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Abstract: Context and Background. Active fires have the potential to provide early estimates of fire
perimeters, but there is a lack of information about the best active fire aggregation distances and
how they can vary between fuel types, particularly in large areas of study under diverse climatic
conditions. Objectives. The current study aimed at analyzing the effect of aggregation distances for
mapping fire perimeters from active fires for contrasting fuel types and regions in Mexico. Materials
and Methods. Detections of MODIS and VIIRS active fires from the period 2012–2018 were used
to obtain perimeters of aggregated active fires (AGAF) at four aggregation distances (750, 1000,
1125, and 1500 m). AGAF perimeters were compared against MODIS MCD64A1 burned area for a
total of 24 fuel types and regions covering all the forest area of Mexico. Results/findings. Optimum
aggregation distances varied between fuel types and regions, with the longest aggregation distances
observed for the most arid regions and fuel types dominated by shrubs and grasslands. Lowest
aggregation distances were obtained in the regions and fuel types with the densest forest canopy
and more humid climate. Purpose/Novelty. To our best knowledge, this study is the first to analyze
the effect of fuel type on the optimum aggregation distance for mapping fire perimeters directly
from aggregated active fires. The methodology presented here can be used operationally in Mexico
and elsewhere, by accounting for fuel-specific aggregation distances, for improving rapid estimates
of fire perimeters. These early fire perimeters could be potentially available in near-real time (at
every satellite pass with a 12 h latency) in operational fire monitoring GIS systems to support rapid
assessment of fire progression and fire suppression planning.

Keywords: burned area; forest fuels; MODIS; VIIRS; hotspots; fire monitoring

1. Introduction

An accurate monitoring of burned area dynamics is key to support fire prevention,
fire suppression, and post-fire environmental impact evaluation, including carbon cycle
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dynamics and emissions quantification [1–3]. Nevertheless, large uncertainties still exist
in burned area quantification [4–6], limiting our ability to timely inform fire management
decision-making.

Current products of global burned area, based on reflectance changes, are generally
available monthly [7], while active fire detections, based on thermal anomalies, are available
at least daily [8,9]. Furthermore, some studies have noted a better capacity of active fires
to detect the presence of fires of smaller size compared to equivalent-resolution burned
area products [3,10,11]. As a consequence, some studies, mainly at coarse scales of analysis,
have aimed at relating gridded counts of active fires with burned area to improve global
estimates of total burned area [8,10,11]. Such studies have mostly aimed at characterizing
global trends of burned area and fire emissions [3,12] as opposed to an individual fire
perimeter delineation at finer spatial scales.

In contrast to these approaches attempting to empirically relate the number of active
fires to burned area at global to regional scales [13–15], other studies have aimed to map
individual fire perimeters directly from the aggregated active fire data, using techniques
such as point buffering [16,17] or convex hull algorithms [18,19]. In addition, some studies
have utilized several spatial interpolation methods to map daily fire progression from
active fires [20–22]. Most of those previous analyses of aggregated active fire (AGAF)
perimeters have focused on the reconstruction of specific fire perimeters, mainly at a local
scale of analysis (e.g., [18,22]), and have generally covered a limited temporal domain
(e.g., [16,17]). There is, nevertheless, a need for evaluating AGAF over long periods of
study and large areas, both for prediction of individual fire and total burned area. This
appears to be necessary in order to test their large-scale potential for early rapid mapping
of fire perimeters [19,23].

Furthermore, most of the previous literature on fire perimeter delineation from active
fires has utilized mainly coarser resolution sensors, generally with 1 km resolution, such as
MODIS (e.g., [16,18,20,21]). In contrast, the use of the VIIRS active fire product, with an
improved spatial resolution (375 m) and higher capacity for small fire detection, still remains
less-explored in the literature for direct mapping of fire perimeters [17]. In particular, the
optimum parametrization for fire perimeter aggregation is still an area of ongoing research
both for MODIS and VIIRS active fires [19,22].

An important aspect to consider is the quantification of the potential influence of
fuel types and their associated climatic ecoregions in estimating the aggregation distance
of active fires. Although this question has been suggested in previous studies based on
gridded counts of active fires at a coarse scale [8,10,24], it does not yet seem to have been
addressed by using the AGAF technique applied to individual fire perimeters. In fact, to
our knowledge, we are not aware of any previous studies evaluating the role of fuel types
on the performance of active fire clusters in predicting burned area, both at the level of
individual fires and total monthly burned area, using AGAF techniques.

The goal of the current study was to analyze the influence of variations in the best
aggregation distance for predicting burned area from the aggregation of MODIS and
VIIRS active fires, for the main fuel types and ecoregions in Mexico, from 2012 to 2018.
Aggregated active fire perimeters at distances of 750, 1000, 1125, and 1500 m were compared
against the reference MCD64A1 burned area product [7]. The comparison was performed
for individual fire perimeters and also for the total sum of burned area, for every fuel
type and region in the study period. The study builds upon the previous analysis of
Briones-Herrera et al. [23], which tested the potential of aggregated active fires for mapping
monthly burned area at a national level in Mexico, utilizing a single aggregation distance.
However, that study did not analyze potential variations between fuel types or ecoregions.
This analysis could enhance our knowledge of the effects of fuel types on active fire
aggregation distances, potentially improving early fire progression monitoring from active
fires aggregation. To our best knowledge, there is no previous study attempting to analyze
the effect of potential variations of the optimum aggregation distance of active fires on the
prediction of burned area between different fuel types and biogeographical regions.
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2. Materials and Methods
2.1. Study Area, Fuels and Regions Data

The area of study was the forest vegetation of the whole country of Mexico, excluding
agricultural lands, water bodies, and human settlements, based on the latest land-use map
(INEGI, 2014) [25] (Figure 1). Mexico is located in the northern hemisphere of the continent
of America, it ranges between 32◦43′06”–14◦32′26” N latitude and 86◦42′36”–118◦27′24” W
longitude. Within the area of study, a total of six regions were defined (Figure 1), following
the regionalization of Briones-Herrera et al. [26], updated to the most recent land-use
map [25]. The regions analyzed were based on the North American level 3 ecoregions
map (EPA, https://www.epa.gov/eco-research/ecoregions-north-america, accessed on
28 December 2021), also considering the spatial and temporal patterns of fire occurrence
observed in previous studies [27–29].
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Figure 1. Map of fuelbed types and regions of study, where C: central; NC: north central; NBJ: North
Baja California; NE: northeast; NW: northwest; S: south region. OFOR: oak forests; PFOR: pine forests;
TFOR: tropical forests; CHAP: chaparral forests; WETLAND: wetlands; DSHRUB: desert shrubland
forest; SAFOR: semiarid forests; NGRASS: natural grasslands. Human settlements are shown in
black, water bodies in blue, and agriculture in green, based on the Land-Use Map Series VI (INEGI,
2014) [25].

The analyzed regions (Figure 1) show contrasting climatic, human, and topographic
characteristics, as summarized in Table 1. The highest mean precipitation occurs in the
central and south (C and S) regions, while northern regions receive less precipitation
(Table 1). C and S regions also concentrate a higher density of human population and of
agriculture–forest interface (Table 1 and Figure 1). The vegetation of these two regions is

https://www.epa.gov/eco-research/ecoregions-north-america
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dominated by temperate to tropical (C) and tropical forests (S), respectively, while shrubby
and herbaceous arid to semiarid fuels are more abundant in northern regions, mainly in
the drier NC and NBJ regions (Figure 1). Mean elevation ranges from 333.5 to 1640.8 m and
average slope ranges from 2.4 to 7.5 % (Table 1).

Table 1. Description of the regions of study.

NBJ NW NC NE C S

PD 31.0 10.0 25.0 30.0 159.0 49.0
(+/−68) (+/−40) (+/−76) (+/−87) (+/−441) (+/−74)

AGD 0.5 2.6 0.4 10.3 13.8 24.4
(+/−0.8) (+/−3.2) (+/−1) (+/−6.7) (+/−12.0) (+/−16.2)

PREC 280.1 732.4 371.4 570.2 978.7 1556.6

(+/−125.4) (+/−231) (+/−104.4) (+/−
268.2) (+/−321.2) (+/−442.1)

ELEV 627.2 1640.8 1422.8 986.8 1411.4 333.5

(+/−389.4) (+/−716.1) (+/−581) (+/−
594.2) (+/−785.29) (+/−520.9)

Slope 4.55 7.5 2.4 5.7 6.9 2.9
(+/−4.3) (+/−6.6) (+/−3) (+/− 6.1) (+/−6.0) (+/−3.9)

Values shown are average values; standard deviations are shown in brackets, PD: population density (res-
idents/100 km2); AGD: agricultural interface density (km/100 km2); PREC: precipitation; ELEV: elevation;
NBJ: North Baja California; NW: northwest; NC: north central; NE: northeast; C: central; S: south region.

Fuel types analyzed were based on the fuelbed map from Jardel-Peláez et al. [30]
and on the latest land-use map (INEGI, 2014) [25] (Figure 1). Tropical forests include both
seasonally dry and wet forests [30], the latter with scarcity of large fire observations. A
total of 24 fuel and region types were considered for analysis, as shown in Figure 1.

2.2. Burned Area and Active Fires Data

The period analyzed comprised January 2012 to June 2018. Every month in the
study period was utilized in the analysis. Collection C6 MODIS burned area (MCD64A1)
products, with a pixel size of 500 m [7], were obtained from the FTP server of the University
of Maryland. Active fire data from the Moderate Resolution Imaging Radiometer Spectrum
(MODIS, C6) [9], and from the Visible Infrared Imaging Radiometer Suite (VIIRS, V1,
375 m) [31] were obtained from the Fire Information for Resource Management System
(FIRMS, https://firms.modaps.eosdis.nasa.gov/download/create.php, accessed on 28
December 2021).

2.3. Predicting Perimeter from Aggregation of Active Fires by Fuel and Region

For the delineation of the active fire perimeters, a convex hull algorithm [23] was
applied to monthly MODIS and VIIRS active fires, utilizing the “aggregate points” tool
in ArcGIS (ESRI; 2011, Redlands, CA, USA) [32]. Monthly active fire perimeters were
calculated at four analyzed aggregation distances of 750, 1000, 1125, and 1500 m. Following
Briones-Herrera et al. [23], tested aggregation distances were based on the spatial resolution
of the VIIRS and MODIS (375 and 1000 m, respectively) active fires. Monthly burned area
for individual fire perimeters were obtained from monthly MCD64A1 data utilizing the
“dissolve” and “aggregate polygon” tools in ArcGIS (ESRI; 2011, Redlands, CA, USA) [32].

AGAF perimeters and burned area MCD64A1 perimeters were combined with the
fuel type and region map (Figure 1) and the corresponding area was calculated for every
AGAF and burned area perimeter within each fuel and region. Spatially and temporally
coinciding MCD64A1 burned area perimeters were compared with the corresponding
AGAF perimeters in the same location, fuel type, and region, utilizing the “spatial join” tool
in ArcGIS (ESRI; 2011, Redlands, CA, USA) [32] for every monthly dataset. If several AGAF
perimeters fell within a MCD64A1 burned area perimeter by fuel type and ecoregion, their
area was summed for analysis utilizing the burned area perimeter identifier in the combined
dataset. Conversely, if several MCD64A1 burned area perimeters were associated spatially

https://firms.modaps.eosdis.nasa.gov/download/create.php
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and temporally with a single AGAF perimeter by fuel type and region, their area was also
summed for analysis, in order to avoid comparison of small burned area patches related to
a larger event, that lay within the specified distance of analysis, against a corresponding
AGAF perimeter.

For each fuel type and region, we used linear regression to compare monthly MCD64A1
burned area with the aggregated active fires perimeter at the four aggregation distances
tested, utilizing Equation (1):

BA = a ∗ x (1)

where
BA: MODIS C6 burned area (MCD64A1) (ha) by fuel type and region.
a: model coefficient.
x: aggregated perimeter of active fires (ha) by fuel type and region, respectively.
The models were analyzed at two levels for each fuel type and region:

(1) Individual fire perimeter area.
(2) Total monthly sum of burned area.

The best-performing models for predicting individual fire area for each fuel type and
region were selected for evaluation at the total monthly sum level. Candidate equations
were adjusted utilizing the “lm” package in R (R Core Team, 2017 Vienna, Austria) [33].
Model goodness-of-fit was evaluated by the coefficient of determination (R2), the root mean
square error (RMSE), and the model bias [34], for every fuel and region dataset evaluated,
at the two levels of analysis (individual fire and total monthly of burned area).

The dataset analyzed included a total of 5731 individual monthly fire perimeters. The
analysis of the monthly sum of burned area considered a total of 79 monthly observations
for every one of the 24 fuel types and regions analyzed.

3. Results
3.1. Best Fit Equations Relating Individual Fire Perimeter and Total Monthly Burned Area from
Aggregated Active Fires by Fuel Type and Region

The largest average individual burned area sizes were observed for chaparral and
semiarid forest of the NW region, with an average burned area of 1878 (+/−3098) and
1628 (+/−3056) ha, respectively. Lowest individual burned area values were observed for
all tropical forests, with individual average fire sizes below 600 ha. Largest total monthly
sum of burned area, of >400,000 ha, was observed for pine and oak forests of the C and
NW regions, semiarid forests of the NW, and tropical forests of the C region, and lowest
monthly burned area sums (<20,000 ha) were observed for fuel types in the more desertic
NC and NBJ regions.

Best-performing active fire aggregation distances (750, 1000, 1125, 1500 m) varied
between the different types of fuel and regions analyzed (Table 2). We also show the slope
estimate and confidence interval of the parameters of each model (Equation (1)) and the
values of the goodness-of-fit statistics for each fuel type and region (Table 2).

Table 2. Coefficients and goodness-of-fit statistics of the best models when comparing burned area
with aggregated fire perimeters produced with active fire data for each fuel and region.

Individual Fire Total Monthly Sum of Burned Area
Fuel_region Agg. Dist. a R2 RMSE bias a R2 RMSE bias

CHAP 1500 1.23
(±0.03) 0.94 749 −72 1.14

(±0.03) 0.96 971 −53

DSHRUB_NC 1500 0.95
(±0.04) 0.69 362 139 0.79

(±0.03) 0.89 550 207
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Table 2. Cont.

Individual Fire Total Monthly Sum of Burned Area
Fuel_region Agg. Dist. a R2 RMSE bias a R2 RMSE bias

DSHRUB_NBJ 1500 2.04
(±0.18) 0.70 828 −73 1.67

(±0.17) 0.61 969 −59

NGRASS_C 1500 1.28
(±0.03) 0.76 382 30 0.74

(±0.02) 0.91 1867 850

NGRASS_NC 1500 1.52
(±0.12) 0.77 331 13 1.40

(±0.06) 0.95 234 27

NGRASS_NBJ 1500 1.08
(±0.16) 0.38 447 189 1.14

(±0.14) 0.50 470 58

NGRASS_NW 1500 1.12
(±0.09) 0.43 1781 −79 0.71

(±0.08) 0.57 4552 1165

OFOR_C 1125 0.81
(±0.02) 0.55 689 186 0.57

(±0.02) 0.90 10,196 3377

OFOR_NE 1125 1.13
(±0.06) 0.92 304 67 1.11

(±0.06) 0.94 442 −11

OFOR_NW 1125 0.91
(±0.02) 0.78 517 83 0.75

(±0.02) 0.98 3460 222

OFOR_S 1500 1.17
(±0.08) 0.75 368 78 0.86

(±0.03) 0.96 344 −22

PFOR_C 750 0.92
(±0.03) 0.46 619 238 0.72

(±0.03) 0.92 4602 1230

PFOR_NBJ 1500 0.89
(±0.08) 0.67 233 −4 0.70

(±0.07) 0.63 283 45

PFOR_NE 1000 1.07
(±0.10) 0.57 287 107 0.82

(±0.07) 0.79 337 123

PFOR_NW 1125 0.85
(±0.02) 0.65 678 84 0.59

(±0.04) 0.81 10,108 1528

SAFOR_C 1500 0.46
(±0.03) 0.69 729 340 0.45

(±0.03) 0.85 2260 843

SAFOR_NC 1500 0.96
(±0.07) 0.78 352 80 0.89

(±0.05) 0.90 358 140

SAFOR_NW 1500 0.89
(±0.02) 0.88 1076 69 0.72

(±0.03) 0.90 6952 354

TFOR_C 1000 1.10
(±0.03) 0.29 502 208 0.98

(±0.02) 0.95 3431 1215

TFOR_NBJ 1000 1.00
(±0.07) 0.91 156 47 0.78

(±0.08) 0.73 205 26

TFOR_NE 1500 0.96
(±0.06) 0.74 290 114 0.96

(±0.02) 0.98 285 49

TFOR_NW 1500 0.75
(±0.04) 0.47 293 74 0.54

(±0.03) 0.89 890 201

TFOR_S 1000 0.97
(±0.03) 0.46 463 201 0.82

(±0.05) 0.85 5333 639

WET_S 1500 1.30
(±0.04) 0.67 788 142 1.07

(±0.06) 0.84 3953 399

Fuel_region: fuel type and region (Figure 1); C: central; NC: north central; NBJ: North Baja California;
NE: northeast; NW: northwest; S: south region. OFOR: oak forests; PFOR: pine forests; TFOR: tropical forests;
CHAP: chaparral forests; WETLAND: wetlands; DSHRUB: desert shrubland forest; SAFOR: semiarid forests;
NGRASS: natural grasslands; Agg.Dist.: best fit aggregation distance (meters); a: coefficient of Equation (1) to
predict MODIS burned area from aggregated active fires by fuel type and region (the standard coefficient error is
shown in parentheses); R2: coefficient of determination; RMSE: root mean square error (ha); bias: model bias (ha).

Burned area in fuel types dominated by fine fuels with low packing ratio, such as
chaparral, desert shrubland, natural grasslands, and semiarid forests, had the best fit with
the 1500 m aggregation distance (Table 2). Oak forests burned area had the best fit with
1125 m for C, NE, and NW regions, and 1500 m for the S region. Best fits for pine forests
ranged from 1125 m for NW region to 1000 m for the NE and 750 m for the C region. For
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tropical forests, C, S, and NBJ regions had the best fit with a 1000 m aggregation distance,
while regions of NW and NE had a best fit at 1500 m (Table 2).

For the individual fire perimeter level, the R2 was >0.7 for 11 fuelbeds and >0.5 for 18
of the 24 fuelbeds analyzed. Tropical forests of regions NW, S, and C had some of the lowest
goodness-of-fits, with R2 in the range 0.5–0.3 (Table 2). For the total sum of monthly burned
area, 11 of the analyzed fuelbeds showed a R2 > 0.9, and 19 of the 24 fuelbeds showed a
R2 > 0.7. The fuelbeds with the lowest R2, in the range 0.6–0.5, for the total sum of monthly
burned area were natural grasslands of NW and NBJ regions (Table 2). Examples of plots
of aggregated active fire perimeters, against MODIS MCD64A1 burned area, for individual
fire and total monthly sum of burned area, are shown in Figure 2.
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Figure 2. Predicted burned area from aggregated active fires (AGAF) against MODIS C6 MCD64A1
burned area (BA) for oak forests of the NW region (a,c) and semiarid forests of the NW region (b,d),
at individual fire perimeter level (a,b) and total monthly sum of burned area level (c,d). OFOR: oak
forests; SAFOR: semiarid forests (Figure 1); NW: northwest; Agg. Dist: aggregation distance; PRED
AGAF: predicted burned area (using Equation (1)) from aggregated MODIS and VIIRS active fires
at the specified aggregation distance; BA: MODIS C6 MCD64A1 burned area. The dotted black line
shows the 1:1 line and the solid gray line shows the observed and predicted regression line. Point
density values showing the number of observations by square plot division (in grey) are represented
in a blue gradient.
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3.2. Spatial Distribution of the Best Aggregation Distances to Map Fire Perimeters from Active
Fires by Fuel Type and Region

The spatial distribution of the best fit aggregation distances by fuel type and region
is mapped in Figure 3. In general, drier areas with higher presence of finer and less-
compacted fuels (chaparral, desert shrubland, natural grasslands, semiarid forests) showed
the highest aggregation distances of 1500 m. Intermediate aggregation distances of 1125 m
were observed for temperate forests (pine and oak forests in NW and NE, shown in dark
green). The lowest aggregation distances of 750 and 1000 m appear to be mainly in areas
dominated by tropical forest, or in temperate forests in the C and S regions, which receive
higher precipitation (Table 1). The location of selected individual perimeter examples for
local detail windows (Figure 4) are shown as red rectangles in Figure 3.
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Figure 4. Examples of selected fire perimeters from April 2017 and May 2018 mapped using aggre-
gated MODIS and VIIRS active fire data and MCD64A1 burned area, for tropical forest of the C
region (a,b), oak forest of NW region (c,d), semiarid forest of the NW region (e,f), and grasslands
of the NC region (g,h) at aggregation distances of 750 m (a,c), 1000 m (b), 1125 m (d,e), and 1500 m
(f,h). MCD64A1 burned areas are represented in black, aggregated MODIS and VIIRS active fire
perimeters are represented in red. Active fire detections are represented in bright blue. Background
colors represent fuel types (Figure 1). Water bodies are shown in navy blue and agriculture in green,
based on the most recent land-use map (INEGI, 2014) [25].
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3.3. Examples of Aggregated Active Fire Perimeters with Varying Fuel-Specific Aggregation
Distances against MODIS Burned Area

Selected examples comparing aggregated active fire perimeters with MODIS MCD64A1
burned area for various fuel types and regions with varying aggregation distances are
shown in Figure 4. Background colors in Figure 4 represent fuel type. For the examples
shown in tropical (Figure 4a,b) and temperate forests (Figure 4c,d), good agreements with
MODIS burned area can be observed at 1000 (Figure 4b) and 1125 m (Figure 4d), respec-
tively. In contrast, for the examples of the more arid fuel types semiarid forest (Figure 4e,f)
and natural grassland (Figure 4g,h), burned area underestimation is observed at 1125 m
(Figure 4e,g), while a better agreement with the burned area perimeter is observed at 1500 m
(Figure 4f,h).

4. Discussion

The results from the current study revealed a clear variation of the active fire aggre-
gation distances between regions. Such variations were documented with finer scales of
analysis than previous studies that found regional variations in the relationships between
active fire counts and burned area at coarser scales [10,11,13]. While our findings support
these previous observations, the approach utilized (individual perimeter aggregation in-
stead of gridded active fire counts), the temporal and spatial scale of analysis, and the
spatial resolution of the satellites utilized here, differed from those previous studies. For
example, the global scale analyses of Giglio et al. [8,10] and Randerson et al. [11] devel-
oped differentiated models to relate number of active fires to total sum of burned area
for 14 continental regions at gridded scales of 0.25–0.5◦. While this approach is valuable
for developing global scale estimates of burned area and emissions [3,12], national level
analyses can benefit from finer regionalization and spatial resolutions.

In our study, at a national scale, the analysis of active fire aggregation between regions
suggests a climatic effect in fire spread potential between ecoregions (Figure 3). For example,
the lowest active fire aggregation distances (750–1000 m) were more prevalent in areas with
higher precipitation, such as temperate and tropical forests of the central and southern
regions. This might be related to the known more-pronounced effect of moisture and fuel
limitations on fire spread in these ecosystems [23,28]. In contrast, the highest aggregation
distances (1500 m) were found in more arid ecosystems, such as the NC, dominated by
lower tree canopies and larger shrubs and grass covers [30]. Intermediate aggregation
distances (1000–1125 m) were observed for the temperate forests on the NW and NE regions.
Interestingly, for some vegetation types, such as pine forests, lower aggregation distances
were observed for the more humid NE region (1000 m), compared to relatively higher
values (1125 m) observed for the pine forests of the NW region, which is characterized
by higher fuel dryness conditions [28,29]. These results seem to support the potential
of active fires to characterize differences in fire spread between regions [13]. Our study
did not aim at the characterization of daily fire rate of spread [20–22] but focused on
analyzing the fuel- and region-specific average aggregation distance to reproduce monthly
perimeters. Nevertheless, as this average distance is also influenced by the distance
between consecutive detections of active fires between satellite passes every 12 h, this
parameter might be reflecting average variations in the potential of average fire spread
between regions of different climatic and fuel conditions. Other weather and fuel-related
fire behavior variables, such as variations in the duration of the smoldering phase of fuel
combustion, mainly driven by duff load, bulk density, and moisture [35,36], might also be
influencing the detected variations in active fire aggregation distances between fuels.

In addition to climate and fuels, other factors might also be affecting the observed
variation in fire spread potential between regions. For example, the lower aggregation
distances found in the C and S regions might be related to limitations in fuel continuity
resulting from the high prevalence of agricultural interface and human population den-
sity [37]. This contrasts with higher aggregation distances observed in the northern regions
that is potentially related to less human infrastructure and higher fuel connectivity [26,37].
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Future studies in further characterizing fire regimes from satellite data might focus on
analyzing the role of human variables [38–41], possibly including a formal evaluation of
the role of fuel connectivity in fire spread and size [42,43].

A strong effect of fuel type was observed in our study, thereby corroborating that fuel
availability influenced previously reported differences in the relationships between active
fire counts and burned area, which had been observed at coarser scale, gridded counts,
and levels of analysis [8,10,24]. Nevertheless, the approach used in such studies did not
aim at determining aggregation distances to map individual fire perimeters, but to obtain
regional estimates of total burned area, which were improved when considering regional
and fuel-specific variations in the ratio of burned area to number of active fires.

For all of the regions analyzed, vegetation characterized by a higher fine fuel avail-
ability and lower bulk density, such as chaparral, desert shrubland, natural grassland, and
semiarid forests, consistently showed the highest active fire aggregation distances, very
possibly caused by the well-documented effect of those fine fuels on increasing rate of fire
spread, compared to a lower rate of spread in forests with a more dense tree cover [44–46].
To our best knowledge, this is the first study to quantify such variations in the aggre-
gation distance of MODIS and VIIRS perimeters, suggesting potential of accounting for
a fuel-specific parametrization for improving individual fire perimeter mapping with
AGAF techniques.

The results obtained can be useful to improve early operational estimates of fire
perimeters from active fires. In particular, these initial results suggest that utilizing fuel-
and region-specific active fire aggregation distances can help to better characterize fire
perimeters, instead of considering constant values irrespective of fuel types and climatic
regions, as currently used by the fire monitoring systems of Mexico [47,48] or elsewhere
(e.g., [49]). The methodology to determine fuel- and region-specific aggregation distances
presented here could be replicated in any other area of study, based on near-real-time
available active fire data, combined with available maps of types of vegetation (e.g., [50,51])
or fuel types (e.g., [52]).

In the case of Mexico, these results can be implemented to improve the current ag-
gregated active fire perimeters, which are available online at the national fire danger
forecast system SPPIF (http://forestales.ujed.mx/incendios2/, accessed on 28 December
2021) [47,48]. The aggregated fire perimeters are published in SPPIF in near-real time at
every satellite pass, a few minutes after the reception of MODIS and VIIRS active fire data
by the antenna of CONABIO [53]. These perimeters are being used operationally every
day by forest fire management agencies such as CONAFOR (National Forest Commission)
to support fire progression monitoring and to guide operational fire management [54]. In
particular, they are used to orient fire suppression decision-making such as defining the
number, type, and location of fire suppression resources between states and even within
individual fire events [47,48,54]. Such rapid active fire perimeters are currently being calcu-
lated at a single aggregation distance of 1125 m, based on the previous analysis at a national
scale without considering fuel types or regions by Briones-Herrera et al. [23]. Based on
the results from the current study, while this distance can be useful for characterizing fire
perimeters in temperate to tropical fuels and regions, some underestimation could occur,
compared to a better performance of the distance of 1500 m, for fires occurring in shrub and
grass fuels, particularly in the more arid northern regions. Conversely, using the 1500 m
distance in regions with high density of human populations and agricultural interface, such
as C and S, could lead to the creation of artifacts by merging several adjacent burns in such
areas where ignition density is higher [37], as illustrated by the examples at 1500 m shown
in the previous study of Briones-Herrera et al. [23] (Figures 4 and 6 of the mentioned study).

AGAF perimeters can represent an improvement of the temporal availability (12 h
intervals) compared to global burned area products [7] of 500 m, currently available at
monthly intervals. In addition, AGAF perimeters can benefit from the capacity of thermal
anomalies to better detect relatively smaller fires [10,11,23]. Nevertheless, a regression
against medium resolution (10–30 m) perimeters for the smallest burns, characterized by

http://forestales.ujed.mx/incendios2/
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1 or 2 active fire detections, which do not result in an interpolated coarse-scale perimeter
utilizing aggregation algorithms [23], might be required for a detailed evaluation of the
contribution of smallest burns in total burned area [5]. Such very small burns are out of
the scope of this coarse-scale early mapping technology, which can be later complemented
with medium-scale imagery once it is available.

In this regard, ongoing research for calibrating Sentinel images (resolution = 10 and
20 m) to map fire perimeters and severity over a variety of fuel types and regions in Mex-
ico [55] will likely allow comparisons of the procedure described in this paper to finer
resolution perimeters. Furthermore, as suggested by Artés et al. [19] and Briones-Herrera
et al. [23], early active fire perimeters, potentially obtained in near-real time, can serve to
locate areas where higher spatial resolution imagery, of lower temporal resolution (5 days
at least), can be downloaded once available. This can possibly be combined with semiau-
tomated codes in platforms such as Google Earth Engine [56–59]. Such semiautomated
codes can be initialized with the interpolated active fire perimeters [23], in order to support
finer-scale fire perimeter and severity mapping [60–64]. Moreover, cross-country evalua-
tions, potentially including data from countries where large datasets of medium resolution
and even high spatial resolution thermal infrared aerial imagery are already available
(e.g., [22,56,57,65]), could help to better refine the technique of active fire perimeter delin-
eation. Such analysis would further contribute to a better understanding of the role of
human, climatic, and fuel variables in fire spread potential.

In this sense, future studies could further analyze other drivers of fire spread beyond
fuel type and ecoregions, including specific fuel characteristics such as tree height, canopy
cover, or crown base height, potentially aided with LIDAR technologies (e.g., [66–68]). This
could improve our landscape-scale knowledge of fire spread potential as affected by fuel
characteristics, potentially enhancing fuel mapping initiatives (e.g., [69]) and fire behavior
prediction efforts (e.g., [70,71]).

5. Conclusions

This study revealed the potential of accounting for the role of fuel type for defining
the best aggregation distances when delineating large fire perimeters from aggregated
active fires detected from moderate-resolution remote sensing. The highest active fire
aggregation distances were observed in fuel types dominated by shrubs or grasslands, such
as chaparral, desert shrubland, or semiarid forests. In contrast, the lowest distances were
found for denser canopy temperate and tropical forests where fire spread is expected to be
limited by a lower fine fuel availability and fuel moisture. Our results, developed at a finer
spatial scale than previous coarse-scale studies with gridded active fire counts, support the
observed general trend of increasing area burned per active fire with increasing presence
of fine, dry, and loose fuel. In addition to fuel types, the distance of aggregation varied
between regions of contrasting climatic and human presence conditions. In contrast to
those previous coarse-scale gridded analyses, our approach quantified the relationship
between burned area and active fire detections at a relatively finer spatial scale and did
so by using point aggregation techniques at an individual fire perimeter and total sum of
burned area levels over a relatively large temporal domain.

The analysis presented here could be replicated for any other region to derive fuel-
and region-specific near-real time estimates of fire extent based on active fires and available
vegetation or fuel-type maps and could improve the current decision-making in several
processes of fire management. Future studies might also analyze further variability in active
fire aggregation distances by additionally considering variations of fuel characteristics such
as tree cover (e.g., [72]), tree height (e.g., [66]), or crown base height [67] within fuel types.
Furthermore, the effects of seasonal or daily weather variations (e.g., [13,73,74]), including
effects of wind on fire rate of spread (e.g., [75]), might be considered in future analysis of
active fire aggregation at finer time scales. This could help to refine both fuel mapping and
fire spread predictions based on remote sensing information [69–71].
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