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Abstract: Unmanned aerial vehicles (UAVs) are an efficient tool for monitoring forest fire due to
its advantages, e.g., cost-saving, lightweight, flexible, etc. Semantic segmentation can provide a
model aircraft to rapidly and accurately determine the location of a forest fire. However, training a
semantic segmentation model requires a large number of labeled images, which is labor-intensive and
time-consuming to generate. To address the lack of labeled images, we propose, in this paper, a semi-
supervised learning-based segmentation network, SemiFSNet. By taking into account the unique
characteristics of UAV-acquired imagery of forest fire, the proposed method first uses occlusion-aware
data augmentation for labeled data to increase the robustness of the trained model. In SemiFSNet,
a dynamic encoder network replaces the ordinary convolution with dynamic convolution, thus
enabling the learned feature to better represent the fire feature with varying size and shape. To
mitigate the impact of complex scene background, we also propose a feature refinement module by
integrating an attention mechanism to highlight the salient feature information, thus improving the
performance of the segmentation network. Additionally, consistency regularization is introduced to
exploit the rich information that unlabeled data contain, thus aiding the semi-supervised learning.
To validate the effectiveness of the proposed method, extensive experiments were conducted on
the Flame dataset and Corsican dataset. The experimental results show that the proposed model
outperforms state-of-the-art methods and is competitive to its fully supervised learning counterpart.

Keywords: forest fire monitoring; semi-supervised learning; semantic segmentation; convolution
neural network

1. Introduction

Forest fire causes devastating disasters that are paroxysmal and uncontrollable. It not
only reduces the forest stock, but also has a severe impact on forest growth. In addition,
it is challenging to restore forests after a fire to their original state where the vegetation
structure, species diversity and the ecosystem require a long time to recover [1]. Thus, it is
of vital importance to monitor and detect forest fire accurately and rapidly [2].

There are currently four approaches to forest fire monitoring [3]: (1) ground patrols;
(2) lookout station spotting; (3) satellite monitoring; and (4) unmanned aerial vehicle (UAV)
patrols. Ground patrols are usually undertaken by forest rangers on foot or motorbike to
check and monitor the implementation of rules and regulations for the prevention of forest
fire, and to put out fire promptly when detected. This approach requires a large number
of specialist staff and yet it is difficult to prevent forest fire. Lookout station spotting is
usually located on the summit of a mountain or other high vantage points to spot a fire and
determine its location. However, vegetation with varying size often obscures the spotting
view. Satellite-based monitoring provides an efficient and large-scale wildfire assessment
due to its wide range, time frequency and accuracy. However, this approach suffers from
aerosol and cloud occlusions, which renders forest fire hardly detectable. Compared to
satellite monitoring, UAV monitoring is undertaken at low-to-medium altitudes, which
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effectively avoids the cloud interference [4]. It also has some advantages, e.g., cost-saving,
lightweight, flexible and easily manipulated. Therefore, UAV has widely been used to
monitor forest fire in recent years [5].

To address the challenges (e.g., varying scene illumination and complex back-ground)
in monitoring forest fire using UAV imagery, a few studies involving machine learning
have been undertaken. Ko et al. introduced a support vector machine (SVM)-based fire
detection method, which removes non-fire regions based on brightness maps and designed
a two-class SVM classifier with a radial basis function kernel [6]. Hossain et al. attempted
to solve the problem of fire point monitoring via UAV images by using a single artificial
neural network (ANN) [7]. Pérez-Rodriguez et al. used ANN-based classifiers to assess
the feasibility of using multispectral images acquired on drones to estimate the severity of
vegetation and soil after a forest fire [8]. However, traditional machine learning methods
heavily rely on the effectiveness of feature extraction and the classifier, which lack the
sufficient robustness and adaptability when applied to different environments.

In recent years, convolution neural network (CNN)-based methods have been in-
troduced for monitoring forest fire due to its superior performance on computer vision
tasks [9]. Most related studies leveraged the semantic segmentation methods to accurately
identify the fire spots as well as its boundary [10,11] with promising results. However,
all of these methods use fully supervised learning semantic segmentation and train the
segmentation model with a large amount of pixel-wise annotated data. This approach is
labor intensive and time-consuming. In fact, it is not trivial to obtain the pixel-wise annota-
tion data for training CNN-based methods, especially in UAV images of forest fire. This is
because forest fire tends to be of irregular shape and varying size, rendering it difficult to
identify. The complex scene background may additionally confuse the forest fire recognition
system, resulting in inaccurate annotation of the forest fire regions. Furthermore, manual
annotation suffers from degradation due to artificial noise, which leads to the introduction
of more useless information in the training model and thus decreases the performance of
the model. Semi-supervised learning [12-14] is regarded as one of the promising techniques
to deal with the above-mentioned problems, where a small amount of labeled data with a
large amount of unlabeled data are mixed for model training, thus significantly reducing
the manual annotations while increasing the performance of the model.

In this paper, we propose to segment forest fire in UAV-acquired images by using
semi-supervised learning, where only a few pixel-wise labeled images are required for
training the model. Our application of semi-supervised learning to forest fire segmentation
provides a promising direction for the development of forest fire monitoring techniques. In
addition, we take into account the three challenges exclusively present in fire segmentation
in UAV imagery where the target fire could: (1) be partly occluded by vegetation; (2) have
varying size and shape as well as boundary that is not easy to identify; (3) be distracted by
complex scene background (e.g., soil, trees, snow, etc.). To this end, we focus on addressing
the challenges by proposing a semi-supervised learning-based semantic segmentation
network, SemiFSNet, for remote sensing forest fire monitoring. The major contributions of
this paper are summarized as follows:

(1) A semi-supervised segmentation network specifically for forest fire segmentation
in UAV optical imagery.

(2) A data augmentation strategy of random dropping a grid of image pixels, effectively
alleviating the impact of occlusions caused by vegetation.

(3) A dynamic convolution module to encode multi-scale features in forest fire images
extracted by fusing convolution kernels of different sizes, thus increasing the segmenta-
tion accuracy.

(4) A feature refinement module that cascades an attention module to encoded fea-
ture, thus highlighting the significant information of the target forest fire. This module
further enhances the feature aggregation via two different types of attentions, thus en-
abling the model to focus more on forest fire while mitigating the influence of complex
scene background.
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(5) Extensive experiments are conducted on two publicly available datasets with
different environments, demonstrating the promising performance of the model and the
effectiveness of each contributing module of the proposed network.

The remainder of this paper is structured as follows. Section 2 reviews the related
works and presents the proposed method. The experiment results are provided in Section 3.
The discussion is given in Section 4 and the conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Related Works
2.1.1. Semantic Segmentation

Semantic segmentation aims to label each pixel of an image with a corresponding
classification. Due to its superb performance, CNN-based image segmentation [15-18] has
become the mainstream method. Long et al. [17] proposed full convolutional networks
(FCN) by up-sampling (de-convolving) the output activation maps and fusing the output
with the output of shallower layers. Badrinarayanan et al. [15] proposed an encoder-decoder
segmentation network, SegNet, where the decoder is used to map the low-resolution feature
representations to full-resolution feature maps for pixel-wise classification. As another
encoder-decoder network, UNet was proposed by Ronneberger et al. [18], which involves
a contracting path to extract context information and a symmetric expanding path to allow
for precise localization. Chen et al. [16] proposed a segmentation architecture, DeepLabv3,
which combines dilated convolutions with feature pyramid pooling. Chen?2 et al. [19]
extended DeepLabv3 by adding a simple yet effective refinement module in the decoder,
namely, DeepLabv3+, which increases its capability in identifying object boundaries. In
this paper, we use DeepLabv3+ as our basic encoder-decoder framework due to its two
competitive advantages: (1) enabling to depict the multi-scale feature, which is widely
existing in UAV-acquired forest fire images; and (2) significantly reducing the computational
complexity, which is suitable for real applications.

2.1.2. Semi-Supervised Semantic Segmentation

Traditional semantic segmentation methods have yielded promising performances,
where the data used for their training are all pixel-wise annotated (referred to as full
supervised learning). The acquisition of a large amount of annotated data tends to be time-
consuming and labor-intensive, and the outcome of the training heavily relies on the quality
of the labels used. To deal with the above-mentioned problems, semi-supervised learning
has been proposed as an effective solution [20], where only a few labeled data are needed.
Alternatively, many more unlabeled data are fully exploited to optimize the learning process
as a complement, where unlabeled data are much easier to obtain when compared with the
labeled ones [21]. The key problems in semi-supervised semantic segmentation are: (1) how
to use the few labeled images; and (2) how to make full use of the many unlabeled images.
Hong et al. [22] proposed to decouple classification from segmentation and used two
separate networks for each task. The label of an image is predicted using the classification
network, and each predicted label is binarily segmented using the segmentation network.
The decoupled structure allows one to learn, classify and segment separately using the
training data with image-level and pixel-wise class labels. Olsson et al. [23] proposed
ClassMix data augmentation by blending unlabeled images, where the network predictions
corresponding to target boundaries are leveraged to generate labeled bounding boxes.
ClassMix data augmentation enriches the dataset by making full use of the unlabeled data.
Adpversarial learning-based semi-supervised segmentation is proposed in [24], where a full
convolutional discriminator is used to distinguish the predicted probability maps from the
ground truth distribution. Mondal et al. [25] proposed another adversarial learning-based
method, where cycle consistency is used to learn bidirectional mapping between unpaired
images generated by CycleGAN and segmentation masks. Yang et al. [26] proposed a
self-training semi-supervised semantic segmentation by integrating data augmentation
on unlabeled images. Lai et al. [27] proposed to retain the consistency related to context
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information between features of the selected identity and accomplish consistency using
directional contrastive loss, which achieves state-of-the-art performance. Hu et al. [28]
proposed a new image synthesis and semi-supervised learning pipeline to train a site-
specific weed detection model, enabling color matching between training and testing
images, color enhancement during training, and iterative semi-supervised learning to
greatly improve the performance of the model. Ke et al. [29] proposed guided collaborative
training (GCT) for pixel-wise semi-supervised learning to learn additional information
from the pseudo-segmentation generated by the model. However, they do not utilize
generative models of the image itself, which limits the performance for the tasks requiring
highly accurate pseudo-labels. French et al. [30] proposed that the network uses CutMix
for semi-supervised learning and segmentation to achieve superior results on the PASCAL
VOC 2012, CITYSCAPES, and ISIC 2017 datasets. However, for the aerial forest fire image,
when the proportion of fire points in the whole image is small, CutMix will randomly erase
a part of the pixel information on the image, which causes the reduction in the proportion
of pixels containing information on the training image, thus resulting in the underfitting of
the model. Although the semi-supervised segmentation has made substantive progress in
recent years, only a few studies have investigated its application to remote sensing.

2.1.3. Semi-Supervised Semantic Segmentation for RS

There are a few studies exploring the application of semi-supervised learning to
remote sensing. Yan et al. designed a semi-supervised method, which uses the generative
adversarial network (GAN) [31] to enrich the training samples. With regard to semi-
supervised semantic segmentation, Song and Yang [32] proposed the use of transfer learning
and clustering for scene classification. Wang et al. [33] proposed the combination of
consistency regularization and pseudo label to enable the use of unlabeled images, where
thresholds are utilized to gradually [34] refine the model performance. Desai [35] proposed
an active learning-based sampling strategy to select a set of highly representative labeled
images for training and demonstrated the effectiveness of the proposed network on two
publicly available satellite datasets. The BAS4Net model proposed by Sun et al. [36] uses
the channel weighted multi-scale feature (CMF) module to balance the semantic and spatial
information, and uses the boundary attention module (BAM) to weight the features with
rich semantic boundary information to alleviate the boundary ambiguity. In the PiCoCo
model [37], the semi-supervised segmentation of building footprint using pixel contrast and
consistency learning has achieved considerable results. However, using semi-supervised
learning for forest fire monitoring has rarely been reported. In this paper, we aim to
bridge the gap, and address the problems (e.g., arbitrary shape and varying size of forest
fire, and complex scene background) when applying semi-supervised leaning to forest
fire monitoring.

2.2. Proposed Method

In this paper, we propose a semi-supervised learning network, SemiFSNet, for forest
fire segmentation in UAV-acquired RGB imagery. Figure 1 shows the overall framework,
which consists of supervised and unsupervised branches, where the encoder is shared for
extracting the features from labeled and unlabeled inputs. First, an information deletion
data enhancement strategy is performed on the labeled dataset by choosing different scales
of grid to mask the images. This effectively alleviates the impact of the occlusions of fire
caused by vegetation. For unlabeled data, a simple random cropping operation is applied
for data augmentation. The augmented data including the labeled and unlabeled images
are then input to the encoder network. To better extract the meaningful information from
the forest fire region with varying shape and size, the encoder structure is constructed
by replacing traditional convolution with dynamic convolution to enable the model to be
automatically aware of the features at each scale of the forest fire image, thus facilitating
the extraction of the multi-scale information. The encoder features are then refined by
an attention module to suppress the interference caused by complex scene background.
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Finally, the labeled data are fed to the classifier layer and the unlabeled data are non-linearly
projected to the embedded feature space, where cross entropy (CE) loss and improved
directional contrastive (DC) loss are used for training, respectively.
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Figure 1. Overall structure of the proposed SemiFSNet.

2.2.1. Data Augmentation

Generally, the richer in information the labeled samples are, the stronger the gener-
alization ability of the trained model. In our case, due to the limited number of labeled
samples, it is essential to select an appropriate means to augment the data. Moreover, the
potential occlusion of fire caused by vegetation needs to be considered. There are a few
commonly used data augmentation techniques for remote sensing, such as CutOut [34],
RErase [38] and HaS [39]. CutOut is performed by removing a square region of an image.
RErase is used for the random deletion of a rectangle region in the image. HaS enhances the
image by dividing it evenly into small chunks and then deleting them randomly. However,
there is a significant risk that these data augmentation methods might remove parts of
the forest fire (as illustrated in Figure 2), which degrades the model training. Inspired
by the work in [40], we introduce Gridmask strategy for labeled data augmentation. The
Gridmask strategy is one of the information-dropping-based data augmentation methods,
which avoids excessive deletion while maintaining continuous regions.

RErase CutOut Has

Figure 2. Images using different data augmentation techniques.
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Specifically, Gridmask generates a grid-like mask of the same size as the original
image. Gridmask has only two values, 0 and 1, where 0 denotes the black-masked area
and 1 denotes the transparent area. The greater the number of 1s in mask, the greater the
proportion of original information that will be retained. The smaller the number of 1s in
the mask, the lower the proportion of information in the original image but the higher the
risk of underfitting the model. There are, in total, four parameters (i.e., r, d, dx, dy) for the
mesh (as shown in Figure 3) that affect the performance of extracted feature, where J, and
dy, respectively, denote the width and height of a dropped square with value 0, r denotes
the retained proportion of the input image, and d denotes the length of a square.

L2 T,

il ' W
‘"N B
HEHE

Figure 3. The dotted square denotes one unit of the mask.

Given the input images X € RE*W*C M e {0,1}*" denoting the binary mask,
which stores pixels to be removed, the Gridmask data augmentation multiplies X and M to
obtain the augmented image Y, i.e.,

Y=XxM 1)

According to [40], another parameter k denotes the keep ratio of a mask M, which is
defined as:

_ sum(M)
k= HxW' @
Ignoring incomplete units in the given mask, k is related to r by:
k=1-(1-r?=2r—r% (©)]

The choice of d decides the size of a dropped square, where a small d helps to avoid
failure cases. dy and &, control the shift of the mask. When parameters r and d are given,
the change of J and J, enables the mask to cover all possible situations.

In the original Gridmask [40], when the value of d is between 96 to 224, the feature
accuracy extracted by the model is higher, while the value of r is generally 0.3, 0.4 and
0.5. Considering that the fire point is small in the early stage of the fire, setting r to 0.5
may lead to the phenomenon that the small fire point is blocked, so we set r to 0.1, 0.3
and 0.4, respectively. In our case, to capture the occluded forest fire with varying size and
shape, we design three different scales of Gridmask, where dropped squares with different
scales are generated. We randomly select 6y and dy, ranging from 0 to d — 1, and set (r, d)
for different scales of masks as (120, 0.1), (100, 0.4) and (50, 0.3). The generated Gridmask
maps are then multiplied with the original image to obtain the augmented sample sets.
Figure 4 illustrates the use of Gridmask in data augmentation. For the same forest fire
image, Gridmask maps with three scales (1, d) of (120, 0.1), (100, 0.4) and (50, 0.3) are used
to cover it, and the occlusion parts and areas of different scales of Gridmask maps in the
original image are different.
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Figure 4. Gridmask with different scales for data augmentation.

2.2.2. Dynamic Encoder

Traditional convolution tends to use a single convolution kernel per layer with the
kernel size fixed, leading to limited representation ability. In this paper, to increase the
capability in representing forest fire, we propose the dynamic encoder module for replacing
the typical fixed-size convolution with dynamic convolution, where a set of L parallel
convolution kernels are introduced [41]. Dynamic convolution computes multiple attention
weights for each kernel and aggregates all L kernels based on the computed weights,
where the weights are calculated based on the attention operation. The size of the dynamic
convolution kernel varies with the size of the feature map, and this property makes dynamic
convolution suitable for the task of identifying the target with varying scales, i.e., forest fire.

Specifically, given an input x and multiple (L) linear functions {W’ {x + b }, the
squeeze-and-excitation attention [42] is applied to compute the kernel attention {7ty (x)}.
Unlike the work in [42], the attentions are computed over convolution kernels instead of
over output channels. After obtaining {717 (x)}, the aggregated weight W/ (x) and bias
b’ (x) are computed based on attention weighed as follows:

k
W/ (x) = Wy % 71y (x) + Wy s 0 (x) + -+ + W) s e (x) = ) (m(x) W), 4)
1=1
k
V(x)=bxm+bysxm+---+bpxm=Y (m(x)b), (5)
=1

where W, and b}, respectively, represent the weight and bias of the dynamic perceptron, and
7;(x) denotes the attention weight of the /th linear function {W’ ,Tx + b } The constraints
of 7r;(x) are

k
0<me(x) <1, ) m(x)=1. (6)
=1

The output of dynamic convolution y is obtained by:

y=g(WT(x)x+(x)). )
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where g denotes the activation function, and RELU activation function is used in g in
the experiment.

This is followed by batch normalization and an activation function (ReLU in our case).
Dynamical convolution automatically assembles the different kernels, increasing the model
capability to extract useful information. A dynamic convolution layer is shown in Figure 5.

b ___

Average
Pooling

[ Convl | [ Conv2 | ( ConvL |

® %* %*

R
[we | o |l | [(m
i::;;;::: \\\\\ié)g///////fg

Attention

Input Feature Output Feature

Figure 5. Dynamic convolution structure diagram.

In our encoder network, the 3 x 3 convolutions are replaced with dynamic convolu-
tions over every block of the backbone, i.e., Resnet50, as shown in Figure 6. By using the
dynamic convolution kernel, the dynamic encoder fpr is generated and the output features
Fpg are defined as:

Fpe = fpe(Mix(x; + xu), 8

where Mix () denotes the batches comprising labeled images x; and unlabeled images x,.

Input
v

| 1x1,64,Conv |

7 | 1x1,256, Conv |
| BN | |
- | BN |
RELU |
v
| 1x1,256, Conv |

1
™ |

S5
h 4
| RELU |
12
Qutput

Figure 6. Replacing a 3 x 3 convolution with a dynamic convolution in Resnet50.
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2.2.3. Feature Refinement Module

Forest fire segmentation using remote sensing imagery tend to be more difficult
compared with other common images due to the more complex scene background. The
attention mechanism is essential to enable the model to focus more on the meaningful
information and ignore irrelevant information [43]. Thus, we propose a feature refinement
module by integrating an attention mechanism to the output features of the encoder,
which aids the model to highlight the useful fire features while reducing the interference
of background information. According to [44], to obtain the more discriminative and
powerful feature, the spatial and channel-wise attention is incorporated in a CNN. To
this end, we propose to integrate the channel attention module (CAM) with the spatial
attention module (SAM) in a concatenating way (as shown in Figure 7), where the output
features are processed along two independent dimensions and thus resulting in a more
discriminative representation.

Fpg F
VoAt —— | mm T I
ICAM ] | : “A' !
| [ Max [Average ‘ Ly - - N I
: _Pooling | | Pooling | : : | Sigmoid :
N
I ) o !
| Iy I
Shared MLP )

: I [ Conv I
. ! onv_| i
| I F.S' I
! : l . . |
: I Average

I A ! Puuling '
I I I M g g I
| Iy I
| Iy I
, L [ Max 1 !
I Iy - I
I - . I | Pmﬂmg |
: Slgmmd | : I :
: ‘l " | SAM |

Figure 7. Feature refinement module with CAM and SAM.

Specifically, the output feature Fpg of the dynamic encoder are first aggregated using
max pooling and average pooling to generate spatial descriptors F,,, and Facvg. The two
descriptors are then fed to a shared multi-layer perceptron (MLP) network and merged
using element-wise summation. The channel attention is computed by:

CA(x) = o(MLP(AvgPool(Fpg)) + MLP(MaxPool( Fpg))), ©)

where o denotes the sigmoid function, and W; and Wy are the MLP. The generated channel
attention is multiplied by Fpg to obtain the CAM feature maps F,’D £ole,

Fpp = CA( Fpg) ® Fpe (10)

After obtaining F[,;, the spatial attention is computed by applying max pooling
and average pooling, resulting in a descriptor F°. Such pooling operations highlight
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the informative forest fire regions. The output is then fed to a 7 x 7 convolution layer
followed by a sigmoid function to generate spatial attention maps. The spatial attention is
computed by:

SA(Fpg) = o(Conv(F%)). (11)

The feature maps and F},; are element-wise multiplied to obtain the SAM feature
maps, i.e., the final refined features are computed by:

F=SA(Fp) ® Fpp (12)

2.2.4. Consistency Regularization for Unsupervised Learning

There are two batches of inputs in our semi-supervised segmentation framework,
i.e., x; and x,, denoting labeled and unlabeled images, respectively. The dynamic encoder
architecture with the feature refinement module fpr4r embeds the labeled images in the
feature maps F; = fpryr(x;), and the decoder (classifier) makes predictions p; = fc(F).
The learning process is provided by ground-truth labels y; using the standard cross entropy
loss L. For the unlabeled images, we randomly crop the two patches x,; and x,,, with an
overlapping region x,, and then augment x,,; and x,, using low-level augmentation. The
two augmented patches are then fed to the encoder model fpr g to obtain the feature map
F,1 and F,». Following the work in [27], the two features are embedded using non-linear
projection as @, i.e.,
Pu1 = (D(Fu ), (13)

(PuZ = cD(FuZ)r (14)

As illustrated in Figure 1. The features from the overlapping areas in ¢,,; and ¢,,» are,
respectively, referred to as ¢,1 and ¢,p, where the ¢, and ¢, should remain consistent
under different contexts.

A context-ware consistency constraint, i.e., DC loss [27], is used to enable the features
from the overlapping areas to remain consistent with each other. The DC loss is inspired by
the contrastive loss, which pulls the positive samples closer while separating the negative
samples belonging to other classes. In our case, the features from overlapping locations
¢u1 and ¢,» are regarded as a positive pair, as they share the same pixels despite being
under different contexts, and any two features in ¢,; and ¢,» from different locations
are regarded as a negative pair. Unlike contrastive loss, the DC loss further exploits a
directional alignment for the positive pairs, which effectively prevents the high confident
feature from suppressing the low confident one. This is necessary, as the prediction with
higher confidence tends to be more accurate, and features with lower confidence need to
be aligned to their counterpart with higher confident. The confidence of each feature ¢,
is measured using maximum probability among all classes, i.e., max(C(f;)). For the t-th
unlabeled image, the DC loss £/, is computed as:

lt (4) 4) ) 1 E Mh,w log r<¢giw’¢géw)
4 2 = N ’ w0 w h,w
de o 0 N h,w d r ¢ZJi ’¢Zté )+Z¢n€]‘—u T((szi ’q)”) (15)
= 1{maxC (fg’l’w < maxC (fohz’w) },

‘Ciic = lfic((POlr (POZ) + lélc((l’oZ/ (Pol)r (16)

where N is the number of spatial locations of overlapping area, h and w represent the 2-D

spatial locations, ¢, denotes the negative counterpart of feature cpgiw and r represents the
exponential function of the cosine similarity s between two features with a temperature

T,1e., r(p1, ) = exp(w), and F; denotes the set of negative samples. Since more

negative samples result in better performance, a memory bank is used to store the features
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from the last few batches to acquire more negative samples [27]. The final loss is then
computed by summing the loss of each image, i.e.,

1&
Ly = T Y L., (17)
t=1

where T denotes the number of unlabeled images within a training batch.

2.2.5. Joint Loss Function

The joint loss function of the proposed semi-supervised-based method comprises two
parts: cross entropy loss L., for supervised learning and consistency constraint loss L. for
unsupervised learning. It is defined as:

L= wlﬁce + wunﬁdc (18)

where w; and w,,,,, respectively, denote the supervised loss weight and unsupervised loss
weight, which balance the contributions of two loss parts. In our experiments, numerous
experiments have shown that w; and w,;, are set to 0.7 and 0.4, respectively.

3. Results

To verify the effectiveness of the proposed method SemiFSNet for forest fire segmen-
tation in UAV images, we conducted intensive experiments on two publicly available
datasets, the Flame dataset [45] and Corsican dataset [46].

3.1. Datasets

The Flame dataset [45] is created by researchers from Northern Arizona University,
where the samples are collected using UAVs during the prescribed burning of piles of debris
in an Arizona pine forest. The dataset includes video recordings and heat maps taken by
infrared cameras. The captured videos and images are labeled by frame and aid researchers
to easily build models. The dataset contains a total of 2003 forest fire images, each of which
is 3840 x 2160 in size. The fire points are generally freshly started or extinguished, with the
fire points taking up a relatively small proportion of the whole image.

The Corsican dataset [46] is created by the Environmental Sciences Laboratory of
the University of Corsica, which includes 1136 forest fire images, each with the size of
1024 x 729 captured using an RGB camera. The background of the images varies consider-
ably, making the segmentation difficult. To evaluate the performance in segmenting remote
small fire, we selected 654 images with smaller fire spots for our experiment. Note that it
is more challenging to segment small-sized fire due to its low resolution and less spatial
information. Figure 8 shows some samples from the Flame dataset and Corsican dataset.

3.2. Implementation Details

DeepLabV3+ is employed as the encoder-decoder network of our proposed method
due to its effectiveness in extracting multi-scale information, where ResNet50 is used as
the backbone. The labeled and unlabeled images are first resized to 224 x 224, and then
augmented using Gridmask and random crop. During model training, SGD optimizer
is used and the learning rate, weight decay and momentum are set to 0.01, 0.0001 and
0.9, respectively. The values are gradually decreased to zero following the polynomial
decay schedule. The training batch size is set to 4 and the model is trained for 100 epochs.
In total, 20% of the samples from two datasets are randomly selected as the testing set,
and the remaining samples as the training set. All experiments were performed on an
NVIDIA RTX3090.
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Flame Dataset Corsican Dataset

Figure 8. Selected samples from Flame dataset and Corsican dataset.

The intersection-over-union (IoU) for each class is employed as the evaluation metric.
IoU is also known as the Jaccard Index, and is a statistic indicating the similarity and
diversity of samples. In semantic segmentation, IoU denotes the ratio of the intersection of
the pixel-wise classification results and ground truth, and is used to determine the spatial
overlap between the prediction and ground truth, i.e.,

TP

U= 15 Fp 1 N’

(19)
where TP denotes true positives, FP denotes the false positives, TN denotes the true
negatives and FN denotes false negatives. TP refers to positive samples predicted by the
model as positive class, FP refers to negative samples predicted by the model as positive
class, TN refers to negative samples predicted by the model as negative class, and TN refers
to positive samples predicted by the model as negative class.

In multiclass semantic segmentation, mean IoU (mloU) is mainly used as an evaluation
metric. There are only two class categories in our case, i.e., forest fire and background. Since
the proportion of fire area is small, and the scene background occupies the large portion of
an entire image, if mIoU is used as the evaluation metric then the IoU of the background
has a significant influence on the overall mloU, which have no value. Therefore, this paper
only uses the IoU of forest fire as our evaluation indicator.

3.3. Comparison with the State-of-the-Art Methods

Flame dataset. To assess the effectiveness of the proposed method, we made compar-
isons with state-of-the-art methods, including Adv-Semi [24], CycleGAN [25], ST++ [26],
CAC [27], CCT [47], and ECS [48]. We implemented these methods within a unified frame-
work following their official code, where the same base backbone, i.e., ResNet, is used and
the same data lists are used for training and testing. We compared the proposed method
under the setting with various labeled data proportions of the training set, i.e., 2/8,3/7,
5/5 and full labeled data. In the full data setting, images fed to the unsupervised branch are
simply collected from the labeled set. We ensured that all other parameters are consistent
during the experiment. The experimental results on the Flame dataset are shown in Table 1.

Table 1 shows that the segmentation results using the proposed method on the Flame
dataset consistently outperforms the state-of-the-art methods on all data pro-portions.
This shows the superiority of the proposed method in identifying small objects. Under
2/8 data proportion, the IoU performance of the proposed method is 11.5% higher than
the Adv-Semi model and 3.8% higher than the ST++. These demonstrate that the proposed
method effectively addresses the situation with limited labeled data. Compared with the
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SupOnly (i.e., using only supervised loss), the proposed method using the supervised
loss and unsupervised loss achieves a constant increase in terms of IoU under all data
proportions. The idea of self-correction has been exploited in CCT and ECS by creating the
Correction Network and Flaw Detector, respectively, to amend the defects in predictions.
Our method not only uses self-correction, but also optimizes the entire model in the feature
extraction stage to strengthen the extraction of small-target fire features. As can be seen in
Table 1, our method outperforms CCT by 3.1%, 1.3% and 0.6%, and outperforms ECS by
4.1%, 2.5% and 2.5%, under three different proportions.

Table 1. Comparison with the baseline (SupOnly, i.e., using only supervised loss) and other state-of-
the-art methods on Flame dataset with 2/8,3/7,5/5 and full labeled data.

The Ratio of Labeled and Unlabeled for Training

Networks
2/8 3/7 5/5 Full
CAC 62.5% 65.4% 67.7% 69.8%
ST++ 60.6% 67.6% 67.9% N/A
Adv-semi 52.9% 52.6% 49.7% N/A
CycleGAN 49.7% 55.4% 63.6% N/A
CCT 61.3% 64.1% 68.4% N/A
ECS 60.3% 62.8% 66.5% N/A
Ours 64.4% 65.4% 69.0% N/A

To visually illustrate the segmentation performance of the proposed method, we also
present a visual comparison under the 2/8 proportion with the state-of-the-art methods, as
shown in Figure 9.

As the target forest fire in the Flame dataset is small, we provide the enlarged com-
parison for clearer illustration in Figure 10. As shown in Figures 9 and 10, the proposed
method accurately localizes and segments the small fire spots, and the segmentation results
are almost consistent with the Ground truth mask both in terms of size and boundary. The
prediction results using ST++, Adv-Semi and CycleGAN have relatively large errors, and
their predicted fire points are smaller than the Ground truth. The CAC predictions are
closer to the Ground truth, but there are more dispersed irrelevant points. The results of
CCT and ECS are close to the ground truth, but the segmentation results of our method are
more refined, and the contour features are more obvious. These points are caused by the
similarity between smaller fire and dead twigs or bare soil. Overall, the experiment results
show that SemiFSNet improves the accuracy for the segmentation of forest fire, especially
with small-sized fire.

Corsican dataset. Compared with the Flame dataset, the images in the Corsican dataset
have relatively larger fire targets. We use this dataset to further evaluate the effectiveness of
SemiFSNet on aerial images with large fire points by comparing its performance with state-
of-the-art methods quantitatively and qualitatively. The results are shown in Table 2 and
Figure 11. Once again, the proposed method consistently outperforms the other methods
under all data proportion except for CycleGAN. The performance of CycleGAN is higher
than the proposed method by 1.6% when the ratio of labeled and unlabeled is 2/8. However,
CycleGAN training was unstable, and IoU fluctuated greatly under different proportions.
In addition, the IoU of the proposed method under a different semi-supervised learning
setting (i.e., 80.7%, 75.2% and 80.3%) is even far better than using a full supervised setting
(i.e., 65.4%). This shows that replacing labeled images with unlabeled images has significant
benefits for model learning, alleviating the negative impact of noise caused by manual
labeling on model training. At the same time, the requirement of manual annotation is
reduced. Figure 11 visually shows that the results using the proposed method outperform
those of other methods in terms of the boundary and shape of the forest fire.
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Figure 9. Visualization of segmentation results using the proposed method and state-of-art methods
on the Flame dataset, where subfigure (a) shows the image of a single fire point taken by UAV from
high altitude, subfigure (b) shows the image of fire point taken by UAV from low altitude, and
subfigure (c) shows the image of multiple fire points taken by UAV.
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SupOnly
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Ground truth

Figure 10. Enlarged visualization of segmentation results using the proposed method and state-of-art
methods on the Flame dataset.

Table 2. Comparison with the baseline and other state-of-the-art methods on Corsican dataset with
2/8,3/7,5/5 and full labeled data.

The Ratio of Labeled and Unlabeled for Training

Networks
2/8 3/7 5/5 Full
CAC 70.5% 75.9% 76.2% 65.4%
ST++ 63.1% 78.6% 77.1% N/A
Adv-semi 73.9% 76.9% 80.1% N/A
CycleGAN 69.7% 73.9% 80.0% N/A
CCT 68.3% 70.4% 75.3% N/A
ECS 70.2% 72.7% 75.4% N/A

Ours 80.7% 75.2% 80.3% N/A
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Figure 11. Visualization of segmentation results using the proposed method and state-of-art methods
on the Corsican dataset, where (a—c) shows the samples with different background.

3.4. Ablation Study

To better demonstrate the efficacy of each component of SemiFSNet, an ablation study
was performed on the same two datasets. There are three key components in SemiFSNet,
i.e., Gridmask, Dynamic Encoder with Dynamic Convolution, and the attention-based



Forests 2022, 13, 1573

17 of 23

feature refinement module. Intensive experiments were conducted using the baseline
method [27] with the individual components and their combinations under different data
proportions. The results are shown in Tables 3 and 4.

Table 3. Results of ablation study on the Flame dataset. (¢/ denotes the module is included in
the method.)

Allocation Strategy

Baseline Gridmask Dynamic-Convolution CAM + SAM 10U

2/8

AN

60.3%
v 61.1%
62.5%
63.1%
63.3%
63.2%
64.2%
64.4%

AN
SR R
R X

3/7

61.5%
v 62.5%
61.9%
62.3%
63.7%
64.2%
65.2%
65.4%

AN
R < N
R X

5/5

SNNNSNNSNY|SKSSSKSSK|SKKKN

64.7%
v 64.9%
65.6%
67.3%
66.4%
67.3%
68.7%
69.0%

AN

SN X
S ~

Table 4. Results of ablation study on the Corsican dataset. (v/ denotes the module is included in
the method.)

Allocation Strategy

Baseline Gridmask Dynamic-Convolution CAM + SAM 10U

2/8

AN

78.0%
v 78.6%
79.2%
79.4%
79.3%
79.4%
80.1%
80.7%

AN
SR R
R X

3/7

73.2%
4 74.0%
73.8%
73.6%
74.2%
74.7%
74.8%
75.2%

AN
SRR R
R X

5/5

SNUNRNCNNSY KKK | N

77.9%

78.8%
78.0%
79.2%
79.6%
80.0%
80.3%

AN
SR R N
R X

As can be seen from Tables 3 and 4, the labeled dataset is expanded by using Grid-
mask data augmentation so that the model achieves better segmentation results with a
small amount of labeled data. Dynamic convolution leads to the increased performance
on both datasets, where the features of fire with small or multiple scales are enhanced.
Attention-based feature refinement significantly improves the IoU by focusing on the salient
information, i.e., fire while suppressing the complex scene background. By combining
the baseline with all three components, our method improves the segmentation of forest
fire on the Flame dataset by up to 4.1% (for 2/8 data proportion). This demonstrates the
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efficacy of our method on the segmentation of small fire with a limited number of samples.
Similarly, for the Corsican dataset, our SemiFSNet yields a much higher performance than
the method without Gridmask, Dynamic Convolution and Feature Refinement for all data
proportions. Overall, SemiFSNet using Gridmask, Dynamic Convolution and Feature
Refinement considerably improves the performance of forest fire segmentation in aerial
images, where a limited number of labeled samples are used for model training, thus
significantly reducing the labor cost.

4. Discussion

To better show the performance of the three key components on different numbers of
labeled data, we generated the line graphs in Figure 12. The figure shows that SemiFSNet
integrates all three components to consistently outperform the other methods without or
with the use of individual component, regardless of the number of labeled data.
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Figure 12. IoU for forest fire segmentation under various numbers of labeled images.
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The loss reflects the error between the actual and predicted values, and the loss trend
reflects the state of the model learning. It is expected that both the training loss and the
validation (testing) loss will gradually decrease and converge, indicating the good feature
learning by the model. The trend of the training loss and the validation loss can be used
to determine whether the model is overfitting or underfitting [49]. The training loss of a
general semi-supervised model comprises supervised and unsupervised, i.e., supervised
loss and unsupervised loss. We visualize the supervised loss, unsupervised loss and
validation loss of our model under different semi-supervised allocation strategies and
determine whether there are any anomalies during training and testing. Figures 13 and 14
show the visualization of the loss under all allocation strategies on the Flame dataset and
Corsican dataset, respectively.
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Figure 13. Loss curve for supervise training loss, unsupervised training loss and validation loss on
the Flame dataset.

Both Figures 13 and 14 show that the supervised loss, unsupervised loss and validation
loss display a trend of decreasing and then converging during the model training. This
indicates that our model keeps adjusting the direction of convergence, making the model
adjust to the best state. Judging from the convergence of the loss, the model is trustworthy
and reliable.

We also compared the total parameters of our model with those of other models, and
the total parameters of each model are shown in Table 5. The number of parameters of
our model is 2.22 M less than that of CycleGAN’s model. Considering the stability and
number of parameters of our model in the segmentation of forest fire datasets at various
proportions, our model is significantly better than CycleGAN’s model. The number of
parameters in our model is only 0.1 M higher than that in the CAC model and 0.2 M higher
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than that in the ST++ model. The whole experimental results show that the performance of
our model in forest fire image segmentation is far better than those two models.
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Figure 14. Loss curve for supervise training loss, unsupervised training loss and validation loss on
the Corsican dataset.

Table 5. Parameters of each model.

CAC ST++ Adv-Semi Cycle-GAN Ours
Parameters 404 M 403 M 44.06 M 42.72M 405M

5. Conclusions

This paper focuses on solving the problem of forest fire segmentation in UAV-acquired
RGB images, where semi-supervised learning techniques are applied to save human re-
sources. We propose an effective SemiFSNet, which aims to address the challenges faced
by existing remote sensing fire segmentation where the fire could: (1) be partly occluded by
vegetation; (2) have varying size and shape as well as a boundary that is not easy to identify;
and (3) be distracted by complex scene background. First, Gridmask data augmentation is
used to increase the number of labeled images, where potential occlusions are considered by
using random information deletion. The augmented images are then fed to the improved
encoder, where the traditional 3 x 3 convolution is replaced with dynamic convolution
to boost the model ability in extracting the fire feature with varying size and shape. The
feature refinement module refines the encoder feature by integrating the channel and spa-
tial attention and increase the robustness to complex scene background in remote sensing
images. Extensive experiments conducted on two publicly available datasets show that the
proposed method achieves superior performance for forest fire segmentation compared
with state-of-the-art semi-supervised segmentation networks. Our method also yields a
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competitive result in comparison with fully supervised semantic segmentation, showing
that the use of unlabeled data allows the model to automatically extract the meaningful
information of the fire, effectively mitigating the influence of artificial annotation noise.

In this paper, we explore the application of semi-supervised learning to remote-sensing-
based forest monitoring, which provides an efficient solution for designing a model with
limited labeled data. In the future, we will continue to explore the semi-supervised learning
method and increase the accuracy of the model.
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