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Abstract: Fine roots (ϕ ≤ 2 mm) play an important role in the process of material and nutrient
cycling in forest ecosystems, but the effect of tree species diversity on the functional characteristics
of fine roots is unclear. In this study, 1−7 subtropical communities with different species richness
were selected to study the morphological characteristics, productivity (PRO), and turnover rate
(TUR) of fine roots by continuous soil core extraction, ingrowth soil core method, and root analysis
system. The effects of tree species diversity on fine root morphological characteristics, PRO, and
TUR are also analyzed. The results showed that with the increase in tree species diversity in the
community, the effect of fine root morphological characteristics including specific root length (SRL)
and specific surface area (SSA) of each community was not significant, but the fine root PRO in the
community increased from 71.63 g·m−2·a−1 (Ligustrum lucidum pure forest) to 232.95 g·m−2·a−1

(Cinnamomum camphora mixed forest with seven species richness communities), and the fine root TUR
increased from 0.539 times·a−1 to 0.747 times·a−1. Correlation analysis and redundancy analysis
showed that species richness, root functional traits, and soil physicochemical properties were impor-
tant driving factors affecting root characteristics. The increase in tree species diversity did not change
the morphological characteristics of fine roots but increased the PRO and TUR of fine roots.

Keywords: fine root morphological characteristics; fine root productivity; fine root turnover rate;
species diversity

1. Introduction

Biodiversity plays an important role in the energy flow and material cycle of the
ecosystem [1–6], and the relationship between biodiversity and productivity is a hot issue
in current research [7]. As an important biological factor in the ecological environment,
biodiversity has a certain impact on the productivity of the community. Most previous
studies on the relationship between diversity and productivity are based on grassland
ecosystems [8–11] or desert ecosystems [12]. Some scholars believe that productivity
increases with the increase in species richness in the community [13–16], but others believe
that there are three relationships between productivity and diversity including negative
correlation [17–20], S-curve [21], and irrelevant correlation [22,23]. The above research
conclusions are based on the above-ground parts of plants. As an important participant,
fine roots (ϕ ≤ 2 mm) also play important roles in carbon allocation and nutrient cycling
in ecosystems. Due to the deep distribution of woody plant roots and the difficulty
of sampling, there is a lack of research on the impact of plant diversity on ecosystem
productivity and turnover rates based on the underground part of plants.

The turnover of fine roots plays an important role in the carbon and nutrient cycle of
the ecosystem [24–27]. Plant diversity can have an impact on productivity, and it is bound
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to have a certain impact on the turnover rate of fine roots. Although previous scholars have
carried out in-depth research on the turnover rate of fine roots, most of them have analyzed
the turnover rate of fine roots from the perspective of different environments [28,29]
and species [30]. There are few studies on the effect of diversity on the turnover rate of
underground fine roots from the perspective of plant diversity. Therefore, the mechanism
of the effect of plant diversity on fine root turnover needs to be further explored.

The relationship among plant diversity, fine root productivity, and fine root morpho-
logical characteristics is often influenced by abiotic factors such as soil nutrients [9,29,31,32].
The distribution of nutrient resources in soil has a high degree of spatial heterogeneity, and
a large number of roots are easily distributed in areas with sufficient nutrients [33–39]. So,
scholars believe that the distribution strategy of nutrient resources is an important reason
for the increase in root productivity [40]. Soil total phosphorus, soil available nitrogen and
available boron [29,30], soil moisture [41,42], temperature [43], pH value [44,45], etc., can
affect the fine root productivity of different plant communities. In communities with high
species richness, differences in foraging strategies of plant roots and competition among
roots lead to root niche differentiation, which allows roots to acquire more resources in a
competitive environment, resulting in increased root productivity [13,46–48]. In addition,
in order to fully absorb soil resources, the root system will be adjusted according to its
own root function characteristics, such as adjusting Specific surface area (SSA), specific root
length (SRL), root tissue density (RTD), and root diameter [48–50] in response to nutrient
availability. However, our understanding of how root traits predict root productivity
and morphological characteristics independently of soil nutrients and forest community
properties is still unclear.

So far, more and more studies have explored the effects of biological factors such as
tree diversity and species diversity on fine root productivity [13,28,51,52] and fine root
morphological characteristics [48–50]. However, fine root research still faces great chal-
lenges due to the labor-intensive effort required for fine root sampling and the limitations
of identifying fine roots of different tree species in different communities [49,53,54]. In
addition, the identification of fine roots of different tree species is often used to visually
identify the types of fine roots in mixed samples by their morphological characteristics, such
as color, size, odor, and epidermal characteristics [6,51,55]. Due to the above difficulties in
the sampling and identification of roots in the community, the current research on plant
roots in the community is relatively lacking.

In previous studies on the effect of plant diversity on root productivity and mor-
phological characteristics, most scholars believe that the increase in plant diversity in
the community, the intensification of root competition among species, and the niche
differentiation of roots of different species are mainly controlled by the hypothesis of
niche complementarity [2,56–59]. The niche complementarity hypothesis can be divided
into two types: the positive complementarity effect and the negative complementarity
effect [19,20,32]. It has been reported that the higher the species richness in the community,
the greater the fine root productivity [60,61]. The increase in root productivity is attributable
to the strong foraging ability and competition of roots in high species richness communities,
leading to the emergence of root niche differentiation, which in turn isolates root space and
fully occupies soil space to make full use of soil resources [13,32,62–64]. It will also change
the morphological characteristics of the root system [65]. In addition, increased productivity
in the community may also be affected by legumes [32]. After the rhizobia of legumes are
decomposed, they can increase the N content of the soil and promote root growth. However,
some scholars have also found that diversity also has negative complementary effects on
the productivity of plant communities, such as antagonism between plants [17,18]. Due
to the physical and chemical interference of plants, the productivity of mixed planting is
lower than the expected productivity of single planting [56,66]. The above findings were
confirmed by comparing the differences in root characteristics in two or three mixed forests
with those in a single mixed forest [23,27]. However, with the increase in species richness
in the community, how the fine root productivity and morphological characteristics of the
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community will change, and what is the reason or mechanism of the change, still needs to
be discovered.

Therefore, in this study, seven groups of plant community types with different species
richness levels were selected in the coastal area of Shanghai to study the variation of fine
root productivity, turnover rate, and morphological characteristics with plant diversity,
and to explore the effect of fine roots on soil properties and plant diversity. The following
hypotheses were verified through research: (1) when tree species diversity increases, the
morphological characteristics of fine roots did not change; (2) with the increase in tree
species diversity, the productivity and turnover rate of fine roots accelerated. Based on the
above two hypotheses, to explore the effect mechanism of tree species diversity on fine root
productivity, turnover rate, and morphological characteristics.

2. Materials and Methods
2.1. Study Area

The study area is located in Lingang New City, Shanghai (120◦53′–121◦17′ E,
30◦59′–31◦16′ N). The region has a subtropical oceanic climate with warm and humid
climate, abundant rainfall, and four distinct seasons. The average temperature in the past
three years is 15.2 ◦C–15.8 ◦C, the average annual precipitation is 900–1050 mm, and 60%
of the annual rainfall is mainly concentrated in May–September (Figure 1); the total annual
sunshine hours are 2000–2200 h.

Figure 1. Comparison of average temperature and rainfall in Shanghai from 2016 to 2018. (a) Average
temperature; (b) Average rainfall.

This area has high soil salinity (≥0.4%), high soil pH (pH > 8.5), low soil organic matter
content (<20 g·kg−1); the groundwater level is between 0.5–2.5 m, and the soil moisture
content is between 18.07−32.48%; the soil bulk density was between 1.24−1.46 g·cm−3, the
total nitrogen content was between 0.84 ± 0.14 g·kg−1, and the total phosphorus content
was between 1.27 ± 0.08 g·kg−1 [67–69]. The ecological restoration forest planting plan
was implemented in February 2011 and completed in April 2011. According to different
planting methods, it can be divided into community types composed of different tree species
diversity, each type has 5 repetitions. The length and width of this entire experimental site
are 900 m and 10 m, respectively. The total area is about 9000 m2.

2.2. Setting of Sample Sites

In January 2018, in the experimental area, communities with different species richness
composed of 1–7 tree species were selected as the research objects (SR1-SR7), and the
average tree height, DBH, crown width, planting density, coverage, and above biomass
of the communities were selected (Table 1). In each community type, the area was set as
10 m × 10 m with smooth surface each plot, and the plots were surrounded by 1 m × 1 m
root-isolating boards. The thickness of the understory litter layer was 1 cm, and no herbs
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grew; 5 parallel plots were set for each community type, and the interval between each plot
is more than 50 m, in order to avoid edge effects of other plots.

Table 1. Characteristics of plant communities within different tree species richness.

Species
Richness Tree Species Height

(m)
DBH
(cm)

Crown Width
(m)

Ratio
(%)

Coverage
(%)

Stand Density
(Trees·hm−1)

SR1 Ligustrum lucidum 5.43 ± 0.12 5.02 ± 0.47 2.84 ± 1.53 100% 96 4000

SR2 Ligustrum lucidum
5.58 ± 1.08 5.85 ± 0.31 3.13 ± 1.75

50%
96

4000

Melia azedarach 50%

SR3 Ligustrum lucidum

5.16 ± 1.61 5.74 ± 0.59 3.14 ± 1.91

33.33%

96

4000

Sapium sebiferum 33.33%

Quercus virginiana 33.33%

SR4 Ligustrum lucidum

5.43 ± 3.12
(1.35 ± 0.10)

6.02 ± 4.17
(0.52 ± 0.10)

2.84 ± 1.73
(0.45 ± 0.10)

33.00%

96

4000

Populus ‘Zhonghua Hongye’ 33.00%

Cinnamomum camphora 33.00%

Clerodendrum cyrtophyllum 1.00%

SR5 Ligustrum lucidum

5.11 ± 3.34
(1.57 ± 0.30)

5.31 ± 5.23
(1.12 ± 0.20)

3.16 ± 1.87
(0.5 ± 0.2)

24.75%

96

4000

Broussonetia papyrifera 24.75%

Populus ‘Zhonghua Hongye’ 24.75%

Cinnamomum camphora 24.75%

Clerodendrum cyrtophyllum 1.00%

SR6 Ligustrum lucidum

4.75 ± 3.45
(1.53 ± 0.13)

5.42 ± 5.25
(1.37 ± 0.20)

3.00 ± 1.87
(1.14 ± 0.10)

19.80%

96

4000

Salix matsudana 19.60%

Photinia fraseri 19.80%

Robinia pseudoacacia 19.80%

Viburnum odoratissimum 19.80%

Eurya emarginata 1.00%

SR7 Ligustrum lucidum

4.35 ± 2.80
(1.62 ± 0.18)

5.02 ± 3.32
(1.07 ± 0.20)

2.15 ± 0.90
(0.95 ± 0.10)

16.50%

96

4000

Euonymusbungeanus 16.50%

Cinnamomum camphora 16.50%

Salix matsudana 16.50%

Sapium sebiferum 16.50%

Robinia pseudoacacia 16.50%

Eurya emarginata 1.00%

2.3. Sequential Coring

In January, July, and November 2018, fine roots were sampled with a steel bucket-type
soil auger (ϕ = 5 cm, H = 30 cm) with a T-handle in each plot. The “S” shaped 9-point
sampling was used with a sampling depth of 50 cm [70]. Root and soil samples were
collected in five different layers of 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, and 40–50 cm,
respectively. After the roots in the same soil layer of the same community type were evenly
mixed, three parallel samples were formed. After that, the samples were put into Ziplock
bags and brought back to the laboratory, and stored in the refrigerator at 4 ◦C for 1 month.
When sampling the root system, the time without obvious precipitation was selected to
avoid the influence of precipitation factors on the experimental results.
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2.4. Root Ingrowth Cores

Ingrown soil core method is the root biomass that grows in a certain volume of
unrooted soil within a certain period of time [71–73]. The growth of fine roots was used to
calculate the productivity of fine roots. Due to the lag period of root growth [25,74], the
experiment of in-growth soil core method was implemented in November 2017. In each
community type, a root drill (ϕ = 5 cm, H = 30 cm) was used to drill the soil core with
a sampling depth of 50 cm. Nine growing soil cores were set for each plot of each type
(five parallel plots for each community type), and 315 growing soil cores were set for
each of the seven community types. After that, all the roots in the soil core were sieved
with a sieve (ϕ = 2 mm), and the soil without roots was put into a nylon mesh bag
(L = 50 cm, ϕ = 5 cm) with an aperture of 0.15 cm. Then the nylon bag was placed in the
soil core cavity [75], and the position of the soil core was marked with PVC pipe (ϕ = 5 cm,
H = 1 cm). All set ingrown bags were removed in two separate batches in July and
December 2018, respectively. When taking the soil core, the full excavation method is used
to collect the roots in the soil core according to five layers of 0–10 cm, 10–20 cm, 20–30 cm,
30–40 cm, and 40–50 cm. The collected roots are quickly put in a plastic bag and bring it
back to the laboratory for refrigerated storage (4 ◦C). All root samples are processed within
1 month.

2.5. Fine Root Isolation and Measurement

Rinse the entire soil on the root surface with clean water in the laboratory. Use
absorbent paper to dry up the water on the surface of the root system, and then use
tweezers and vernier calipers to screen out fine roots with ϕ ≤ 2 mm [76]. After the grass
roots are removed, the living and dead fine roots of different tree species are distinguished
according to the shape, color, smell, and elasticity of the fine roots [77,78]. The treated
fine root samples were placed in a transparent scanner tray, and the root system scanning
analyzer Win-RHIZO 2005C (Regent Instruments Inc., Quebec, QC, Canada) was used to
scan the fine root samples to obtain the average diameter (D), surface area (S), volume (V)
of and length (L) and the fine roots other data. Based on the above data, calculate root
length density (RLD), specific root length (SRL), specific surface area (SSA), root tissue
density (RTD), root surface area density (RSAD), and other indicators [79]. Finally, the fine
root samples were dried in an oven at 80 ◦C for 24 h to a constant weight, and the fine root
biomass (FRB) was calculated. Calculated as follows:

FRB (g·m−3)= g × 104/[π(d/2)2] (1)

RLD (m·m−3) = l × 106/[π(d/2)2×h] (2)

SRL (m·g−1) = l/g (3)

SSA (cm2·g−1) = s/g (4)

RTD (g·m−3) = g/v (5)

RSAD (m2·m−3) = s ×106/[π(d/2)2 × h] (6)

In the formula: g, fine root dry weight (g); l, total length of fine root (cm); d, diameter
of soil auger (cm); h, height of soil auger (cm); s, fine root surface area (cm2); v, volume of
fine root (cm3);

2.6. Fine Root Productivity (PRO) and Turnover Rate (TUR)

The biomass of fine roots growing in the unrooted soil core in a certain period of time
is regarded as the net production of fine roots in this period of time, that is, the production
of fine roots [26]. In this study, the productivity of the root system of the community was
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calculated by measuring the biomass of fine roots growing in the soil core over 12 months,
and the calculation was as follows:

PRO = FRL + FRD (7)

Among them, PRO is the annual net productivity of fine roots (g·m−2·a−1), and FRL
and FRD are the living and dead fine root biomass in the unrooted soil column within
12 months.

Turnover rate of fine roots [28,80]:

TUR = PRO/Y (8)

TUR is the turnover rate of fine roots (times·a−1); PRO is the annual net productivity
of fine roots, and Y is the average biomass of living fine roots (the mean value of living fine
root biomass measured by the continuous soil drilling method in this study) [81].

2.7. Physical and Chemical Properties of Soil

At the same time as fine roots were collected from each plot, the conductivity, tem-
perature, and pH of each soil layer (0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40 cm) were
measured with a calibrated portable conductivity meter EC Tester 11+ (Spectrum Technolo-
gies Inc., Aurora, IL, USA) and pH meter (Spectrum Technologies Inc., Aurora, IL, USA).
In each soil layer, the upper, middle, and lower parts of the soil core were measured,
respectively, that is, the conductivity, temperature, and pH were measured three times, and
then the average value was taken. At the same time, the soil of each soil layer was collected
and put into 3 aluminum boxes, respectively. After being sealed with Ziplock bags, they
were brought back to the laboratory. Finally, the soil moisture (SM) content was measured
by the drying method. According to the method of Bao (2005) [82], indicators such as soil
organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) were measured in
the laboratory for each experimental plot.

2.8. Data Processing

SPSS (Statistical Product and Service Solutions) 16.0 software was used for statistical
analysis, and all data were tested for homogeneity of variance before statistical analysis.
The logarithmic transformation was performed if the variance was unequal. One-way
analysis of variance (one-way ANOVA) and least significant difference (LSD) were used to
analyze the differences in fine root productivity, turnover rate and fine root morphology in
different communities. In addition, multivariate variance analysis was used to analyze the
effects of different communities, soil depths and their interaction on fine root productivity,
turnover rate and fine root morphological characteristics. Statistical analysis significance
level p ≤ 0.05. Pearson correlation analysis was used to determine the relationship between
fine root index and soil, while RDA two-dimensional ordination map is analyzed by
R software. The rest of the analysis graphs were drawn using Origin Pro 9.0 software.

3. Results
3.1. Morphological Characteristics of Fine Roots in Communities with Different Species Richness

Species richness, soil depth, and the interaction between soil depth and species richness
had no significant effects on RTD, SRL, and SSA (p > 0.05, Table 2), indicating that the fine
roots of tree species in the community did not respond to interspecific competition through
morphological plasticity. While species richness, soil depth, and the interaction of species
richness and soil depth had significant effects on RLD and RSAD, respectively (p < 0.05).
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Table 2. Results of ANOVA of the effects of tree species richness and soil layers on fine root morpho-
logical characteristics.

Parameter
Source of Variation

Tree Species Richness Soil Depth Tree Species Richness ×
Soil Depth

RTD (g·cm−3) 1.68 4.02 1.26
RLD (m·m−3) 3.84 * 20.79 ** 2.14 *
SRL (m·g−1) 0.46 0.92 1.05

SSA (cm2·g−1) 0.50 0.62 0.96
RSAD(cm2·m−3) 5.39 ** 21.69 ** 2.34 **

Note: ** At 0.01 level (double side) significant difference, * at 0.05 level (double side) significant difference.

The RLD and RSAD of each community increased gradually with the increase in
species richness (Figure 2b,e). Among them, the RLD and RSAD of SR7 are the largest,
which are 35,302.42 m·m−3 and 36.81 m2·m−3, respectively, while the RLD and RSAD of SR1
are the smallest, presenting 13,038.58 m·m−3 and 12.98 m2·m−3, respectively. Meanwhile,
in different soil layers, the RLD and RSAD of each community showed a decreasing
trend with the increase in soil depth (Figure 2b,e). Among them, the difference was
significant in the 0–10 cm layer (p < 0.05), and the difference was small in other soil layers
(p > 0.05). However, in the 0–50 cm soil layer, the RLD and RSAD of different species
richness communities were significantly different (p < 0.05) (Table 2).

The root tissue density (RTD), specific root length (SRL), and specific surface area (SSA)
of fine roots in each community varied with soil depth (Figure 2a,c,d), while the difference
in total was not significant (p > 0.05, Table 2). Among them, the SRL and SSA of SR1
increased gradually with the increase in the soil layer, while the RTD showed a gradually
decreasing trend. The SRL and SSA of SR2 decreased gradually with the increase in the
soil layer. For RTD, it has a gradually increasing trend with the increase in the soil layer
depth. The SRL and SSA of SR3 reached the maximum at the 10−20 cm layer and reached
the minimum at the 30−40 cm layer. The RTD of SR3 gradually increased with the increase
in soil depth. The SRL and SSA of SR4 increased gradually with the increase in soil depth.
The RTD of SR4 first increased and then decreased with the increase in soil depth, reaching
the maximum value in the 30−40 cm layer. The SRL and SSA of SR5 gradually decreased
with the increase in soil depth, and RTD showed irregular fluctuations in different soil
layers. Moreover, the RTD, SRL, and SSA of SR6 and SR7 presented irregular fluctuations
in different soil layers (Figure 2a,c,d).

3.2. Fine Root Production and Turnover in Communities of Different Species Richness

The effect of species richness on fine root productivity and turnover rate was significant
(p < 0.05, Table 3). While the effect of soil depth on fine root productivity and turnover rate
was not significant (p > 0.05). Meanwhile, the interaction effect on fine root productivity
and turnover rate was also small (p > 0.05). It can be seen that the fine root productivity
and turnover rate were mainly affected by species richness in the community.

Among the seven groups of communities with different species richness, SR7 was
the largest at 232.95 g·m−2·a−1; SR1 was the smallest at 71.63 g·m−2·a−1; the fine root
productivity of SR2-SR6 centered at 82.34 g·m−2·a-1, 94.99 g·m−2·a−1, 101.36 g·m−2·a−1,
133.75 g·m−2·a−1, and 148.04 g·m−2·a−1, respectively. In conclusion, with the increase
in species richness in the constituent community, the fine root productivity gradually
increased (Figure 3a).
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Figure 2. Morphological characteristics of fine roots in plant communities with different tree species
richness. (a) Root tissue density; (b) Root length density; (c) Specific root length; (d) Specific
surface area; (e) Root surface-area density.SR1, Ligustrum lucidum monoculture forest; SR2, Melia
azedarach mixture forest; SR3,Sapium sebiferum mixture forest; SR4, Populus deltoids mixture forest;
SR5, Broussonetia papyrifera mixture forest; SR6, Salix matsudana mixture forest; SR7, Cinnamomum
camphora mixture forest. The same below.

Table 3. Results of ANOVA of the effects of tree species richness and soil layers on the annual
productivity and turnover rate of fine roots.

Source of Variation

Parameter
Species Richness Soil Depth Species Richness × Soil Depth

F p F p F p

Productivity
(g·m−2·a−1) 8.55 <0.01 ** 1.90 Ns 0.85 Ns

Turnover rates
(times·a−1) 5.36 <0.05 * 0.49 Ns 0.46 Ns

Note: ** At 0.01 level (double side) significant difference, * at 0.05 level (double side) significant difference.
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Figure 3. Fine root annual productivity and turnover rates in plant communities with different
tree species richness. (a) Productivity; (b) Turnover rates; Note: different letters indicate significant
differences, and the same letters indicate no significant difference (p < 0.05).

The fine root turnover rates of the seven groups of communities with different
species richness were: 0.539 times·a−1 for SR1, 0.567 times·a−1 for SR2, 0.572 times·a−1

for SR3, 0.578 times·a−1 for SR4, 0.587 times·a−1 for SR5, 0.717 times·a−1 for SR6, and
0.747 times·a−1 for SR7. Overall, the fine root turnover rate increased gradually with the
increase in species richness in the community (Figure 3b).

3.3. Relationship between Fine Root Characteristics and Environmental Factors in Communities
with Different Species Richness

Through redundancy analysis and correlation analysis of fine root characteristics and
environmental factors of different species richness communities, the RDA two-dimensional
ordination map (Figure 4) and correlation analysis (Table 4) were obtained. The research
showed that: RTD, RLD, SRL, and SSA had little correlation with species richness (p >0.05),
while RSAD had a significant positive correlation with species richness (p <0.05). RTD,
RLD, SRL, SSA, and RSAD were not correlated with pH, SM, TN, and TP (p >0.05). RTD
was significantly negatively correlated with T and SOM (p < 0.01), while RLD and RSAD
were extremely significantly negatively correlated with EC (p < 0.01), and significantly
positively correlated with T and SOM (p < 0.01).

Figure 4. RDA dimensional sequencing diagram.
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Table 4. The correlation between fine root characteristics and soil physical and chemical properties in different communities.

Indicator SR pH EC SM T TN TP SOM PRO TUR D RTD RLD SRL SSA RSD

PRO 0.735 ** 0.105 −0.401 * −0.405 ** 0.450 ** −0.103 −0.089 −0.284 1
TUR 0.342 * 0.167 −0.406 * 0.116 0.395 ** 0.424 * 0.336 * 0.464 ** 0.248 1

D 0.258 0.088 −0.434 ** −0.387 * 0.241 0.128 0.136 0.308 0.438 ** 0.211 1
RTD −0.269 −0.050 0.165 0.020 −0.480 ** −0.181 −0.227 −0.435 ** −0.309 0.085 0.085 1
RLD 0.328 −0.260 −0.436 ** −0.278 0.697 ** 0.245 0.180 0.693 ** 0.678 ** 0.399 * −0.399 ** −0.479 ** 1
SRL −0.078 0.306 0.155 0.250 −0.099 −0.351 −0.291 −0.149 −0.050 0.091 0.091 −0.008 −0.095 1
SSA −0.043 0.203 0.155 0.194 0.063 −0.205 −0.138 −0.036 0.001 0.084 0.084 −0.261 0.089 0.720 ** 1
RSD 0.346 * −0.255 −0.432 * −0.274 0.691 ** 0.251 0.212 0.693 ** 0.684 ** 0.402 * −0.402 ** −0.522 ** 0.996 ** −0.121 0.077 1

Note: SR: species richness; EC: electrical conductivity; SM: soil moisture; T: temperature; SOM: soil organic matter; TN: total N; TP: total P; PRO: productive; TUR: turnover; D: fine root
diameter; RTD: root tissue density; RLD: root length density; SRL: specific root length; SSA: specific surface area; RSD: root surface area density. * At 0.05 level (double side) significant
correlation, ** at 0.01 level (double side) significant correlation.
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There was a significant positive correlation between fine root productivity and species
richness (p < 0.05), a significant positive correlation with RLD and RSAD (p < 0.05), no
correlation with RTD, SRL and SSA (p > 0.01), a significant negative correlation with EC
and SM (p < 0.05), a significant positive correlation with T (p < 0.05), and no correlation
with TN, TP and SOM (p < 0.05).

For fine root turnover, it had a significant positive correlation with species richness
(p < 0.05), a significant positive correlation with RLD and RSAD (p < 0.05), no correlation
with RLD, SRL and SSA (p < 0.05), a significant negative correlation with soil conductivity
EC (p < 0.05), a significantly positively correlated with T, TN, TP and SOM (p < 0.05), and
not correlated with soil pH and SM (p < 0.05).

4. Discussions
4.1. Effects of Tree Species Diversity on Morphological Characteristics of Fine Roots

Fine root morphology has a high degree of plasticity. When limited by soil nutrients
or interspecific competition, the ability to acquire nutrients or competitiveness can be
improved by increasing RTD, SRL, SSA, or branching mode [83–87]. In this study, the
RTD, SRL, and SSA of fine roots of seven different species richness communities were not
significantly different (p > 0.05, Table 2). They also did not increase with the enlargement
of tree species diversity. It can be considered that they increased with the rise of species
richness in the community. When the morphological characteristics of fine roots are
changed, the plant does not respond to root competition, which is consistent with Meinen’s
findings (2009) and does not support the first hypothesis proposed above [23].

The changes in RLD and RSAD in the community were mainly affected by the biomass
of fine roots per unit area [88]. There was no significant difference in the morphological
characteristics of fine roots among the communities, which may be due to: (1) differences
in fine root biomass among different communities just offset the differences in fine root
morphological characteristics of stands [81]; (2) there were no significant differences in
soil water and nutrient resources among the plots, so soil resources did not have a certain
impact on root foraging behavior; (3) the changes in species composition and root charac-
teristics in the community may mask the effect of the species’ genetic characteristics on the
morphological characteristics of fine roots, resulting in the insignificant effects of species
richness on RTD, SRL, and SSA of fine roots (p >0.05). This indicated that tree species
diversity did not affect the morphological characteristics of fine roots.

4.2. Effects of Tree Species Diversity on Fine Root Productivity and Turnover

Previous studies have confirmed that the root system of a mixed forest is more compet-
itive than that of a pure forest. Root competition can significantly affect root productivity,
and the amount of soil resources available to plants in a competitive environment directly
affects the size of fine root productivity [89].

This study showed that the fine root productivity of the pure privet forest was the
smallest (71.63 g·m−2·a−1), the fine root productivity of the community composed of
2–5 tree species was the middle, and the fine root productivity of the camphor mixed forest
composed of seven species is the highest, reaching 232.95 g·m−2·a−1. The differences in
fine root productivity among communities with different species richness were significant
and gradually increased with the increase in tree species diversity (Figure 3a), reflecting
the positive effect of diversity on fine root productivity [28]. The results support the second
hypothesis of this paper. The conclusion that species richness is positively correlated with
fine root productivity is also validated in many economic forests or forest types of different
forest ages [13,15,60]. For example, Lei et al. (2012) believed that species richness had
a positive impact on community productivity, and the main reason was that in species-rich
forests, fine roots had strong anti-disturbance and regeneration abilities [15].

Differences in root characteristics (deep-rooted, shallow-rooted) and functional traits
(resource-conserving, resource-acquisitive) of different tree species in the community may
also positively affect fine root productivity [27]. The root system of the nitrogen-fixing
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plant Robinia pseudoacacia in the community is deep, and it is a deep-rooted tree species
with small root diameter, the largest SRL and SSA, and the strongest ability to acquire soil
resources, so is a resource-acquiring tree species. Virginia oak has the largest diameter,
the smallest SRL and SSA, belonging to resource-conservative tree species. At the same
time, tree species with different life forms (evergreen trees, deciduous trees or shrubs)
were added to the communities with different species richness, and the functional trait
diversity of the roots of tree species in the whole community increased, leading to the
enhancement of the competition between roots. The distribution characteristics of fine roots
of different tree species in the community and the competition mechanism between species
can complement the root ecosystem, improve the utilization efficiency of soil resources,
and increase the fine root productivity of the community [30,59]. Other scholars have
also reached consistent conclusions on the impact of plant diversity on productivity. For
example, Loreau (2004) believed that the roots of different species in the community have
a certain complementarity and can occupy non-overlapping ecological niches in the soil [90].
The expansion of niche space can make full use of water and nutrient resources in different
soil layers, which is an important reason for the increase in fine root productivity.

Fine root turnover is an important process involved in carbon and nutrient cy-
cling in forest ecosystems [91–94]. The results show that the turnover rate of fine roots
is easily affected by forest types [24,93]. The turnover rate is usually in the range of
0.29–1.20 times·a−1, and most of them are between 0.5–1.20 times·a−1. In this study, the or-
der of fine root turnover rate in 7 different tree species diversity communities was as follows:
SR7 (0.747) > SR6 (0.717) > SR5 (0.587) > SR4 (0.578) > SR3 (0.572) > SR2 (0.567) > SR1 (0.539)
(unit: times·a−1). The findings support the second hypothesis: fine root turnover increases
as tree species diversity rises. The fine root turnover rates of the above communities were
all in the range of 0.539–0.747 times·a−1, which was within the range of Shan et al. (1993)
for the fine root turnover rates of different tree species (0.47–1.05 times·a−1) [95]. In this
study, the fine root turnover rate of the community composed of 2–5 tree species was not
significantly different (p > 0.05, Figure 3b), while the fine root turnover rate of SR6, SR7,
and SR1-SR4 was significantly different (p < 0.05), which may be related to the role of
Robinia pseudoacacia in the community. As a nitrogen-fixing plant, Robinia pseudoacacia can
provide a lot of nutrients for plants to grow and plants have increased fine root circum-
ferences in nutrient-rich soils. In addition, the increase in tree species diversity and the
intensification of root competition among plants lead to an increase in fine root mortality
and an increase in fine root turnover [29].

4.3. Effects of Biotic and Abiotic Factors on Fine Root Morphological Characteristics, Productivity
and Turnover

Fine root productivity, turnover and morphological characteristics are affected by
biological factors [48,49,51]. Among the fine root morphological characteristics, except
RTD, D, RTD, RLD, SRL, and SSA were not correlated with species richness, that is,
species richness did not have a significant impact on the above fine root morphological
characteristics, indicating that as the diversity of tree species in the community increased,
the plant does not respond to root competition although the morphological characteristics
of fine roots are changed. There was a very significant positive correlation between fine root
productivity and species richness [60,61]. In communities with high species richness, there
were differences in root characteristics (deep root and shallow root) of different tree species.
At the same time, the roots of different tree species occupy different ecological niches in the
soil, so the complementarity of root space can be achieved [2,32,57,59,61,64]. In addition,
different plant root combinations can fully absorb water and nutrients in the soil, resulting
in an increase in the fine root productivity of tree species with an increase in tree species
diversity [60,61]. Moreover, in tree species-rich communities, the diversity of tree canopy
structures can promote the full utilization of sunlight by different tree species, and trees
can distribute more photosynthetic products to the ground, increasing the productivity of
underground fine roots. There is a significant positive correlation between the turnover
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rate of fine roots and species richness, indicating that the increase in tree species diversity
can accelerate the turnover rate of fine roots. The main reason is that the competition of
roots of different species in the community leads to the increase in dead fine roots, which
in turn accelerates the turnover of fine roots [29].

Fine root morphological characteristics, productivity, and turnover are also affected by
abiotic factors [42,43,48,50]. Among the fine root morphological indicators, D was signifi-
cantly negatively correlated with EC and SM; RTD was extremely significantly negatively
correlated with T and SPM; RLD and RSAD were both extremely significantly positively
correlated with T and SOM, and extremely significantly negatively correlated with EC.
This shows that in the area with a suitable environment or sufficient nutrients, the root
system is resource-acquisitive, and the root system has a strong foraging ability; in the
nutrient-poor area, the plant root system is resource-conservative, so as to adapt to the soil
environment [27,48,49]. The fine root productivity was significantly positively correlated
with T, extremely significantly negatively correlated with SM, negatively correlated with
EC, and not correlated with pH, TN, TP, and SOM, indicating that T, SM, and EC are the
key environments affecting fine root productivity factor [42,43]. The fine root turnover rate
was significantly positively correlated with T, TN, TP, and SOM, significantly negatively
correlated with EC, and not correlated with pH, illustrating that soil nutrients and EC sig-
nificantly affected the fine root turnover rate. In summary, soil physicochemical properties
are important factors affecting the characteristics of fine roots. This conclusion is consistent
with that of Xu et al. (2019) [29] and Zeng et al. (2019) [30].

In addition, the morphological characteristics, productivity, and turnover rate of fine
roots were also affected by their own functional traits. In this study, both D and RTD had
a very significant negative correlation with RLD and RSAD; RLD had a very significant
positive correlation with RSAD, and SRL had a very significant positive correlation with
SSA. The fine root productivity and turnover rate were significantly positively correlated
with D, RLD, and RSAD. This indicated that fine root functional traits were also important
factors affecting fine root characteristics [6,96,97].

5. Conclusions

The results of this study showed that with the increase in tree species diversity in the
community, the fine root morphology (specific root length and specific surface area) of each
community did not change significantly, that is, fine roots did not respond to interspecific
competition through morphological plasticity. With the increase in tree species diversity in
the community, the competition between fine roots intensifies, and fine roots make more
full use of nutrient resources in different soil layers, resulting in the phenomenon of niche
differentiation of fine roots. Due to the role of fine root competition, resource utilization
strategies, and niche differentiation, the fine root productivity in the community increased
and the turnover rate accelerated. This verifies the positive effects of complementarity on
fine root productivity and turnover in communities with different tree species diversity.
Species richness, root functional traits, and soil physicochemical properties are important
driving factors affecting fine root characteristics.
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