associated ECM fungal com-
munities, to better predict patterns in the root acclimation of trees and forest functioning at
drained stands.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13010112/s1, Figure S1A–F: Soil volumetric water content (VWC,
m3 m−3) measured with a ProCheck reader equipped with a GS3 sensor (Decagon Devices Inc.) at
sampling plots of 5, 15, 40, and 80 (m) distances from the ditch of replicate stands for birch (B1–B3)
and spruce (S1–S3) and with reflectometers (model CS615, Campbell Scientific Inc., Logan, UT, USA)
at sampling plots 5 and 40, of replicate stands B2 and S1, during April–October 2015, Figure S2:
The sum of monthly precipitation (mm) for 2015 and 2018 and the means ± standard errors of the
soil VWC from CR1000 logger data of plots 5 and 40, and replicate stands B2 and S1, from April
to October 2015 and 2018, Figure S3A,B: The means of soil VWC for birch and spruce at sampling
plots (5, 15, 40, and 80) averaged over relevant replicate stands during April–October 2015, Figure S4:
Relationship between fine root biomass and stand basal area in all sampling plots in Norway spruce,
Table S1: The means ± standard errors of absorptive root morphological traits of sampling plots (5,
15, 40, and 80) in replicate stands for birch (B1–B3) and spruce (S1–S3), and of all sampling plots per
birch and spruce replicate stand studied in 2018, Table S2: Pearson’s correlation analyses between
soil parameters of the forest stands for birch and spruce, Table S3: The effects of forest stands and
distance from the ditch (m) on absorptive root morphological traits in birch and spruce perfomed by
general linear model (GLM).
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