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Abstract: The existing original BP neural network models for wood performance prediction have low
fitting accuracy and imprecise prediction results. We propose a nonlinear, adaptive grouping gray
wolf optimization (NAGGWO)-BP neural network model for wood performance prediction. Firstly,
the original gray wolf optimization (GWO) algorithm is optimized. We propose CPM mapping (the
Chebyshev mapping method combined with piecewise mapping followed by mod operation) to
generate the initial populations and improve population diversity, and an ‘S’-type nonlinear control
parameter is proposed to balance the exploitation and exploration capabilities of the algorithm;
an adaptive grouping strategy is also proposed, based on which the wolves are divided into the
predator, wanderer, and searcher groups. The improved differential evolution strategy, the stochastic
opposition-based learning strategy, and the oscillation perturbation operator are used to update the
positions of the wolves in the different groups to improve the convergence speed and accuracy of
the GWO. Then, the BP neural network weights and thresholds are optimized using the NAGGWO
algorithm. Finally, we separately predicted heat-treated wood’s five main mechanical property
parameters using different models. The experimental results show that the proposed NAGGWO-BP
model significantly improved the mean absolute error (MAE), the mean square error (MSE), and
the mean absolute percentage error (MAPE) of the specimens, compared with the BP, GWO-BP, and
TSSA-BP algorithms. Therefore, this model has strong generalization ability and good prediction
accuracy and reliability, which can fully meet practical engineering needs.

Keywords: gray wolf optimization; heat-treated wood; mechanical property; wood performance prediction

1. Introduction

Wood, a renewable material with high strength and low weight, has been widely
used in different fields. However, it is limited in the scope of application due to its
disadvantages, such as weak biological durability and poor dimensional stability [1].
Among the many wood modification techniques, thermal treatment has received much
attention as an environmentally friendly method [2]. Heat-treated wood is produced by
heating wood to 150–260 °C and maintaining it for several hours. Water vapor, nitrogen,
and other gases are used as protective media during this period. Heat treatment changes
the wood’s chemical composition and structure, improving its dimensional stability and
mechanical properties [3]. Heat-treated wood is widely preferred in the market due to its
environmentally friendly properties, excellent dimensional stability, and durability [4–6]. Its
products are widely used in furniture, exterior wall panels of buildings, dock construction
materials, etc. [7]. There have been many studies related to the heat treatment of wood.
Wang and Cooper [8] showed the changes in wet swelling and the dimensional stability of
wood after heat treatment under different conditions. Suri et al. [2] studied the effect of
different heat treatment media on the mechanical properties of wood. The results showed
that heat treatment with oil as a medium is more effective in improving wood properties
than air as a medium. Esteves et al. [1] demonstrated that wood’s dimensional stability was
improved after heat treatment, but its mechanical properties were reduced. Bayani et al. [9]
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studied the changes in the physical and mechanical properties of wood impregnated with
silver nanosuspension. The heat treatment effect was enhanced due to the excellent thermal
conductivity of the silver nanosuspension. Herrera-Diaz et al. [10] evaluated the effect
of the wood’s physical and mechanical properties at different treatment temperatures for
thermal modification. The results showed that a temperature below 190 ◦C positively
affected the mechanical properties of wood. It is essential to investigate the correlation
between the heat treatment process and wood mechanical properties to optimize the heat
treatment process and predict the quality of heat-treated lumber products. If the mechanical
properties of heat-treated wood can be predicted, it will be beneficial to control the changes
in the mechanical properties of wood over time. It can also give a full take on the advantages
of heat-treated wood and provide a scientific basis for the rational use of heat-treated wood.

It is difficult to build an ideal prediction model because the correlation between the heat
treatment process and wood mechanical properties are non-linear and complex. Artificial
neural networks can adequately approximate arbitrarily complex nonlinear relationships,
which possess self-learning functions and the ability to find optimal solutions quickly [11].
They are often used to optimize material process parameters [12–15]. In particular, the BP
neural network is widely used in wood heat treatment due to its outstanding nonlinear
mapping capability and flexible network structure. Zhang et al. [16] predicted the change
in wood moisture content resulting from heat treatment by using the BP network model.
Yang et al. [17] used the BP neural network to predict the mechanical properties of wood
after heat treatment. Chai et al. [18] predicted the changes in wood moisture content during
high-frequency vacuum drying based on the BP neural network. However, the BP neural
network has defects such as solid dependence on training data and slow convergence speed,
which hinder its application in practical engineering. Some researchers have used gray
wolf optimization (GWO) to optimize the convergence ability of the BP neural network,
which speeds up the convergence of the BP neural network and improves the prediction
accuracy [19,20]. However, the GWO algorithm tends to fall into the local optimum, making
it difficult to meet the practical application requirements for optimization accuracy.

Taking these into consideration, a nonlinear adaptive grouping gray wolf optimization
algorithm (NAGGWO) is proposed to optimize the BP neural network for the mechanical
property prediction of wood. The NAGGWO improves the problem that the GWO tends to
fall into local optimum. It mainly includes the following three parts of improvement: First,
the population is initialized using the presented CMP mapping to increase its diversity. Sec-
ondly, an ‘S’-type nonlinear control parameter is introduced to coordinate the exploration
and development ability of the algorithm. Finally, an adaptive grouping strategy is applied
to classify the wolf population. Different updating methods are used for individuals in
different groups to improve the convergence speed of the GWO algorithm and its global
searching ability. The parameters of the BP neural network are optimized using NAGGWO
to address the problems of slow convergence and low prediction accuracy. Larch wood’s
mechanical property data are used to verify the model’s effectiveness. The prediction
results show that the prediction accuracy of the proposed NAGGWO-BP model is much
higher than the traditional model. It can analyze the relationship between the parameters
of the thermal modification process of wood and its mechanical properties.

All the mathematical notations are listed in Table 1.

Table 1. Symbols and their meanings.

Symbol Meaning

t The number of current iterations
→
Xt The position vector of the gray wolf

→
Xt

p
The position vector of the prey

→
A,
→
D The coefficient vector
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Table 1. Cont.

Symbol Meaning

Tmax The maximum number of iterations

r1, r2, r3, r4, r5 Random variables

d Control parameter of CMP mapping

a Nonlinear control parameter of GWO

Xi,a, Xi,b, Xi,c Individuals in the predator, wanderer, and searcher group

n The number of gray wolves

n1, n2 Group boundaries of gray wolves

W Scaling factor

ξ The oscillation operator

ymin, ymax The normalized interval set

xmin, xmax The minimum and maximum values of x

2. The NAGGWO-BP Neural Network Prediction Model
2.1. The Principle of BP Neural Network

The standard BP neural network is divided into two main parts: The first part is for-
ward information transmission, which is the forward transmission of the input information
according to the input layer, the hidden layer, and the output layer. The second part is the
backward signal propagation, which is the backpropagation method to modify the weights
of each layer connection according to the error between the actual value and the predicted
value [21,22]. The concrete implementation is shown in Figure 1.
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Figure 1. Flowchart of BP neural network.

As can be seen from Figure 1, the initial weights and thresholds of the BP neural
network are randomly generated. Moreover, the parameters are generally updated by using
the gradient descent method. Such a working mechanism makes the BP neural network
extremely sensitive to the initial weights, which increases the algorithm’s solving difficulty
and convergence time. The initial weights and thresholds of the BP neural network are
optimized using the NAGGWO algorithm, which improves its stability and accuracy.
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2.2. The Traditional GWO Algorithm

The GWO was first proposed as a swarm intelligence optimization algorithm by
Mirjalili et al. [23] in 2014. Gray wolves rely on a clear division of labor and cooperation
to hunt and have a clear social dominance hierarchy. The gray wolf population is divided
into four levels. The leading gray wolf is called the α wolf, and it is the optimal individual
in the group. The next best individual is the β wolf, and the third best is the δ wolf. They
represent the direction of the whole wolf group moving forward. The remaining gray
wolves of the lower rank are called the ω wolves. The wolves update their positions with
Equations (1) and (2) to surround the prey as follows:

→
D =

∣∣∣∣→C × →Xt
p −

→
Xt
∣∣∣∣ (1)

→
Xt+1 =

→
Xt

p −
→
A×

→
D (2)

where t denotes the number of current iterations;
→
Xt

p is the position vector of the prey;
→
Xt is

the position vector of the gray wolf;
→
A and

→
D are the coefficient vector, and it is expressed

using Equations (3)–(5) as follows:

→
A = 2

→
a ×→r1 −

→
a (3)

→
C = 2×→r2 (4)

a = 2− 2
(

t
Tmax

)
(5)

where Tmax denotes the maximum number of iterations; a is the control coefficient that
gradually and linearly decreases from 2 to 0;

→
r1 and

→
r2 are random variables whose values

are in the range of [0, 1].
It is difficult to determine the prey location in a realistic problem, which is the exact

location of optimal solutions. The α wolf, β wolf, and δ wolf are assumed to have excellent
prey recognition. The other gray wolves update their position by the position of The α wolf,
β wolf, and δ wolf, as shown in Equations (6)–(12).

Dα =
∣∣C1 × Xt

α − Xt∣∣ (6)

Dβ =
∣∣∣C2 × Xt

β − Xt
∣∣∣ (7)

Dδ =
∣∣C3 × Xt

δ − Xt∣∣ (8)

X1 = Xα − A1 × Dα (9)

X2 = Xβ − A2 × Dβ (10)

X3 = Xδ − A3 × Dδ (11)

Xt+1 =
X1 + X2 + X3

3
(12)

2.3. The NAGGWO Algorithm
2.3.1. Initialization of CPM Mapping

The GWO algorithm usually uses randomly generated data as the initial population,
which easily leads to uneven distribution of the initial population, affects the convergence
speed of wolves, and reduces the diversity of the algorithm. To solve this problem, we
propose CPM mapping to initialize the population.

Chaotic motions have the characteristics of randomness and ergodicity. When solving
optimization problems, the characteristic can ensure population diversity and improve



Forests 2022, 13, 1870 5 of 16

the global search capability of the algorithm. Chaotic mappings include logistic mapping,
piecewise mapping, etc. Logistic mapping is widely used in initializing intelligent algo-
rithms [24,25], but its frequency is high in the ranges of [0, 0.1] and [0.9, 1], so the generated
initial solutions are often not completely dispersed. Piecewise mapping has a more uniform
distribution, but its system loses the chaos at x = 0.5. CPM mapping is proposed to improve
it. The mathematical expression is shown in Equation (13) as follows:

xn+1 =



mod
((

xn
d + cos

(
ncos−1

(
xn × π

)))
, 1
)

, 0 ≤ xn < d

mod
((

xn−d
0.5−d + cos

(
ncos−1

(
xn × π

)))
, 1
)

, d ≤ xn < 0.5

mod
((

1−d−xn
0.5−d + cos

(
ncos−1

(
xn × π

)))
, 1
)

, 0.5 ≤ xn < 1− d

mod
((

1−xn
d + cos

(
ncos−1

(
xn × π

)))
, 1
)

, 1− d ≤ xn < 1

(13)

where d is the control parameter taking values in the range (0,1). CPM mapping is per-
formed by combining the piecewise mapping method [26] with the Chebyshev mapping
method [27] followed by mod operation. It makes the system chaotic even at x = 0.5. The
results of several experiments show that the distribution of the system is relatively uniform
for any value of d. It can be used to generate the algorithm’s initial solution and enhance
the population’s diversity. The initialized population (one-dimensional) distribution when
d = 0.3 is shown in Figure 2.
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2.3.2. The Nonlinear Control Parameter Adjustment Strategy

The GWO is divided into two steps: prey localization and gray wolf predation. As
shown by Equation (2), coefficient A plays a vital role in balancing the global search and
local exploitation of the GWO algorithm. When |A| > 1, the wolves will expand the
search area. When |A| < 1, the wolves will narrow the search area and attack the prey.
The convergence parameter a influences the magnitude of coefficient A. The value of
a linearly decreases with the number of iterations. The convergence parameter a of the
linear update is difficult to adapt to the actual search situation due to the complexity of the
GWO algorithm’s search process. It cannot achieve strong coordination between global
search and local search. Therefore, an ‘S’-type nonlinear control parameter is proposed.
The mathematical model is shown in Equation (14).

a = 2− 2

1 + e(−
10

Tmax )×(t−
Tmax

2 )
(14)
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The proposed control parameter a slowly decreases in the early iterations, which
enables the wolves to search for prey at a large pace and expand the search range of the
algorithm. Parameter a rapidly decreases in the middle period, improving the algorithm’s
convergence speed. Moreover, parameter a decreases at a slow velocity and maintains
a small value in the later stage, which enables the algorithm to fully search around the
optimal solution and improves the algorithm’s local search capability. The improved control
parameter a can better balance the global and local search and improve the algorithm’s
performance. The comparison of the control parameter a before and after the improvement
is shown in Figure 3.
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2.3.3. The Adaptive Grouping Strategy

Since different individuals of the GWO algorithm are located in different positions, the
wolves are divided into three groups according to their distance from the prey (size of fitness
value). They are named the predator group, the wanderer group, and the searcher group.
Since it is uncertain whether the found prey is the optimal global solution, the individuals
closer to the prey should quickly approach it. At the same time, the individuals farther
away from the prey are slow to approach the prey or even ignore it to research for other
possible prey due to the uncertainty. The individuals with high fitness values are closer to
the prey, which accelerates their approach toward the prey for predation. The improved
differential evolution strategy is used for position updating to enhance the convergence
ability of the algorithm. The individuals with general fitness values are far from the prey,
and they wander slowly toward the prey and search the surrounding environment while
approaching the prey. Their searching capability is enhanced by combining the GWO
position update strategy with stochastic opposition-based learning.. The individuals with
poor fitness values, i.e., those farthest from the prey, choose to expand their search range
to find other prey. The oscillatory perturbation operator is used for position updating
to enhance the ability of the algorithm to jump out of the local optimum. The grouping
mathematical model is shown in Equation (15) as follows:

Xi,j =


Xi,a, 1 ≤ a < n1
Xi,b, n1 ≤ a < n2
Xi,c, n2 ≤ a ≤ N

(15)

where Xi,a, Xi,b, Xi,c denote the individuals in the predator, wanderer, and searcher groups.
n is the number of gray wolves. n1 and n2 are the grouping boundaries. In other words,
the wolves are ranked according to their fitness values, with the best individuals in the
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predator group, the general individuals in the wanderer group, and the poor individuals in
the searcher group. n1 and n2 are calculated as shown in Equation (16). n1 = 1

4 N
(

1− t
Tmax

)
n2 = N − 1

4 N
(

t
Tmax

) (16)

It can be seen that the grouping boundaries of wolves are adaptively updated with
the iteration. At the beginning of the iteration, the convergence speed should be increased
because the wolves are dispersed. The predator group can quickly converge to the current
optimal solution, so there are more individuals in the predator group in the early stage. As
the iteration proceeds, the wolves tend to converge, and it is more necessary to jump out of
the local optimum. The searcher group can have a larger search range, so the number of
individuals in the searcher group increases as the iteration progresses.

2.3.4. The Position Updating Strategy for Different Groups
The Improved Differential Evolution Strategy

The improved differential evolution strategy is used to update the position of the
wolves in the predator group. The differential evolution strategy is an algorithm that
evolves based on individual differences in the population [28]. It is widely used in intelli-
gence optimization algorithms [29,30]. In the process of population evolution, individuals
are recombined according to their differences from each other to obtain a more competitive
intermediate population. The offspring individuals in the intermediate population compete
with the parent individuals to produce a more competitive next-generation population.
The mutation operation is the most significant part of the differential evolution process.
Individual variation is achieved through the differential evolution strategy. A common
differential strategy is to randomly select two different individuals, scale their vector dif-
ferences, and perform vector synthesis with the individual to be mutated. It is calculated
using Equation (17) as follows:

Xt+1
i = Xt

i + W ×
(
Xt

r1
− Xt

r2

)
(17)

where Xi, Xr1 , Xr2 denote the three different individuals in the population. W is the scaling
factor used to control the scaling scale of the difference vector.

This strategy enables the gray wolves in the predator group to quickly approach the
prey by integrating the idea of differential evolution into the GWO algorithm to improve
the predator group’s hunting speed. It is the basis of ensuring population competitiveness
that the wolves evolve in a good direction according to their environment. Therefore,
outstanding gray wolf individuals with high competitiveness are selected as the parents of
the evolving population. The expression of its variation function is based on Equation (18)
as follows:

Xt+1
i = Xt

α + W ×
(

Xt
β

2
+

Xt
δ

2
− Xt

i

)
(18)

where W is the scaling factor with the value range of [−1, 1]. It can be seen that the
strategy allows the predator group to quickly approach the immediate area of the prey. The
algorithm’s convergence ability is greatly enhanced.

The Stochastic Opposition-Based Learning

The position updating strategy of the GWO algorithm is used to update the in-
dividuals of the wanderer group. The opposition-based learning was introduced by
Tizhoosh [31]. This strategy is widely used in swarm intelligence optimization algorithms
and has achieved good experimental results [32,33]. Stochastic opposition-based learning is
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added to enhance the global search capability of the GWO. The stochastic reverse solution
is calculated using Equation (19) as follows:

x
′
i,j = UBj + LBj − r3 · xi,j (19)

where r3 is the random factor taking values in the range of [0, 1]. UBj and LBj are the upper
and lower bounds of the j-dimensional values. Compared with general opposition-based
learning, the new solutions obtained through stochastic opposition-based learning are
dynamic and can increase the diversity of the algorithm. The better individual found
through the GWO position updating strategy and the stochastic opposition-based learning
is retained in the wanderer group’s position iteration.

The Oscillation Perturbation Operator

The searcher group in the adaptive grouping introduces the oscillatory perturbation
operator to increase the algorithm’s diversity and improve the ability of the GWO to jump
out of the optimal local solution. The mathematical model of the oscillation operator ξ is
shown in Equation (20).

ξ =

{
2
√

r4−1
r5

, i f t < Tmax
2

2
√

r4 − 1, i f t ≥ Tmax
2

(20)

where r4 and r5 are the random numbers in the range of [0, 1]. From Equation (20), it can be
seen that the oscillation operator takes a large value in the early stage of algorithm iteration,
which improves the range of the algorithm’s exploration and increases the algorithm’s
diversity. Later in the algorithm iteration, a small oscillation factor is beneficial to increase
the algorithm’s development capability. The searcher group’s position updating formula
after introducing the oscillation perturbation operator is shown in Equation (21).

Xt+1
i =

t
Tmax

Xt
i +

(
1− t

Tmax

)
× Xt

i × ξ (21)

Equation (21) contains the original population information and the part of the oscil-
latory perturbation, which adaptively varies with the number of iterations. Its position
update is not affected by the prey position, which can effectively prevent the algorithm
from falling into local extreme points.

2.4. The NAGGWO-BP Algorithm

The BP neural network model randomly assigns weights and thresholds, which have
many variable parameters, leading to unstable model computation [34]. The model prediction
performance can be improved by optimizing the BP neural network using the GWO [35].
However, the GWO algorithm has the problems of uneven initial population distribution,
slow convergence speed, and easily falling into local optimization. To solve these problems,
we propose the NAGGWO algorithm. We first ensure the diversity of the initial gray wolf
individuals by introducing CPM mapping. Secondly, we use the ‘S’-type nonlinear con-
trol parameter to effectively balance the local and global searching ability and improve the
algorithm’s operation efficiency. Finally, we use the adaptive grouping strategy to group
the wolves and adopt different updating methods for the individuals in different groups to
improve the algorithm’s convergence speed and global searching ability.

The core idea of the NAGGWO-optimized BP neural network is to use the weights
and thresholds of the BP neural network as the gray wolf location information. Updating
the location is equal to updating the weights and thresholds of the BP neural network until
the globally best location is found, which improves the prediction ability and prediction
efficiency of the BP neural network. With the introduction of the NAGGWO algorithm,
the weights and thresholds of the BP neural network can be dynamically optimized to
achieve better and more stable prediction results. The flowchart of the NAGGWO-BP
algorithm is shown in Figure 4. First, we normalize the data using Equation (22). Then,
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we apply CPM mapping, as shown in Equation (13), to initialize the gray wolf population
location. Further, the algorithm control parameter a is updated according to Equation (14),
and then the individuals are grouped according to the adaptive grouping strategy, and
the corresponding positions are updated as in Equations (15)–(21). Finally, the optimal
solution is output when the number of iterations reaches the maximum value, and the
optimal weights and thresholds of the BP neural network are obtained.
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3. Experimental Analysis
3.1. Data Preprocessing

The experimental data were obtained from the literature [17]. In this analysis, we
examined the mechanical properties of 88 groups of wood after heat treatment under
different conditions. The experimental data on the mechanical properties of these 88 groups
are shown in Table A1 in Appendix A.

The material used for this experiment was 22 mm larch from northeastern China. The
wood was heat-treated via steam at a temperature of 120–210 ◦C and relative humidity of
0–100% for 0.5–3 h. The treated wood was dried to reach the moisture content of 8–10%
and placed at the ambient temperature of 20 ◦C with a relative humidity level of 65%. After
equilibrium, the corresponding mechanical properties were measured. The experimental
results are consistent with the conclusions reached by Ding et al. [36] and Tiryaki et al. [37].
This proves that the experimental data are accurate and reliable.

We used the same training and testing specimens as those found in the literature [38]
to ensure the fairness of the model comparison. The first 58 sets of experimental data in
Appendix A Table A1 were used as the training set, and the last 30 sets of experimental
data were classified as the testing set. Since the magnitudes of the three input dimensions
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are different, Equation (22) is used to normalize the input data to avoid the effect of direct
input on the training speed and prediction accuracy of the prediction model.

y = (ymax − ymin)×
(x− xmin)

(xmax − xmin)
+ ymin (22)

where y is the normalized value of x, and ymin, ymax are the normalized intervals set to −1,
1. xmin and xmax are the minimum and maximum values of x, respectively.

3.2. Model Parameter Setting

The BP neural network in the NAGGWO-BP model uses the three-layer structure. The
number of nodes in its input layer is 3, corresponding to the input data’s temperature,
humidity, and time. The number of nodes in the output layer is 1, which corresponds to the
mechanical properties of wood. The number of hidden layer nodes is generally selected
based on the empirical Equation (23). The range of the hidden layer nodes is calculated
to be [3,12]. After several error calculations, the number of nodes in the hidden layer is
confirmed to be 9.

h =
√
(u + v) + w, w ∈ [1, 10] (23)

where h, u, and v denote the number of nodes at the hidden, input, and output layers, respectively.
The NAGGWO-BP model was used to predict the mechanical properties of wood.

The predicted results were compared with those of the BP, GWO-BP, and TSSA-BP neural
networks to verify the model’s prediction performance. The BP neural network’s maximum
number of iterations was 1000; the target error was 0.0001; the maximum number of
iterations was 50, and the population size was 20.

3.3. NAGGWO-BP Simulation Results Analysis

To verify the effectiveness of the NAGGWO-BP, the mean absolute error (MAE),
the mean square error (MSE), and the mean absolute percentage error (MAPE) of the
different algorithms were compared to evaluate their prediction performance. Smaller
values indicate better model prediction performance. The experimental results are shown
in Table 2, and the TSSA-BP data were obtained from the literature [38].

Table 2. Model and error quantity.

NAGGWO-BP GWO-BP BP TSSA-BP

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

Axial Compressive Strength 0.65 0.73 1.90% 1.26 2.80 3.72% 6.99 63.14 20.98% 1 1.48 2.90%

Bending Strength 0.79 0.99 1.38% 2.57 12.48 4.72% 8.58 113.37 16.67% 3.68 16.99 6.81%

Bending Modulus of Elasticity 103.52 16,174 1.27% 272.20 94,416 3.41% 406.44 289,351 5.25% 282.56 235,795 3.12%

Radial Hardness 0.37 0.21 3.27% 1.21 2.66 10.51% 3.90 19.32 37.39% 0.66 0.66 5.64%

Tangential Hardness 0.39 0.25 3.29% 1.10 1.74 9.98% 1.78 5.23 17.36% 0.99 1.57 9.61%

BP denotes the original backpropagation neural network. NAGGWO-BP, GWO-BP,
and TSSA-BP denote the BP neural network after its optimization using the NAGGWO,
GWO [23], and TSSA [38] models. As shown in Table 1, the MAE, MSE, and MAPE values
of the NAGGWO-BP neural network prediction model are much smaller than the prediction
errors of other models. The MAE of NAGGWO-BP is reduced by 74.5–90.7%, MSE by
94.4–99.1%, and MAPE by 4.0–34.1%, compared with those of the BP neural network.
This indicates that combination with NAGGWO can optimize the BP neural network
performance to a great extent. The other algorithms are also optimized for the BP neural
network but are still significantly inferior to the proposed NAGGWO algorithm. This
indicates that compared with the BP, GWO-BP, and TSSA-BP models, the NAGGWO-BP
neural network is more reasonable and has better prediction ability.
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Figure 5a–e show the prediction results of the NAGGWO-BP, GWO-BP, and BP neural
networks for five mechanical properties of wood. The predicted values of the optimized
BP neural network using GWO and NAGGWO are closer to the actual values, indicating
that using GWO and NAGGWO can significantly improve the prediction accuracy of the
BP neural network. However, it can be seen that using NAGGWO is more effective. In
addition, Figure 5f shows the convergence curves of the GWO and NAGGWO models in
terms of compressive strength along the grain. It can be seen that the NAGGWO model
is superior to the GWO model in terms of convergence speed and convergence accuracy
and often achieves better results after 10 iterations. The analysis of the reasons for this is as
follows: (1) The CPM mapping process used by the NAGGWO algorithm initializes the
wolf population, which improves the diversity of the algorithm and establishes a good
foundation for the optimization search afterward. (2) The NAGGWO algorithm proposes
the adaptive grouping strategy, divides the population into three parts according to the
fitness size, and uses different position updating strategies for individuals in different
positions, improving the algorithm’s search accuracy. This can optimize the BP neural
network’s parameters to the maximum extent and improves its prediction ability. (3) The
improved differential evolution strategy is used for the predator group so that it can quickly
approach the optimal solution, which effectively improves the convergence speed of the
algorithm. Meanwhile, the proposed nonlinear control parameter a keeps large values in
the early stage, which gives the algorithm good global searching ability in the early stage.
Hence, the algorithm tends to converge to the optimal solution more quickly. It can be
proved that the proposed NAGGWO-BP is a prediction model with excellent performance.
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4. Conclusions

The thermal modification of wood is a very complex and nonlinear process. The
wood structure is complex, and its chemical composition is prone to change. Therefore,
establishing an ideal mathematical model in line with the actual situation is the prerequisite
for the automated control of the thermal modification of wood and an effective way to
reduce and improve wood consumption. For the mechanical properties of wood thermal
modification, the NAGGWO-BP prediction model was established, and the prediction of
Chinese larch’s mechanical properties was studied. The main conclusions are as follows:

1. The NAGGWO algorithm is proposed to solve the problem that the traditional GWO
algorithm tends to fall into the local optimum. Firstly, the population is initialized by
using CPM mapping. Secondly, an ‘S’-type nonlinear control parameter is proposed to
balance the exploration and exploitation ability of the algorithm. Finally, different search
methods are used for different groups of wolves by adaptively grouping them according
to their fitness size. The solving speed and accuracy of the algorithm are improved.

2. The proposed NAGGWO-BP model updates the weights and thresholds of the BP
neural network using the NAGGWO algorithm to address the problem of its imprecise
prediction results. It enhances the prediction ability of the BP neural network. We
applied the NAGGWO-BP model to predict the five mechanical properties of wood
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to validate the model. The results show that the MAE, MSE, and MAPE values of
the NAGGWO-BP model are greatly reduced, compared with the original BP neural
network, and the prediction ability of the algorithm is substantially enhanced.
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Appendix A

Table A1. Wood treatment conditions and corresponding mechanical properties.

Test
Temperature/◦C

Test
Time/h

Test
Humidity/%

Axial
Compressive
Strength/MPa

Bending
Strength/MPa

Bending
Modulus of

Elasticity/GPa

Radial
Hardness/MPa

Tangential
Hardness/MPa

120 0.5 0 39.2 67.4 9.093 14.12 15.56
120 0.5 40 39.1 65.3 9.038 13.02 14.69
120 0.5 60 38.0 69.7 9.100 14.67 15.08
120 0.5 100 36.7 67.2 8.845 14.65 15.45
120 1.0 0 38.4 67.8 8.649 13.98 14.36
120 1.0 40 37.6 66.4 8.752 12.98 15.59
120 1.0 60 38.6 67.8 9.245 13.78 15.32
120 1.0 100 38.1 63.1 7.895 14.55 14.23
120 2.0 0 39.5 66.9 9.074 13.33 14.23
120 2.0 40 38.6 68.2 8.945 12.55 14.58
120 2.0 60 36.5 65.2 8.854 13.25 14.89
120 2.0 100 41.9 63.2 8.933 13.36 14.56
120 3.0 0 37.5 66.5 8.900 13.56 14.78
120 3.0 40 39.8 67.6 8.963 13.45 14.45
120 3.0 60 37.6 66.6 8.745 13.01 14.69
120 3.0 100 38.9 64.2 8.745 12.45 14.78
140 0.5 0 36.7 66.7 8.978 14.69 15.56
140 0.5 40 36.9 67.5 8.845 13.06 15.02
140 0.5 60 35.8 66.8 9.155 14.02 14.23
140 0.5 100 38.4 65.3 8.877 15.02 15.01
140 1.0 0 37.4 66.5 9.179 14.16 15.68
140 1.0 40 36.0 64.5 9.137 13.05 15.01
140 1.0 60 37.2 67.2 9.024 13.49 15.17
140 1.0 100 37.5 63.1 8.823 13.45 15.48
140 2.0 0 37.9 66.3 8.823 13.54 14.69
140 2.0 40 38.5 65.7 8.852 14.69 14.58
140 2.0 60 37.6 67.1 8.799 13.99 14.74
140 2.0 100 35.5 62.7 8.900 14.28 15.63

http://doi.org/10.15376/biores.10.3.5758-5776
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Table A1. Cont.

Test
Temperature/◦C

Test
Time/h

Test
Humidity/%

Axial
Compressive
Strength/MPa

Bending
Strength/MPa

Bending
Modulus of

Elasticity/GPa

Radial
Hardness/MPa

Tangential
Hardness/MPa

140 3.0 0 36.9 65.4 8.811 14.39 14.23
140 3.0 40 38.9 64.6 8.934 13.23 14.56
140 3.0 60 38.2 65.5 8.654 14.23 13.65
140 3.0 100 39.2 62.1 8.798 13.56 14.02
160 0.5 0 36.9 66.3 8.788 14.89 14.99
160 0.5 40 39.1 66.9 9.011 14.87 14.36
160 0.5 60 37.1 66.3 8.745 14.58 14.78
160 0.5 100 38.9 65.8 8.712 14.69 15.69
160 1.0 0 39.1 62.4 8.679 13.42 14.56
160 1.0 40 39.7 61.4 8.645 14.09 15.30
160 1.0 60 37.8 62.2 8.798 14.69 15.90
160 1.0 100 38.7 62.8 8.679 13.58 15.63
160 2.0 0 35.9 62.2 8.727 14.63 13.92
160 2.0 40 35.8 62.1 8.557 14.02 14.17
160 2.0 60 36.6 63.1 8.687 15.17 14.28
160 2.0 100 38.2 60.9 8.611 14.65 15.09
160 3.0 0 37.2 61.9 8.611 13.65 14.36
160 3.0 40 39.1 61.5 8.534 13.47 14.56
160 3.0 60 39.5 60.8 8.601 13.58 13.89
160 3.0 100 37.3 60.5 8.552 13.69 14.36
180 0.5 0 38.9 65.9 8.601 15.21 14.03
180 0.5 40 39.1 65.3 8.689 15.98 14.56
180 0.5 60 37.6 66.1 8.645 16.01 13.97
180 0.5 100 36.1 65.7 8.599 14.32 14.33
180 1.0 0 38.2 65.4 8.623 15.09 13.79
180 1.0 40 39.4 64.9 8.645 14.98 14.25
180 1.0 60 37.6 66.3 8.579 15.45 14.08
180 1.0 100 38.1 64.8 8.545 14.33 13.64
180 2.0 0 39.5 65.1 8.574 14.65 13.69
180 2.0 40 38.7 65.8 8.600 14.13 13.59
180 2.0 09 38.2 64.5 8.532 13.99 14.49
180 2.0 100 37.1 64.2 8.544 15.10 13.54
180 3.0 0 38.1 64.1 8.600 14.21 14.06
180 3.0 40 37.5 64.2 8.541 13.99 14.21
180 3.0 60 37.8 64.8 8.456 14.58 13.98
180 3.0 100 38.5 63.8 8.499 14.99 13.69
200 0.5 0 36.5 62.1 8.483 12.00 13.60
200 0.5 40 35.4 60.6 8.475 11.96 12.99
200 0.5 60 35.1 59.9 8.399 11.45 13.21
200 1.0 0 34.5 61.9 8.422 11.69 12.98
200 1.0 40 35.8 60.8 8.489 11.46 12.64
200 1.0 60 34.1 61.2 8.321 11.54 12.35
200 2.0 0 34.6 61.2 8.369 11.99 13.02
200 2.0 40 35.4 60.8 8.354 11.15 12.69
200 2.0 60 34.5 60.5 8.211 10.65 12.49
200 3.0 0 34.1 60.9 8.249 10.68 12.73
200 3.0 40 34.2 59.8 8.231 11.05 12.57
200 3.0 60 33.8 58.2 8.011 10.22 12.37
210 0.5 0 34.1 50.1 7.856 10.23 10.98
210 0.5 40 33.2 50.8 7.789 10.59 9.98
210 0.5 60 32.1 49.9 7.865 10.55 10.23
210 1.0 0 33.9 50.6 7.765 10.21 10.65
210 1.0 40 32.9 49.8 7.712 9.98 10.21
210 1.0 60 32.8 48.9 7.498 10.01 10.65
210 2.0 0 32.9 49.1 7.689 9.98 9.64
210 2.0 40 32.5 49.5 7.712 9.65 9.35
210 2.0 60 31.8 49.6 7.623 10.03 9.67
210 3.0 0 31.5 47.8 7.500 9.21 8.91
210 3.0 40 30.5 46.5 7.412 9.10 8.21
210 3.0 60 30.8 45.1 7.321 9.03 8.99
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