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Article
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Abstract: Oak forests are facing multiple threats due to global change, with the introduction and
expansion of invasive pathogens as one of the most detrimental. Here, we evaluated the use of
soil biological fertiliser Biohumin® to improve the response of Quercus ilex L. to the soil-borne
pathogen Phytophthora cinnamomi Rands by using one-year-old seedlings fertilised at 0, 12.5, and
25% concentrations of Biohumin® (v/v). Our hypothesis was that plant vigour and response to the
pathogen would improve with Biohumin®. The effects of soil infestation and fertilisation were tested
by assessing plant survival, growth, and physiology. The soil infested with P. cinnamomi negatively
affected all the studied traits. We observed that a moderate concentration of Biohumin® (12.5%)
increased plant survival. However, a high concentration (25%) reduced the survival compared with
the control, probably as a result of the stress caused by both biotic (infection) and abiotic (soil toxicity)
factors. Biohumin® at the highest concentration reduced the plant height-to-stem diameter ratio
(H/D) and negatively affected plant biomass and physiological activity. Combined biofertilisation
and infection induced synergistic negative effects in the leaf water potential compared with infection
and fertilisation applied alone. A higher concentration of Biohumin® may favour pathogens more
than plants. Further studies should explore the causes of the negative effect of the high concentration
of Biohumin® observed here and evaluate if lower concentrations may benefit plant survival and
physiology against soil pathogens.

Keywords: anthropogenic disturbances; mineral nutrition; ecological restoration; Mediterranean
forests; plant pathogens; plant physiology

1. Introduction

The increase in anthropogenic disturbances during the last century has generated new
sources of stress in plants [1]. For instance, water deficit and temperature increase associated
with human-induced climate change [2,3] have favoured the arrival and spread of emerging
diseases and pests and have originated some abiotic–biotic interactions with synergistic
negative effects on plants [4,5]. During the seedling stage, plants are highly vulnerable to
abiotic and biotic stress, which limits seedling establishment and the probability to reach
the subsequent life stages [6–8]. Consequently, in the short term, seedling recruitment
might be highly compromised by diseases [9–11]. This situation calls for applied research
to find solutions that reduce plant stress and recruitment failure.

The Mediterranean oak-dominated systems are facing unprecedented levels of biotic
and abiotic stresses, such as drought, soil-borne pathogens, and insect outbreaks [12–14].
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Phytophthora diseases are currently a major threat to many oak forests and are becoming
an important threat to tree conservation [15–17]. The impact of Phytophthora species is
enhanced by some factors such as habitat loss, drought, mismanagement, and extreme cli-
mate events [13,18–20]. In particular, the soil-borne root oomycete Phytophthora cinnamomi
Rands is one of the most harmful and widespread pathogens worldwide [21–23]. Holm
oak (Quercus ilex L.), cork oak (Q. suber L.), and chestnut (Castanea spp.) are particularly
susceptible to P. cinnamomi in their seedling stage [24], with Q. ilex being the most suscep-
tible oak species to P. cinnamomi. The root rot caused by P. cinnamomi is exacerbated by
the high frequency and intensity of droughts and high temperatures in the Mediterranean
area [25,26]. Waterlogging in combination with subsequent water deprivation is the worst
scenario for Q. ilex if soils are infested with P. cinnamomi [26]. A higher frequency of extreme
rain events that saturate the soil might be particularly beneficial for P. cinnamomi, potentially
boosting its soil density beyond any possible defence response of the susceptible hosts [27].
However, an average drier climate might imply suboptimal conditions for P. cinnamomi
infections, allowing for a slower advance of the disease in invaded areas [27]. There are no
accurate data on the incidence or extent of holm oak decline in Spain, although, in 2010,
official sources estimated the holm oak loss at ca. 8000 ha per year [28].

Soil chemical properties influence plant susceptibility to Phytophthora spp. infection [29,30],
and the use of fertilisers has been proposed to enhance plant performance against pathogens [31].
Several studies have compared the benefits of organic vs. inorganic fertilisers on plant physiol-
ogy and growth against Phytophthora species [32]. However, studies have mostly focused on
crops [31,33], and less attention has been paid to species from natural ecosystems and foundation
tree species such as oaks (Quercus spp.). In general, soil N fertilisation increases the photosyn-
thetic machinery and plant vigour, which might have a positive effect on plant resistance to
diseases, either by decreasing the infection by pathogens or by increasing plant tolerance and
recovery potential after infection [34]. Previous research has explored the possibility of elevating
the calcium content in soil to suppress the chlamydospore viability of pathogenic oomycetes [35].
The use of biological liquid substrates containing organic N, organic P, S, Ca, Mg, and trace
elements (Fe, Mn, B, Zn) successfully reduced oak defoliation in the adult tree layer of a mixed
oak forest stand [36]. In contrast, disease tolerance could be negatively affected if fertilisers
induce a reduction in root-to-shoot ratio, which exacerbates the soil water uptake restrictions
caused by root rot [37]. To reduce the impact of Phytophthora species in oak, it is important to
search for solutions based on soil organic and/or inorganic fertilisers.

In this study, we aimed to assess the effect of the soil biological fertiliser Biohumin®

(BIOHUMIN Deutschland GmbH, Berlin, Germany) on the vulnerability of holm oak
seedlings to P. cinnamomi. This fertiliser was selected because (i) it contains fluvic humic
acids and other trace elements that would improve soil water retention and cationic ex-
change, and (ii) its solid structure facilitates its application in the field. Specifically, we
aimed to (i) elucidate how plant physiology and growth benefit from the application of the
biological fertiliser and (ii) compare the impact of P. cinnamomi on fertilised and no-fertilised
plants. Our hypotheses were that (i) plant vigour would increase after using Biohumin®,
and (ii) fertilised individuals would be less susceptible to P. cinnamomi infection in terms of
survival, water uptake, and plant vigour, in comparison to unfertilised plants.

2. Materials and Methods
2.1. Description of the Product

The product Biohumin® is an organic soil fertiliser that contains 0.5% organic N, 0.3%
P, 0.5% S, 1% Ca, 0.2% Mg, 0.3% trace elements (Fe, Mn, B, Zn), 55% organic substance,
20% humic fulvic acids, and water (Biohumin® Deutschland GmbH, Berlin, Germany).
Biohumin® improves the availability of trace elements in the soil (Fe, Mn, B, Zn). Biohumin®

has been included in the FIBL (Research Institute of Organic Agriculture, Switzerland) list
of biofertilisers as a product suited to soil biological structuring. This product was used as
a model of solid mix (organic and inorganic) fertiliser during the experiment.
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2.2. Seedling Origin and Cultivation

Seedlings from five adult holm oak trees from a forest infested by P. cinnamomi were
used [38]. The forest is a 515 ha woodland dehesa located 445 m.a.s.l. in the Province
of Huelva, SW Spain (37◦52′ N, 6◦14′ W), managed for swine production. Its climate is
Mediterranean pluviseasonal oceanic, characterised by hot and long dry summers, from
May to October, and strong interannual (452–894 mm/year) and intra-annual rainfall
variability (5–128 mm/month). The selected mother trees had similar age, size, ecological
conditions, and no external crown damage.

In November 2019, 100 sound acorns of similar size (ca. 8–10 g) were collected from
each of the five selected holm oak trees. Acorns had no signs of insect damage (i.e., no
oviposition perforations or larvae exit holes) and successfully passed a viability test using
a flotation method [39]. The acorns were germinated inside a plastic bag for 60 days at 5 ◦C
in the Faculty of Forestry (Universidad Politécnica de Madrid, Madrid, Spain). When the
radicle emerged, at the end of January, we selected 360 acorns for plantation in 3 dm3 pots
filled with a sterilised substrate of the same weight (1.6 kg).

We prepared three substrates (n = 360 seedlings; 120 for each soil treatment): (1) 25% sil-
ica sand, 75% peat NOVARBO C1LE 70/30D, NPK 12-14-24, Novarbo®, and 0% Biohumin®

(hereafter BIO 0% (v/v) plants); (2) 25% sand, 50% peat, and 25% Biohumin® (BIO 25%
(v/v) plants); and (3) 25% sand, 62.5% peat, and 12.5% Biohumin® (BIO 12.5% (v/v) plants).
Percentages refer to the volumes used for each compound of the substrate and were chosen
to compare our results with those reported in the previous literature that used a concen-
tration of 18% [40]. For each soil treatment (n = 120 seedlings), half of the plants were
assigned to the P. cinnamomi infection treatment group and the other half to a control group
(Figure 1). On each pot, we introduced two 0.06 dm3 cylindrical tubes to inoculate the
plant with P. cinnamomi without damaging the root system [41]. Five months after seedling
emergence, inoculation with P. cinnamomi was performed (see below).
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2.3. Phytophthora cinnamomi Cultivation and Inoculation

The P. cinnamomi A2 strain used in the experiment (code UEx1) was isolated from the
rhizosphere of an infected Q. ilex tree located in Valverde de Mérida (Badajoz, Spain) [9].
The identity of the pathogen was checked by comparing its morphological features with
those typical for P. cinnamomi. The inoculum was prepared following the methodology of
Jung, Blaschke, and Neumann (1996), with some modifications [42]. We mixed 440 cm3 of
fine vermiculite, 35 cm3 of whole oat grains, and 310 mL of multivitamin (V8) juice broth
(containing 200 mL L−1 of V8 juice and 800 mL L−1 of demineralised water amended with
3 g L−1 CaCO3) in 1-l Erlenmeyer flasks that were autoclaved twice. Four 5 mm × 5 mm
plugs from the border of a P. cinnamomi colony growing in Petri dishes with potato, dextrose,
and agar were added to the flasks containing the medium and kept in the dark at 20 ◦C for
five weeks. Additional flasks containing the same medium but without P. cinnamomi plugs
were incubated as controls for application to BIO 0% plants.

Soil infestation was conducted on 24 June 2019. The inoculum was rinsed with
demineralised water to remove excess nutrients. Then, the two cylinders per pot were
removed to deliver the inoculum in the empty volume. Each plant received 120 mL of
inoculum, while the control plants received the same quantity of culture medium without
P. cinnamomi. To stimulate P. cinnamomi sporulation and zoospore release, the infested and
control pots were waterlogged for 2 days by using two different pools (3300 dm3). All the
plants were under the same environmental conditions, in a greenhouse with automatic
irrigation and cooling.

At the end of the experiment, P. cinnamomi was reisolated from the root samples
collected from the artificially infested soil. Rootlets from six randomly chosen plants
from each treatment were cut into 1 cm segments, surface-sterilised (1 min in 1% sodium
hypochlorite), rinsed with sterile water, dried in a laminar flood chamber, and finally plated
onto NARPH agar selective medium. The colonies of P. cinnamomi were identified under a
microscope through their distinctive morphological structures such as clustered hyphal
swellings, chlamydospores, and sporangia.

2.4. Response Variables

Oak survival was recorded every 10 days from 24 June to 3 September. The mor-
phological and physiological parameters were assessed in September, at the end of the
experiment, by using a subsample of 36 plants for biomass (6 plants × 3 soil treatments
(ST) × 2 Phytophthora infection treatments (PI)) and 60 plants for size and physiology
(10 plants × 3 soil treatments × 2 Phytophthora infection treatments (PI)).

As morphological variables, we measured the plant height (H), the basal diameter
(D), and the H/D ratio. Thereafter, we harvested the plants and separated the organs for
oven-drying (3–4 days at 72 ◦C). The dry biomass of fine roots (i.e., roots < 2 mm diameter),
coarse roots, stems, and leaves were weighed to calculate the leaf mass fraction (LMF, g
leaves g−1 plant), the stem mass fraction (SMF, g stems g−1 plant), the root mass fraction
(RMF, g roots g−1 plant), the fine-root mass fraction (FRMF, g fine roots g−1 plant), the
fine-root-to-leaf biomass fraction (FR/LB, g fine root g−1 leaves), and the root-to-shoot
ratio (R/S ratio, g roots g−1 stems plus leaves).

As physiological variables, we measured the leaf water potential (Ψ), the leaf gas
exchange, and chlorophyll a fluorescence. The water potential of one leaf per plant was
measured at midday with a pressure chamber (PMS Instrument Company, Albany, OR,
USA). The leaf gas exchange and chlorophyll a fluorescence were measured with a Li-6400
portable photosynthesis system (Li-Cor Inc., NE, USA). We used a 6400-40 leaf chamber
fluorometer, which includes a 2 cm2 leaf chamber equipped with low emission diodes
providing both actinic and far-red light. The measurements were made in two days, ap-
proximately from 11:00 h to 14:00 h, in the leaves already acclimated to full sunlight in
the greenhouse. We set the airflow at 300 µmol s−1, the temperature at 25 ◦C, the light
at 1200 µmol m−2 s−1, and the air CO2 concentration at 400 ppm. The air’s relative hu-
midity ranged between 45% and 65% across the measurements. Under these conditions,
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we measured net CO2 assimilation (Pn), stomatal conductance to water vapor (gs), tran-
spiration I, and intercellular CO2 concentration (Ci). The Pn/gs ratio was used as a proxy
of the instantaneous water use efficiency. After recording the gas exchange variables,
fluorescence was measured under “steady-state” light conditions (1200 µmol m−2 s−1;
Fs) and after a saturating light pulse (>7000 µmol m−2 s−1; Fm’) to calculate the effective
quantum yield of photosystem II (ΦPSII: F–’ − Fs)/Fm’) and the electron transport rate
(ETR: ΦPSII × 0.84 × 0.5 × 1200 µmol m−2 s−1 [43].

2.5. Data Analysis

The maximal models (containing all the predictors) used for analyses are summarised
in Table 1. For oak seedling survival, we used Kaplan–Meier non-parametric models
(Table 1). In the maximal model, we clustered all the oak seedlings that originated from
the same mother tree to indicate the correlated groups of observations within the survival
analysis (Table 1).

Table 1. Summary of maximal models performed for data analysis in this study.

Model Type Model Response Variable (Group) 1 Fixed Effect 2 Random Effect Sample Size (n)

Kaplan–Meier I Oak survival ST × PI 1|Mother Tree 360
GLMMs II Morphology (biomass) ST × PI 1|Mother Tree 36
GLMMs III Morphology (size) ST × PI 1|Mother Tree 60
GLMMs IV Physiology ST × PI 1|Mother Tree 60

1 Morphology and physiology includes several response variables. 2 Fixed factors = ST: Biohumin® soil treatment
(0% vs. 12.5% vs. 25% Biohumin® fraction); PI: Phytophthora soil infestation treatment.

For oak morphological and physiological variables, we developed generalised linear
mixed models (GLMMs) [44]. Box–Cox transformations [45] were applied when needed to
calculate the transformation lambda that maximises the likelihood function. Thus, some of
the response variables were fitted to a gamma error distribution with their corresponding
power lambda link function (Table S1). When monotonic transformations were not neces-
sary, the response variables were fitted to a Gaussian error distribution with the identity
function. For all the models, the analyses included the mother tree to account for the
random effect structure (Table 1).

We used the model averaging approach to select the final models [46]. We first fitted
the maximal model containing all the predictors. Then, we ranked all the possible models
derived from the maximal model by their AIC weights using the “dredge” function within
the “MuMIn” package of R and selected those with the best AIC weight (hereafter top
models), i.e., which had ∆AIC < 2 (Table S2) [46]. Finally, we obtained the model-averaged
coefficients of the top models as well as the relative importance of each predictor (from 0 to
1) by using the “model.avg” function of “MuMIn” (Table S3) [46].

Data processing and statistics were performed using R 3.6.0 [47] with the modules
“lme4” [48], “car” [49], and “MuMIn” [50].

3. Results
3.1. Survival of Oak Seedlings

The infection of plants with P. cinnamomi affected seedling survival (
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2 = 19.500, p = 0.002),
because seedling survival was similar in the control and infected plants using the 25%
BIO treatment but different in 0 and 12.5% BIO treatments, with the control plants always
surviving more than the infected ones.
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3.2. Effects on Plant Growth

Treatments with 12.5% BIO and 25% BIO showed lower values of LMF (≈0.84-fold
difference) than 0% BIO (Table 2, Figure 3). In addition, the plants infected with P. cinnamomi
had higher LMF than the controls when using 12.5% BIO and 25% BIO soil treatments
(1.26- and 1.14-fold difference, respectively), while the opposite was observed in 0% BIO
(Figure 3).
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Table 2. Summary of the top linear mixed models (∆AIC < 2) fitted to analyse main and interaction
effects of factors soil treatment (ST) and P. cinnamomi infection (PI) on morphological variables (II and
III models in Table 1). Asterisks indicate statistical significance (p < 0.05 *, p < 0.01 **, p < 0.001 ***).

Response Variable Fixed Effects Importance 2 Levels Coeff. SE z-Value p

Root biomass 1 Intercept 0.576 0.050 11.440 0.001 ***

LMF

Intercept 26.743 2.056 12.633 <0.001 ***
Soil Treatment 0.85 Bio 12.5% −7.089 3.235 2.142 0.032 *

Bio 25% −4.570 2.942 1.511 0.031 *
PI Infection 0.60 P. cinnamomi −2.277 3.421 0.651 0.515

ST × PI 0.39 B 12.5% × PI 8.600 3.945 2.092 0.036 *
B 25% × PI 6.700 3.945 1.630 0.003 **

FRMF
Intercept 9.496 0.862 10.674 <0.001 ***

PI Infection 0.40 P. cinnamomi −1.351 1.337 0.974 0.330

R/S ratio

Intercept 1.148 0.035 31.339 <0.001 ***
Soil Treatment 0.72 Bio 12.5% 0.060 0.029 1.969 0.050

Bio 25% 0.031 0.036 0.833 0.405
PI Infection 0.94 P. cinnamomi −0.049 0.028 1.717 0.086

ST × PI 0.23 B 12.5% × PI −0.011 0.051 0.211 0.833
B 25% × PI −0.079 0.051 1.473 0.141

FR/LB Intercept 9.229 0.669 13.800 <0.001 ***

Height (H)

Intercept 20.209 1.196 16.539 <0.001 ***
Soil Treatment 0.84 Bio 12.5% −2.205 1.595 1.353 0.176

Bio 25% −4.229 1.577 2.625 0.009 **
PI Infection 0.33 P. cinnamomi −0.026 1.295 0.020 0.984

Basal diameter (D) Intercept 4.510 0.161 27.413 <0.001 ***
PI Infection 0.29 P. cinnamomi 0.251 0.265 0.926 0.354

H/D ratio

Intercept 4.907 0.404 11.947 <0.001 ***
Soil Treatment 0.88 Bio 12.5% −0.817 0.454 1.762 0.078

Bio 25% −1.340 0.569 2.325 0.020 *
PI Infection 0.52 P. cinnamomi −1.077 0.497 2.116 0.034 *

ST × PI 0.36 B 12.5% × PI 0.738 0.693 1.039 0.059
B 25% × PI 1.524 0.685 2.170 0.160

1 Biomass of roots less than 2 mm in diameter. LMF: leaf mass fraction; FRMF: fine-root mass fraction; R/S ratio:
root-to-shoot ratio; FR/LB: fine-root-to-leaf biomass fraction.. Results for soil treatment refer to Biohumin® 12.5%
and 25% against control plants (i.e., Biohumin® 0% is included in intercept), and results for biotic stress refer to
P. cinnamomi-infected plants against control plants (i.e., uninfected plants are included in intercept). 2 Importance:
Importance of predictor variable in the model averaging approach.
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Figure 3. Boxplot of predicted values of leaf mass fraction (leaf dry mass/total plant dry mass;
LMF) separated by soil treatments (x-axis) and P. cinnamomi infection (control plants shown in green
colour; infected plants in grey). Lowercase letters indicate differences between P. cinnamomi infection
treatments, and capital letters indicate differences among soil treatments.
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No differences were observed between soil treatments and P. cinnamomi treatments
for RMF or R/S. However, the plants treated with 25% BIO had lower heights and H/D
ratios than those treated with 0% BIO (0.79- and 0.80-fold difference, respectively; Table 2).
There were no significant differences in the height (Z = 1.273, p = 0.203) and the H/D ratio
(Z = 1.091, p = 0.275) between the 12.5% BIO- and 25% BIO-treated plants. In addition, the
plants infected with P. cinnamomi had lower H/D ratios than the mock-inoculated plants in
0% BIO and 12.5% BIO but not in 25% BIO (0.97-fold difference for 0% BIO and 0.92-fold
difference for 12.5% BIO, respectively; Figure 4).
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Figure 4. Boxplot of predicted values of height:diameter ratio (H/D) separated by soil treatments
(x-axis) and P. cinnamomi infection (control plants, green; infected plants, grey). Lowercase letters
indicate differences between P. cinnamomi infection treatments, and capital letters indicate differences
among soil treatments.

3.3. Effects on Plant Physiology

We did not find any significant differences in Pn, gs, Ci, E, Pn/gs, or Pn/E concen-
trations between soil treatments and P. cinnamomi treatments (Table 3). However, the
P. cinnamomi-infected plants showed marginally higher Ci than the control plants (1.05-fold
difference; p = 0.064; Table 3), and marginally lower Pn/gs (0.87-fold difference; p = 0.089;
Table 3). We found significant differences in the ETR and Ψ depending on soil treatments
(Table 3). The fertilised plants (12.5% BIO and 25% BIO treatments) showed lower values of
the ETR and Ψ (≈0.76 and ≈0.79-fold difference, respectively) than the plants not fertilised
(0% BIO; Table 3). In addition, P. cinnamomi-infected plants showed more negative Ψ
(1.27-fold difference) than the control plants (Table 3).

We found no significant interaction between soil treatments and P. cinnamomi treat-
ments for any of the physiological variables. Interactions did not appear in the top models
during model selection due to their low relative importance in modelling (Table S4).
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Table 3. Summary of the top linear mixed models (∆AIC < 2) fitted to analyse main factors—soil
treatment and P.c. infection—affecting physiological variables (IV models of Table 1). Asterisks
indicate statistical significance (p < 0.05 *, p < 0.01 **, p < 0.001 ***).

Variable Fixed Effects Importance 2 Levels Coeff. SE z-Value p

Pn
Intercept 8.476 0.615 13.543 <0.001 ***

P.c. Infection 0.44 P. cinnamomi −1.045 0.941 1.087 0.277

gs

Intercept −1.834 0.109 16.521 <0.001 ***
Soil Treatment 0.31 Bio 12.5% −0.263 0.18081 1.424 0.154

Bio 25% −0.180 0.18131 0.969 0.332
P.c. Infection 0.32 P. cinnamomi −0.089 0.147 0.591 0.554

Ci
Intercept 284.927 5.609 50.063 <0.001 ***

P.c. Infection 0.69 P. cinnamomi 13.514 7.137 1.854 0.064

ETR

Intercept 1.085 0.002 645.189 <0.001 ***
Soil Treatment 0.96 Bio 12.5% −0.005 0.002 2.613 0.009 **

Bio 25% −0.006 0.002 2.878 0.004 **
P.c. Infection 0.33 P. cinnamomi 0.001 0.002 0.305 0.761

E Intercept 1.941 0.150 12.973 0.001 **

Pn/gs ratio Intercept 61.364 3.384 17.866 <0.001 ***
P.c. Infection 0.63 P. cinnamomi −7.667 4.423 1.697 0.089

Pn/E ratio Intercept 4.354 0.202 21.593 0.001 ***

Ψ

Intercept 3.004 0.095 31.700 <0.001 ***
Soil Treatment 0.85 Bio 12.5% −0.216 0.095 −2.270 0.023 *

Bio 25% −0.232 0.096 −2.413 0.016 *
P.c. Infection 0.97 P. cinnamomi 0.236 0.076 3.108 0.002 **

Pn: Net CO2 assimilation; gs: stomatal conductance to water vapor; Ci: intercellular CO2 concentration; ETR:
electron transport rate; E: transpiration; Pn/gs ratio: proxy of instantaneous water use efficiency; Ψ: water
potential. Importance: Importance of predictor variable in the model averaging approach. Results for soil treatment
refer to Biohumin® 12.5% and 25% against control plants (Biohumin® 0%), and results for biotic stress refer to
P. cinnamomi-infected plants against control (uninfected) plants. 2 Importance: Importance of predictor variable in
the model averaging approach.

4. Discussion

Several studies reported how biological fertilisers favour plant growth and physiol-
ogy [51–53]. However, the role of biological fertilisers in enhancing plant resistance against
soil-borne pathogens is not clear and is still under study. Assessing the combination of bio-
logical fertilisers and P. cinnamomi-soil infection is crucial to disentangle whether biological
fertilisers are positive for plants, or if they induce plant stress. Here, we observed that the
Biohumin® fertiliser affected plant susceptibility to P. cinnamomi, with high concentrations
causing additional stress to soil infestation.

4.1. Survival of Oak Seedlings

Soil infestation by P. cinnamomi compromises the proper development of seedlings and
limits the recruitment of tree populations [22,23], including Quercus species [6,38,54]. Our
results showed that the survival of the Q. ilex seedlings infested by P. cinnamomi was lower
than that of the control plants, in agreement with previous studies [9,55]. This negative
effect has been observed in Q. suber forests [56], and it is considered an important threat to
oak conservation in Mediterranean systems [56–58].

It was expected that the plant survival after P. cinnamomi inoculation would increase
with Biohumin® treatment, as reported for other inorganic and organic fertilisers [59,60]. In
this study, it was observed that the plants fertilised with 12.5% Biohumin® or not fertilised
had higher survival rates than the plants fertilised with 25% Biohumin®, across all the
non-infested treatments. However, the highest concentration of Biohumin® (25% Bio) did
not show a positive effect on the survival of the infected plants, compared with that of the
uninfected plants. It appears that a combined biotic (infection) and abiotic (soil toxicity)
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stress occurred, as reported in other studies [7,61,62]. By exploring the plant growth and
leaf physiological parameters in this study, we sought to shed light on the effect of the
interaction between fertilisation application and P. cinnamomi infection on plant survival.

4.2. Plant Growth

Plant growth was reduced after the inoculation of P. cinnamomi depending on the
dosage of Biohumin®. Previous studies have reported that P. cinnamomi negatively af-
fects plant growth and development [21,23]. Our results showed that the inoculation of
P. cinnamomi reduced the fraction of the biomass invested in leaves (LMF), the plant height
(H), and the ratio of plant height-to-stem diameter (H/D). This effect is not rare, as many
pathogens from the genus Phytophthora spp. reduced the aerial biomass (leaves and stems)
or even belowground parts [41,63].

On the other hand, the use of a high concentration of Biohumin® (25% Bio) influenced
plant growth; it reduced the plant height (but not the stem diameter) and H/D. This result
reinforces the idea that 25% of Biohumin® was excessive and negative for plant develop-
ment and, therefore, did not protect the plants against P. cinnamomi. In fact, the plants
treated with 25% of Biohumin® showed a similar plant size irrespective of P. cinnamomi
infection. It is not uncommon that high concentrations of fertilisers interfere with the
correct development of plants, as reported for inorganic [64] and organic fertilisers [65].

4.3. Plant Physiology

The impact of P. cinnamomi infection was also noticeable on the physiology of plants.
The variables ETR and Ψ were lower after the inoculation of P. cinnamomi. After root in-
fection, P. cinnamomi grows inter- and intracellularly in the host tissue, causing severe struc-
tural changes in Q. ilex [66,67]. A common consequence of root destruction by Phytophthora
spp. is the decreased water absorption capacity of the infected plants. For example, root
water transport failure was observed on susceptible Eucalyptus sieberi when infected with
P. cinnamomi [68]. A major reduction in hydraulic conductivity was observed within the first
2 weeks after infection, although the pathogen had colonised only 8%–12% of the total root
system, indicating that the infection by P. cinnamomi of a susceptible host could trigger a gen-
eralised dysfunction in plant–water relations, which could be mediated by hormonal changes
and the toxins released by the pathogen [69]. In this study, the ETR and Ψ did not decrease to
the levels jeopardising survival, which probably reinforces the assumption that other factors
are involved during infection. The results presented here revealed evidence indicating that
the pathogen negatively affected the plant function, reducing the plants’ biomass increment
and reallocation of resources, as observed in other studies [41].

Biofertilisation also reduced the ETR and Ψ, independently of the concentration used
in the substrate. Although the effects were of low magnitude, they indicated that the use of
Biohumin® at high concentrations did not help improve the physiology of the plants; rather,
it may have caused toxicity [65]. Furthermore, the combined fertilisation and P. cinnamomi
soil infestation induced synergistic effects in Ψ, causing more stress for plants than when
using each factor alone. Further studies must evaluate if concentrations lower than those
applied in this study may benefit plant physiology.

4.4. Using Biological Fertilisers to Enhance Protection against P. cinnamomi

Overall, the use of Biohumin® did not seem to help the plants to cope with soil
infestation, and some variables indicated low plant vigour when P. cinnamomi inoculation
and fertilisation were combined. Contrary to our expectations, the 25% concentration of
Biohumin® negatively affected the Q. ilex individuals, probably due to plant toxicity, as
discussed above. The use of fertilisers to reduce plant susceptibility to disease is under
debate, but many positive effects have been reported, especially on crops [70,71]. Hence,
the use of a particular fertiliser must be experimentally supported in each circumstance.
According to our experiment, in terms of many of the study variables, the use of Biohumin®



Forests 2022, 13, 1558 11 of 14

was not beneficial to promote plant resistance against P. cinnamomi, especially when applied
at high concentrations (i.e., 25% BIO).

5. Conclusions

In this study, the biological fertiliser Biohumin® at 12.5% (v/v) increased the survival
of one-year-old Q. ilex seedlings after inoculation with P. cinnamomi. This advantage was
not observed when using the fertiliser at 25% (v/v). At this higher dose, the combined effect
of P. cinnamomi infection and fertilisation had negative, synergistic effects on plant survival
and vigour. Plants showed low physiological activity after infection by P. cinnamomi and
the application of fertiliser at 25% (v/v). Revealing the proper dose of biological fertilisers
is relevant to improve plant resistance to P. cinnamomi and favour tree regeneration and
sustainability in oak forests.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f13101558/s1, Table S1: Summary of evaluated morpho-
logical and physiological response variables for data analysis; Table S2: Summary of Kaplan–Meier
non-parametric models fitted to analyse the main factors—soil treatment and P.c Infection—affecting
the survival of oak seedlings; Table S3. Results of model selection of the generalised linear mixed
models fitted to analyse the main factors—soil treatment (S), biotic stress (B)—affecting different
morphological response variables; Table S4. Results of model selection of the generalised linear mixed
models fitted to analyse the main factors—soil treatment (S), biotic stress (B)—affecting different
physiological response variables.
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