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Abstract: Ma bamboo (Dendrocalamus latiflorus Munro) is a major bamboo species cultivated in
southern China with high economic, ecological, and social value. However, highly dense forests and
reasonable structures in bamboo forests have unclear and adverse effects on light transmittance and
forest productivity that are not adequately understood. Here, we investigated varied light-intensity
treatments during different phases of shoot emergence and development on Ma bamboo shoots. The
amount of total chlorophyll, carotenoids, gas exchange indicators, and biosynthetic products were
also compared to explore the response mechanism of shoot germination on downstream biochemical
pathways. We found that compared to the L0 treatment (full sunlight), the number of germinated
bamboo shoots under the L1 treatment (40% light) increased significantly by 44.07% and 101.32% in
the shooting initial-phase and metaphase, respectively (p < 0.05). Additionally, the net photosynthetic
rate (Pn) during the shooting initial-phase and metaphase was the highest in the L1 treatment, while
the L4 (10% light) and L0 treatments inhibited chlorophyll synthesis. Further, the accumulation
of leaf carbon (C) and nitrogen (N) was higher in the L1 treatment than in other treatments. Ma
bamboo showed rich carbohydrate contents under L0 and L1 treatments in the shooting initial-phase
and metaphase. Principal component analysis (PCA) also revealed that the L1 treatment positively
correlated with bamboo shoot germination and biochemical activity during the shooting periods.
Ultimately, our data suggest that the L1 treatment is the most optimal for promoting bamboo shoot
germination, providing a scientific basis for cultivating shoot-used bamboo forests in southern China.

Keywords: gradient light environment; bamboo shoot germination; photosynthetic characteristics;
photosynthetic products; endogenous hormones

1. Introduction

In forests, light is a dynamic resource that changes over hours, days, weeks, or months
depending on the time of day and seasonal changes [1]. Besides temperature and moisture,
light is also an important component that affects the survival, growth, regeneration, and
final productivity of understory seedlings and saplings [2–4]. There are significant spatial
and temporal differences in light intensity between plant canopies, understory, or gaps, and
most plants are shaded to some extent throughout their life cycle. Plant growth requires an
optimum photosynthetic flux density (PPFD). A very high or low PPFD can affect plant
photosynthesis, ultimately impacting plant productivity and limiting plant growth and
development [5]. Therefore, reasonable stand structures and understory light condition
improvements are crucial to enhance the productivity of plantation forests.

Light transmittance is essential for plant growth, depending on the species and habitat.
In the dual-purpose bamboo forest, appropriate light transmittance is conducive to the
development of bamboo shoots and underground stems [5]. Further, the increase of
woodland shading that creates lower light intensities can inhibit the reproductive growth
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of Fargesia entrico and prolong its vegetative growth. However, others have also found
that the number of bamboo shoots decreases with increased forest transmittance [6]. High
light transmittance is vital for forming the early shoots of Bambuas entricose and impacts
the number of shoots and Hsinchu in a cluster, which increases with the increase of
light transmittance [7]. With Indocalamus decorus, full sunlight is crucial to promote the
maximum number of lateral bud germination, while shading causes these characteristics
to decrease [8]. Ultimately, light can improve the germination rate of bamboo shoots by
stimulating shoot differentiation, which is beneficial to advance bamboo forest management
and improve their productivity.

Ma bamboo is one of the most critical bamboo species in the world and is mainly
cultivated in southern China. It is a large “clump” style bamboo from the Poaceae family,
with extremely high economic, ecological, and social value. Compared with scattered
bamboo, tufted bamboo is an integrated and independent system, and its nutrients are
transferred between reactants to improve resource utilization efficiency [9]. However, this
physiological integration is usually affected by the density of a bamboo forest, where the
higher the density of the forest, the lower the effect [4,10]. Further, an increase in stand
density will severely limit the light transmittance in the woods [11,12]. Chen et al. [7,13]
have shown that light can stimulate the germination of B. oldhamii shoots, and the number
of shoots in a cluster increases significantly with increased light transmittance in a forest.
Additionally, a reasonable bamboo forest density structure significantly improves the
forest’s lighting conditions, stimulates shoot germination, and increases yield.

The southern part of China has sufficient rainfall and suitable temperatures in the late
spring and early summer. However, increased rainfall during early bamboo shoot develop-
ment can severely affect forest productivity [14]. During the shooting stage, the light under
the forest becomes an important environmental factor that affects the germination of the
bamboo shoots. In the early stages of shoot formation, the rainy weather aggravates natural
light resources, and the low light environment seriously inhibits the normal germination of
the bamboo shoots, eventually diminishing the bamboo shoots’ production [15,16]. How-
ever, little research has been performed with Ma bamboo to understand shoot emergence
and the response mechanisms of bamboo leaves to different light gradients.

This study aimed to investigate different light intensities with artificial shading to
simulate the lighting environment of Ma bamboo forests under natural operating conditions
to understand the variables responsible for their productivity. We assigned sufficient natural
light (100% light) to the lowest understory PPFD (10% light) as the simulated intensity
gradients. Additionally, the response mechanisms of bud germination and biological
plasticity to different light intensities were explored, and the physiological response strategy
of bamboo shoot germination was also revealed. Further, we characterized the number of
germinated bamboo shoots and the biological characteristics of the leaves to changes in
light intensity at each shooting stage, which included their photosynthetic capacity, mineral
nutrients, carbohydrate storage, and endogenous hormones. Ultimately, this work provides
a theoretical basis for adjusting the stand density of Ma bamboo and the efficient cultivation
of bamboo shoots that will increase bamboo forest productivity in southern China.

2. Materials and Methods
2.1. Plant Materials

Three-year-old Ma bamboo seedlings were used that had an average seedling height
of 105.51 cm, an average ground diameter of 4.66 mm, and an average crown width of
71.11 cm (north–south) and 68.95 cm (east–west). Seedlings were planted in a non-woven
bag with red soil. The weight of the potted substrate was 15.99 kg, and the substrate pH was
5.77. The organic carbon content was 13.67 g·kg−1, and the total nitrogen, total phosphorus,
and total potassium contents were 0.35, 0.50, and 50.01 g·kg−1, respectively. The pot ex-
periments were conducted at Fujian Agriculture and Forestry University (119◦14′47.37′′ E,
26◦05′29.88′′ N).
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2.2. Experimental Design

The pot experiments used a completely randomized experimental design, and the
shading treatment was carried out on one day (10 April 2019). A total of five light intensities
were set in the experiment: 100%, 40%, 30%, 20%, and 10%, which were denoted as L0, L1,
L2, L3, and L4, respectively. Each treatment contained eight replicates. Shading sheds (3 m
in height, 3 m in length, and 6 m in width) were built with steel frames and black plastic
shade nets. Each shed was separated by 1.20 m to reduce mutual interference between
treatments.

The setting of the light intensity gradient was based on natural management conditions.
The bamboo forests that showed differences in the number of stands due to different land
types (i.e., forest land, farmland, and riparian alluvial land) were selected as the survey
objects. The Taiwan Hipoint portable and handheld spectrometer (HP350) was used to
measure simultaneous understory illuminance and PPFD stage changes. With this, the
ratio of PPFD under the forest and the bare ground was used to convert the light intensity.
The measurement time was 6:00–18:00, and measurements were collected every 2 h interval.
Measurements were collected every 15 d starting in February 2019 in four consecutive
cycles to comprehensively obtain the light intensity changes under different common
management types in Ma bamboo forests (Figure A1). The measurement results showed
that the variation range of the light intensity under the Ma bamboo forests was 10%–40%.
Shading was used to simulate lighting under the forest in the pot experiments. The average
PPFD that corresponded to 8:00 and 15:50 (Table A1) was selected. The PPFD value, using
different numbers of needles and layers of plastic shading nets, was measured to obtain the
corresponding light intensity.

After one month of light treatments, the light-response curve of the leaves was de-
termined, and the light saturation point (LSP) was obtained. In the shooting initial-phase
(mid-June 2019), shooting metaphase (early August 2019), and shooting anaphase (early
October 2019), the number of shoot buds in each period was counted, and the physiological
indicators of the leaves were determined. During the experiments, the soil moisture content
was kept above 60%, and 10 g of compound fertilizer (N:P:K = 15:15:15) was applied to
each cluster in May. The maximum temperature in the shed was ≤35 ◦C, and the relative
air humidity was maintained at ≥85%. During the test period, management measures such
as weeding, insecticide, and pruning were also performed.

2.3. Measurement Indicators and Methods
2.3.1. Investigation of the Germination Number for Bamboo Shoots

Without destroying the soil structure, the number of germinated shoots was recorded
after the shoot tips were unearthed (Figure A2), and the tip length was usually ≤5 cm [17].
At the beginning of each treatment, the number of shoots in each shooting stage was
counted every day. In the shooting initial-phase and metaphase, the germinating new
shoots were cut off from the base after they had grown to a height of approximately 50 cm,
and the new bamboo shoots were retained in the shooting anaphase (n = 8 per treatment).

2.3.2. Determination of Leaf Photosynthetic Characteristics
Photosynthetic Pigments

Each pot’s upper, middle, and lower mature leaves were selected as mixed samples,
and pigments were extracted by the direct extraction method, as stated in Gao [18]. The
optical densities of the extracts were measured at 645, 663, and 470 nm by UV spectropho-
tometer (TU-1901, Beijing Puxi General Instrument Co., Ltd., Beijing, China), and the
total chlorophyll content (Chls) and carotenoids (Car) were calculated according to the
Lichtenthaler method (n = 4 per treatment) [19].

Gas Exchange Parameters

Mature functional leaves were selected from the apex of each clump for gas exchange
determination. Photosynthetic characteristics were measured using the portable photosyn-
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thesis instrument (LI-6400 XT, LI-COR Biosciences, Lincoln, NE, USA) with red and blue
light sources and a light saturation intensity of 1600 µmol·m−2·s−1 PPFD. Before the assay,
the leaves were placed under the 1600 µmol·m−2·s−1 PPFD light intensity for 20–30 min.
The measurement indicators include net photosynthetic rate (Pn), stomatal conductance
(gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) (n = 4 per treatment).

2.3.3. Determination of Carbon (C), Nitrogen (N), and Non-Structural Carbohydrates
(NSCs) Contents in Leaves

Each pot’s upper, middle, and lower mature leaves were selected in mixed samples
(n = 4 per treatment). Fresh samples were used to determine sucrose, starch, and soluble
sugar contents. All indicators were measured using kits produced by Suzhou Keming
Biotechnology Co., Ltd., Suzhou, China. The NSCs content was the sum of soluble sugar
and starch contents. Dry samples were used to determine total N and C contents using a
carbon-nitrogen elemental analyzer (Vario Max, Elementar, Langenselbold, Germany). The
carbon-nitrogen ratio (C/N) was calculated based on the carbon-nitrogen results.

2.3.4. Determination of Endogenous Hormone Contents in Leaves

Each cluster’s upper, middle, and lower mature leaves were selected from different
standing bamboo for mixed samples (n = 4 per treatment). The extraction and separation
of indole acetic acid (IAA), zeatin (ZT), gibberellins (GA3), and abscisic acid (ABA) were
carried out using the improved method from Li et al. [20]. After sample purification,
high-performance liquid chromatography (Shimadzu LCMS-2010, HPLC, Kyoto, Japan)
was used to determine if IAA, ABA, ZT, and GA3 were present.

2.4. Data Analysis

Data analysis was performed using Excel 2016 and SPSS 22.0 software. One-way
ANOVA was used to test the significance of each shooting stage (α = 0.05), and principal
component analysis (PCA) was used to analyze the relationship between the number of
germinated bamboo shoots and the biochemical characteristics of the leaves. Prism v. 8.0.1
(GraphPad, San Diego, CA, USA) and Origin 9.5 (OriginLab OriginPro 2019) were used
for charting.

3. Result
3.1. Effects of Light Intensity on the Number of Germinated Shoots for Ma Bamboo

To investigate the effect of different light intensities on germinated bamboo shoots,
we analyzed the number of Ma bamboo shoots in each germination phase. Figure 1 de-
scribes the number of germinated shoots for each light treatment group (L0 to L4) in
the initial-phase, metaphase, and anaphase. The L1 treatment had the highest number
of germinated shoots at each shooting stage. In the shooting initial-phase, the num-
ber of germinated shoots in the L2 and L3 treatments increased by 35.59% and 26.32%
(p < 0.05), respectively, while the metaphase also increased by 8.48% and 8.67% (p < 0.05),
compared to the L0 treatment. However, the number of germinated shoots in the L2 and L3
treatments decreased by 37.78% and 38.89%, respectively, compared with the L0 treatment
in the anaphase. Compared with other treatments, the L4 treatment inhibited the shoot
germination and was not significantly different from L0 at each shooting stage.
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Figure 1. Effects of different light intensities on the number of germinated shoots for Ma bamboo.
Note: L0, L1, L2, L3, and L4 refer to 100%, 40%, 30%, 20%, and 10% of natural light, respectively.
Values are the means ± SE of eight replicates per treatment. Different letters indicate significant
differences between treatments at the same shooting period (p < 0.05).

3.2. Effects of Light Intensity on Leaf Photosynthetic Properties
3.2.1. Effects of Light Intensity on Leaf Photosynthetic Pigments

To understand the effect of the different light intensities on biosynthesis pathways,
such as photosynthesis, we extracted total chlorophyll (Chls) and carotenoids (Car) from
leaves. We analyzed their amounts among the different treatments and varying shooting
stages, which is illustrated in Figure 2. Compared with the L0 treatment, the contents
of Chls and Car in the shading treatments (except the L3 treatment) increased at the
shooting stages. The amounts of Chls and Car with each treatment increased in the
shooting anaphase compared to the shooting initial-phase and metaphase. Additionally,
the quantities of Chls and Car in the L2 and L3 treatments were significantly higher in the
shooting anaphase than those under the L0 treatment (p < 0.05).

3.2.2. Effects of Light Intensity on Leaf Gas Exchange Indicators

After investigating light intensity effects on photosynthetic pigments, we analyzed leaf
gas exchange indicators to understand the productivity of the Ma bamboo in different light
conditions. Figure 3 illustrates the different gas exchange indicators for net photosynthetic
rate (Pn, A), stomatal conductance (gs, B), intercellular CO2 concentration (Ci, C), and
transpiration rate (Tr, D). In the shooting initial-phase and metaphase, Pn increased with
the L1 treatment but decreased with the decrease of light intensity with treatments L2–L4.
With the shooting anaphase, Pn under the L0 treatment was significantly higher than
in other treatments (p < 0.05). Under different light intensities, there were significant
differences in leaf gs in the shooting initial-phase and metaphase (p < 0.05), and there
were also substantial differences between L0 and L1 treatments in the shooting anaphase
(p < 0.05). With Ci, light intensities also significantly affected the shooting initial-phase
(p < 0.05). Ultimately, these variable trends for gs and Tr were the same under different
light intensities, and the various treatments had significant effects on Tr in the shooting
metaphase and anaphase (p < 0.05).
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Figure 2. Effects of different light intensities on the contents of total chlorophyll (Chls, (A)) and
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Different letters indicate significant differences between treatments at the same shooting period
(p < 0.05).
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Figure 3. Effects of different light intensities on leaf gas exchange indicators for (A) net photo-
synthetic rate (Pn), (B) stomatal conductance (gs), (C), intercellular CO2 concentration (Ci), and
(D) transpiration rate (Tr) of Ma bamboo. Note: L0, L1, L2, L3, and L4 refer to 100%, 40%, 30%, 20%,
and 10% of natural light, respectively. Values are the means ± SE of four replicates per treatment.
Different letters indicate significant differences between treatments at the same shooting period
(p < 0.05).
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3.3. Effects of Light Intensity on Leaf C and N Properties

After investigating gas exchange indicators, we also explored light intensity effects on
carbon and nitrogen in the Ma bamboo leaves to understand its impact on downstream
chemical processes, which are illustrated in Figure 4A–C. In the shooting initial-phase, the
contents of C and N were significantly increased under L1, L2, and L3 groups compared
with L0 (p < 0.05). However, shading treatments significantly decreased N and C contents
in the shooting metaphase and antaphase compared with L0 (p < 0.05). L4 treatment can
highly inhibit the accumulation of C and N at each shooting period (p < 0.05). In the
shooting initial-phase, each treatment’s C and N contents were lower than those in the
shooting metaphase and anaphase. Interestingly, the C/N of the shading treatments was
significantly higher than that of the L0 treatment in the shooting metaphase, which is
contrary to the accumulation of C and N (p < 0.05).
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natural light, respectively. Values are the means ± SE of four replicates per treatment. Different
letters indicate significant differences between treatments at the same shooting period (p < 0.05).

3.4. Effects of Light Intensity on Leaf Carbohydrates

Along with gas exchange indicators and C and N contents, we also investigated the
effect of light intensity on leaf carbohydrates. Figure 5A–D displays the amounts of sucrose,
soluble sugar, starch, and NSCs in Ma bamboo leaves throughout the different shooting
phases and light treatment groups. In the shooting initial-phase, the contents of sucrose,
starch, and NSCs in the L1 treatment were higher than those in the L0 treatment. In the
shooting metaphase, the shading treatments significantly decreased the leaf sucrose and
NSCs (p < 0.05), and all carbohydrates showed the lowest values in the L2 treatment
compared with L0. At the end of shoot growth, light treatment had no significant effect
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on the number of carbohydrates in the leaves, while shading treatments increased starch
and NSCs contents compared with L0. Contrary to the shooting metaphase, however, the
soluble sugar, starch, and NSCs in the leaves in the shooting anaphase showed the highest
amounts with the L2 and L3 treatments.
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3.5. Effects of Light Intensity on Leaf Endogenous Hormones

We further explored downstream biochemical effects with the different light intensities
by extracting and analyzing the concentrations of endogenous hormones, which are illus-
trated in Figure 6A–D. The contents of IAA and GA3 were significantly decreased under the
shading treatments compared to the L0 treatment in three shooting periods (both p < 0.05).
In the shooting initial-phase, the ZT content in the L1 treatment was higher than in the L0
treatment (10.89%), while the ZT in other shading treatments was significantly lower than
those in the L0 treatment (p < 0.05). Conversely, ABA content in the L0 and L1 treatments
was lower than that in other shading treatments. In the middle stage of shoots, the ZT
and ABA contents also showed opposite changes to the shooting initial-phase between
treatments (p < 0.05). In the shooting anaphase, ZT and ABA showed the highest amounts
in the L2 and L3 treatments, which was different from the changes in IAA and GA3.
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3.6. PCA of Light Intensity on the Number of Germinated Shoots and Leaf Biochemical Parameters

After investigating the effects of the varying light intensities on gas exchange in-
dicators, pigment characteristics, C and N amounts, carbohydrate characteristics, and
endogenous hormones, we used this information to perform PCA analyses to compare the
germinated bamboo shoots to these specific biochemical attributes. Figure 7A–C displays
these data as a PCA diagram with the number of germinated shoots and all the previous
biochemical characteristics described in Figures 1–6. The PCA analysis showed that the
cumulative variance contribution rate of the first two principal components was 82.71%,
85.10%, and 66.58%, respectively, in the shooting initial-phase, metaphase, and anaphase;
this could explain the variation information of the data.

In the shooting initial-phase, the shoot strongly correlated to Car, Chls, SU, ST, NSCs,
C, and N in PC1. Leaf IAA, ZT, and GA3 were highly correlated with SS, Pn, and gs, which
negatively correlated to ABA. Additionally, the L1, L2, and L3 treatments were strongly
related to PC1. In the shooting metaphase, the shoot had strong correlations with Car,
Chls, Pn, Tr, gs, and ABA in PC1. Additionally, leaf carbohydrates highly correlated with
IAA, ZT, and GA3. Further, L0 and L1 treatments also had positive correlations with PC1.
In the shooting anaphase, the correlation between the shoot and PC2 was higher than
PC1. Additionally, the shoot had strong positive correlations with Pn and gs, and negative
correlations with leaf photosynthetic pigments, carbohydrates, and endogenous hormones
while those indicators were interrelated. Further, the L0 and L1 treatments were strongly
correlated with PC2.
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4. Discussion
4.1. Photosynthetic Mechanism on Shoot Germination of Ma Bamboo under Light Intensity

Yorio et al. found that plants need to synthesize more chlorophyll to improve pho-
tosynthesis efficiency and adapt to weak light environments [21]. Compared with full
sunlight, Ma bamboo leaves synthesized more photosynthetic pigments during shooting
periods in a shaded environment to improve the leaf—light utilization rate [22]. We found
that the number of germinated shoots had a strong positive correlation with Chls and
Car synthesis in the initial-phase and metaphase. Ma bamboo accumulated higher Chls
and Car concentration with increased shooting capacity from the 20%–40% light. These
results indicate that enough Chls is synthesized to use light energy in the weak light en-
vironment and ensures plant productivity, consistent with past Emmenopterys henryi [23]
and Acer davidii research [24]. Additionally, the leaves showed more significant potential
for carbon assimilation [25] with higher accumulations of photosynthetic pigments in the
shooting anaphase. In contrast, Chls, Car, and the number of germinated shoots had weak
correlations.

Besides nutrient effects, leaf gas exchange indices showed significant plasticity in
response to substantial light [26,27]. Ma bamboo showed a higher Pn under full sunlight
during the shoot development. However, the 40% light increased Pn in the shooting
initial-phase and metaphase, which had more advantages to enhance the leaf’s solid
carbon capacity and has been confirmed in previous research [28]. In the metaphase and
anaphase, the number of germinated shoots showed a strong positive correlation with
Pn and gs. Specifically, the 40% light positively regulated Pn and gs, increased leaf net
photosynthetic capacity, enhanced photosynthetic carbon fixation capacity, and provided
a material basis for shoot germination. Higher gs can improve the optical biochemical
pathway and promote the accumulation of photosynthesis products [19,29,30], which
provides the material foundation for bamboo shoots’ germination. In the shooting anaphase,
Pn and gs elicited the highest performance under full sunlight conditions, and the higher
PPFD promoted the germination of the lateral bamboo shoots. In the shooting metaphase,
the number of shoot germination was positively correlated with Tr. Under 40% light, the
high Tr value at the shooting stage enabled Ma bamboo to have a higher transpiration rate
and water transport capacity. Ma bamboo can maintain a good leaf water status and avoid
the effects on shoot germination caused by the weakening of photosynthetic biochemical
pathways due to stomata limitation [31,32].
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4.2. The Effects of Leaf Photosynthesis Products on Shoot Germination of Ma Bamboo under
Light Intensity

The concentration of C and N in plants reflects nutrient absorption, utilization effi-
ciency, and adaptation to environmental stress. In a specific range, higher leaf N content
can prolong the photosynthesis time, accelerate the photosynthetic rate, and improve the
nutrient absorption capacity of plants [33]. In comparison, lower N content may lead to a
decrease in Chl a, resulting in reduced Chl a/b and photosynthetic efficiency of leaves [34].
In the shooting initial-phase, the number of germinated shoots had a strong positive cor-
relation with the photosynthetic pigment and C and N content. Under 40% light, the
contents of leaf Chls and Car and the value of Pn increased, and the photosynthetic capacity
was enhanced, which promoted the accumulation of C and N in leaves. Additionally, the
increased leaf N content can put more N into photosynthetic pigments to improve leaf CO2
fixation capacity by enhancing the low light utilization efficiency [35,36]. Consequently,
the number of germinated shoots in 40% light was higher than in other treatments for the
initial-phase. However, the number of germinated shoots was not strongly correlated with
the C-N metabolic indicators in the metaphase.

In the anaphase, C, N, and C/N were important parameters that affected the germina-
tion of bamboo shoots. The C and N contents under 40% and 100% light were significantly
(p < 0.05) higher than other treatments, consistent with the changes in the number of ger-
minated shoots. With the prolongation of the shooting periods, the natural light intensity
gradually decreased, and the photosynthesis of plants growing in low light conditions
fixed less C and required fewer nutrients than plants growing in high light [37,38], which
resulted in insufficient nutrient power for bud germination. The contents of C and N in the
shooting anaphase were highly (p < 0.05) reduced in 20%–30% light, and the number of
germinated shoots decreased.

The shade-tolerant tree species can accumulate higher carbohydrate contents under
weak light [39,40]. In the shooting initial-phase, the germination of bamboo shoots had
a strong positive correlation with sucrose, starch, and NSCs. Compared to full sunlight,
the accumulation of sucrose, starch, and NSCs in the leaf under 40% light provides a
material basis for shoot germination [41]. In the shooting metaphase, the reduction of
leaf carbohydrates under 10%–40% light may be related to the photosynthetic capacity
compared to full sunlight, where Ma bamboo under 40% light can maintain a higher
Pn, which was more likely to allocate more C to meet other metabolic needs. Therefore,
reducing leaf NSCs can meet the needs of shooting in the underground part, to improve
the ability of bamboo shoots to germinate, which is consistent with Hu et al. [42]. The
accumulation of photosynthetic products in the leaves is a negative feedback mechanism
for the accumulation of photosynthesis products [43,44]. In the shooting anaphase, the
accumulation of NSCs under 10%–30% light led to decreased Pn in the leaves. The soluble
sugar, starch, and NSCs were negatively related to the germination of bamboo shoots in
the shooting anaphase. A considerable accumulation of carbohydrates in the leaves and
the decrease in Pn would affect lateral bamboo shooting under 10%–30% light. Conversely,
the collection of carbohydrates under 40% and 100% light decreased. However, it still
maintains a high Pn, possibly because the distribution of photosynthesis to bamboo stump
ensured the nutritional needs of lateral bamboo shoots [45,46].

4.3. The Effects of Leaf Endogenous Hormones on Shoot Germination of Ma Bamboo under
Light Intensity

Previous studies have shown that the delayed effect of weak light stress on the tiller
of Gramineae is complicated by the content of their endogenous hormones [47]. In the
shooting initial-phase, the leaves contained hormone concentrations at IAA > GA3 > ZT
> ABA, respectively, which indicated that the changes in IAA and ABA were central
in responding to different light gradient changes. Specifically, high IAA content was
conducive to accumulating photosynthesis products [1]. In the shooting initial-phase, IAA
had a strong positive correlation with soluble sugar. High IAA content was conducive
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to the accumulation of soluble sugar in leaves under 40% and 100% light. Additionally,
Rook et al. found that high IAA levels can relieve the stoma closure caused by ABA
accumulation [48]. We also found that IAA had strong positive correlations with Pn and
gs. Further, the ABA content was the lowest under 40% light. Therefore, it can enhance
photosynthesis by improving the leaf net photosynthetic capacity and promoting the
stoma’s opening [49] to maintain the high Pn and gs. However, in 10%–30% light, IAA was
significantly (p < 0.05) lower than that of 40% and 100% light, and ABA showed higher
accumulation, which decreased Pn, gs, and carbohydrates. In the shooting initial-phase,
the endogenous hormone content in the leaves did not have a strong correlation with the
number of germinated shoots. These changes in endogenous hormones could affect a
plant’s photosynthetic ability and photosynthesis products, which will indirectly affect the
shoots of Ma bamboo.

In the shooting metaphase, ABA had a strong positive correlation with the number
of germinated shoots. The ABA content under 40% light was higher, and the number of
germinated shoots was significantly (p <0.05) higher than in other treatments, which was
different from other works where the accumulation of ABA was negatively related to the
tiller [47], possibly because the ABA content enhanced the ability of plants to adapt to
low light and relieved the inhibitory effect of shooting due to the high temperature and
soil water deficit [50]. Meanwhile, other studies have shown that reducing GA3 content
in leaves contributes to the growth of tillers [51,52]. In the shooting metaphase, GA3
content under 30%–40% light significantly decreased (p < 0.05), which helped promote
shoot development. Additionally, GA3 content can promote the synthesis of IAA, and
low GA3 content can indirectly control and reduce IAA content [53], which is consistent
with the results of this study. With this, the synergistic effect of IAA and GA3 indirectly
affects plant assimilation allocation [52,53]. Further, IAA and GA3 had a strong positive
correlation with carbohydrates, and the contents of IAA and GA3 under 30%–40% light
were significantly lower than those under full sunlight. However, their interaction could
promote the distribution of carbohydrates to the bamboo stump and indirectly affect the
germination of the bamboo shoots.

In the shooting anaphase, the changes of IAA and GA3 were consistent with the trend
of Pn and Gs, both performing highest at 40% and 100% light, which did not negatively
regulate the net photosynthetic capacity. However, in 20%–30% light, higher ABA and
ZT related closely to abundant carbohydrates, which had a negative feedback mechanism
for net photosynthetic capacity. Low ABA and ZT concentrations in 40% and 100% light
can improve photosynthesis [54] and photosynthetic carbon fixation capacity, which were
conducive to promoting shoot germination [55]. These also fully indicated that ABA and
ZT had an important regulatory role in the net photosynthetic ability and the accumulation
of photosynthetic products at the end of the shoot.

5. Conclusions

In this study, we found that the synthesis and distribution of photosynthesis products
by improving the photosynthetic characteristics of bamboo were affected by moderate light
intensity. Changing the endogenous hormones to enhance the photosynthetic capacity and
photosynthate transport during the bamboo shooting period stimulated the germination
of bamboo stumps. The 40% light contained higher Chls and Car, maintained higher Pn,
and increased photosynthetic C fixation capacity in the leaves, which was beneficial to the
accumulation and distribution of leaf carbohydrates. These can help provide nutrients
for bamboo shoot emergence throughout the bamboo shoot period. Under 40% light, the
contents of IAA and GA3 were relatively higher, which could enhance photosynthetic
capacity, promote carbohydrate transfer, and indirectly increase the number of germinated
shoots. In the shooting initial-phase and anaphase, the lower ABA concentration in the
leaves indirectly enhanced leaf photosynthesis, while in the shooting metaphase, higher
ABA improved the physiological status of bamboo at the shooting stage and was benefi-
cial to stimulate shoot germination. Therefore, moderate shading can improve the light
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adaptation ability of Ma bamboo seedlings. Ultimately, this study shows that cultivation
and productivity can be improved by adjusting the stand structure and maintaining the
appropriate light environment and suggests new light intensity information that can be
used to strengthen bamboo productivity in other regions in China.
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Figure A1. Daily variation trend of light intensity under different management types for Ma bamboo.
Note: The line graph represents the daily change in PPFD, and the bar graph represents the daily
illuminance change. L0, L1, L2, L3, and L4 refer to 100%, 40%, 30%, 20%, and 10% of natural light,
respectively.
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Table A1. Variation of average light intensity under different management types of Ma bamboo.
Note: Data in the same column with different letters denote a significant difference (p < 0.05).

Treatments
Light Intensities

(%) Illuminance (lx)
Average PPFD

(µmol·m−2·s−1)

The PPFD at the Time Corresponds to
the Average PPFD (µmol·m−2·s−1)

8:00 15:50

L0 100 30491.43 ± 569.73 a 519.62 ± 64.20 a 532.55 ± 20.37 a 545.78 ± 33.59 a
L1 40 11394.89 ± 580.98 b 203.89 ± 10.56 b 202.76 ± 10.97 b 206.65 ± 34.02 b
L2 30 9070.34 ± 570.49 b 164.57 ± 9.53 bc 177.18 ± 8.35 c 157.03 ± 10.25 c
L3 20 6248.78 ± 503.85 b 110.34 ± 26.06 c 79.87 ± 20.27 cd 83.66 ± 7.39 cd
L4 10 3129.54 ± 498.35 b 53.64 ± 13.01 c 53.25 ± 10.04 d 54.58 ± 11.25 d
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