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Abstract: In recent years, soil heavy metal pollution has become an important issue of general
concern because it is an important factor that threatens the soil environment. To assess the risk of the
human health of the people living in the economic belt on the northern slope of the eastern Tianshan
Mountains, and provide guidance for pollution control and risk prevention, the northern slope of
the eastern Tianshan Mountains was selected as the study area, and six heavy metals (i.e., Zn, Cu,
Cr, Pb, and Hg) were measured. The results revealed that the Cu, Pb, Hg, and As contents of the
soil exceeded the soil background value of Xinjiang by 1.02, 4.10, 1.76, and 7.98 times, respectively.
The Zn and Cr contents were lower than the limits of regional soil standards. Based on the pollution
assessment using the pollution index (PI), values indicate that the levels of Zn and Cr pollution
were low, those of Cu and Hg pollution were moderate, and those of Pb and As pollution were high.
The health risk assessment results revealed that there are non-carcinogenic risks to children. The
carcinogenic health risks posed by the heavy metals in this region are higher than the threshold (10−4),
indicating that they pose a hazard to human health. The results of this research provide a theoretical
basis and reference for soil heavy metal pollution control and human health risk management in
this area.

Keywords: soil contamination; carcinogenic risks; pollution index; industrial belt

1. Introduction

Soil is an important resource for human survival and development, and its environ-
mental quality plays a vital role in ensuring regional sustainable development [1–3]. As a
result of rapid industrial and economic development, the competitive pressure between
resources and the environment is increasing, the soil environmental quality is deteriorating,
and soil heavy metal pollution has become an increasingly serious problem [4–7]. Human
activities and natural processes are the main sources of the heavy metal accumulation
in soil [8]. The former are considered to be the main contributors to soil heavy metal
contamination in most studies [9–12]. Industrial and mining activities, transportation,
agricultural fertilization, and irrigation cause an acceleration in the accumulation of heavy
metals in soil, which not only affects crop production but also poses a potential threat to
the functioning of ecosystems and human health via the food chain [13–15]. In addition,
the heavy metals that enter the soil through the three pathways of ingestion, inhalation,
and dermal contact absorption enter the human body, affecting human health [16,17].

The North Slope Economic Belt of the eastern Tianshan Mountains is located in the
Xinjiang Uygur Autonomous Region. The Tianshan Mountains are located far from the sea
and receive little precipitation. This region has a typical temperate continental climate, and
the ecological environment is relatively fragile [18]. This region has the most developed
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economy, the densest population, and the greatest industrial and agricultural activities
in Xinjiang. According to statistics, this region accounts for 69.1% of the gross domestic
product (GDP) of Xinjiang, and the population of this region accounts for 38.9% of the
population of Xinjiang [19]. There are many industrial facilities in this region, such as coal
mines, coal power plants, chemical plants, petroleum industry facilities, cement plants,
and non-ferrous metal manufacturing plants. Some of the industrial facilities have more
than 20 years of industrial production history, and a large number of pollutants have been
discharged during the production activities of these enterprises over many years. After
entering the soil, this pollution leads to the accumulation of soil heavy metals and poses a
threat to the regional ecological environment and human health. Therefore, research on
soil heavy metal pollution and an assessment of human health risks in this area provides
scientific guidance for regional soil environmental early warning and protection, and the
reduction of the risks posed by soil heavy metals to human health.

To accurately assess the human health risk of the people living in this area, in this
study, the surface soils (0–20 cm) in the Fukang, Qitai, Jimsar, and Midong districts were
selected for analysis. The specific objectives of this study were (1) to determine the concen-
trations of and spatial variations in Zn, Cu, Cr, As, Hg, and Pb in the soil; (2) to evaluate
the contamination level of the heavy metals in soil using different pollution assessment
methods; and (3) to assess the human health risk of heavy metals in soil.

2. Materials and Methods
2.1. Study Area

The study area is located in Fukang City, Jimsar County, and Qitai County in the
northern part of the Changji state (44◦20′–45◦10′ N, 88◦36′–89◦50′ E) in the Xinjiang Uyghur
Autonomous Region, northwestern China. The central part of the study area consists of
plains and is distributed along national highway 216 and provincial highway 303.This
region is located in the southern part of the Tianshan Mountains and the northern part of
the Gurbantonggut Deserts. The topography of this region is higher in the southeast than
in the northwest, and it mainly has a continental semi-desert aridity climate, with high
evaporation and less precipitation. The elevation range is 500–1000 m, the annual average
temperature is about 8 ◦C, and the annual average precipitation is 140–500 mm [20]. The soil
types from south to north are Arenosols, Anthrosols, Calcisols, Argosols, and Umbrisols.
The eco-environment is fragile and easily destroyed, and will be difficult to repair.

2.2. Soil Sampling and Chemical Analysis

In this study, a total of 171 soil samples were collected from a depth of 0–20 cm in the
study area (Figure 1). Considering the source of heavy metal emissions in the study area,
the soil samples were collected from around industrial zones. In addition, considering that
farmland is also vulnerable to heavy metal pollution, some soil samples were collected from
farmland. In this study, the checkerboard sampling method was used for the collection of
soil samples, and collection was evenly distributed in the research area. During sampling,
the sampling plot was set first according to the diagonal method, and the plot size was
10 m × 10 m. A quantity of 1 kg of soil was collected using a hard plastic shovel and the
position was recorded using a global positioning system (GPS). Then, the soil samples were
transported to the laboratory, air dried, and passed through a 2 mm nylon sieve, purged of
plant roots, stones, and other substances, and finally passed through a 0.25 mm nylon sieve
for complete dissolution.

A soil sample of 0.5 g was digested using a mixture of concentrated HCI, HNO3, HF,
and HCIO4 [21]. After preparing the soil samples, the concentrations of the heavy metals
were measured using an anatomic absorption spectrometer (Hitachi-Z2000, Tokyo, Japan).
The contents of Zn, Pb, Cu, and Cr were measured by inductively coupled plasma atomic
emission spectrometry [22], and the elements of Hg and As were measured by the atomic
fluorescence spectrometry (AFS) [23]. Quality assurance and quality control (QA/QC) were
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performed using the soil standard reference material of China (GBW07401, GSS-1). The
accepted recoveries ranged from 94.8% to 112% for each element.
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2.3. Assessment of Heavy Metal Pollution

The geo-accumulation index (Igeo) proposed by Müller in 1969 has been widely used
to assess soil pollution in recent years [24–26]. Igeo is divided into seven classes, and the
different classes represent the heterogeneity of the degree of pollution [27]:

Igeo = log2[Cn/(1.5× Bn)] (1)

where Cn is the measured value of the heavy metals in soil; and Bn is the geochemical back-
ground value of the heavy metals in the local soil. In this study, for Bn, the background value
for Xinjiang was used [28]. Igeo was divided into the following levels: unpolluted (Igeo ≤ 0);
unpolluted to moderately polluted (0 < Igeo ≤ 1); moderately polluted (1 < Igeo ≤ 2); mod-
erately to strongly polluted (2 < Igeo ≤ 3); strongly polluted (3 < Igeo ≤ 4); strongly to
extremely polluted (4 < Igeo ≤ 5); and extremely polluted (Igeo > 5) [22].

The PI and pollution load index (PLI) of the heavy metals were calculated using the
following equations [29]:

PI =
Cn

Bn
(2)

PLI = (PI1 × PI2 × PI3 × . . . × PIn)1/n (3)

where Cn is the measured value of the heavy metals in the soil, Bn is the geochemical
background value of the heavy metals in the local soil, and n is the number of heavy
metals. The PI of each element was calculated and classified as either low (PI ≤ 1), medium
(1 < PI ≤ 3), or high (PI > 3) [18]. The PLI was classified as unpolluted (PLI≤ 1), unpolluted
to moderately polluted (1 < PLI ≤ 2), moderately polluted (2 < PLI ≤ 3), moderately to
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highly polluted (3 < PLI ≤ 4), highly polluted (4 < PLI ≤ 5), and very highly polluted
(PLI > 5) [30,31].

2.4. Potential Ecological Risk Index (PRI)

The potential ecological risk index (PRI) was proposed by the Swedish scientist Lars
Hakanson [32]. The equation for calculating PRI is given as follows:

PRI =
n

∑
i

Ei
r (4)

Ei
r = Ti

n ×Ci
r (5)

Ci
r =

Ci

Ci
n

(6)

where Ei
r is the individual potential ecological risk coefficient of a heavy metal, Ti

n is the
toxic response factor of six heavy metals (Zn = 1; Cu = Pb = 5; Cr = 2; Hg = 40; and
As = 10) [32,33], Ci

r is the pollution factor of the heavy metal, Ci is the measured value of
the heavy metals in the soil, and Ci

n is the geochemical background value of the heavy
metals. Hakanson defined five categories: low risk (Ei

r ≤ 40), moderate risk (40 < Ei
r ≤ 80),

considerable risk (80 < Ei
r ≤ 160), high risk (160 < Ei

r ≤ 320), and very high risk (Ei
r ≥ 320).

In this study, we analyzed six heavy metals; therefore, the PRI ranges were modified and
the four categories of the PRI were defined as follows: low risk (PRI ≤ 70), moderate risk
(70 < Ei

r ≤ 140), considerable risk (140 < Ei
r ≤ 280), and very high risk (Ei

r ≥ 280).

2.5. Health Risk Assessment
2.5.1. Exposure Assessment

In this study, the health risk posed by heavy metals in soil was calculated and assessed
based on the guidelines and Exposure Factors Handbook of the US Environmental Protec-
tion Agency [34–36]. The average daily dose (ADD) values for each heavy metal via three
exposure pathways were calculated using the following Equations (7)–(9):

ADDing = C× ln gR× EF× ED
BW×AT

× 10−6 (7)

ADDinh = C× ln hr× EF× ED
SL× BW×AT

(8)

ADDdermal = C× SL× SA×ABS× EF× ED
BW×AT

× 10−6 (9)

LADD =
C× EF

AT× SL
×

(
InhRchild × EDchild

BWchild
+

InhRadult
BWadult

)
(10)

where ADDing, ADDinh, and ADDdermal are the average daily intakes from soil ingestion,
inhalation, and dermal absorption, respectively (mg kg−1d−1). The important parameter
values used to calculate the intake value and risk are given in Table 1.
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Table 1. The exposure parameters for the ADI estimation.

Parameter Abbreviation Value

Conversion factor CF 1 × 10−6 kg mg−1

Ingestion rate lngR Adult: 100 m3 d−1; child: 200 m3 d−1

Inhalation rate lnhR Adult: 15 m3 d−1; child: 7.5 m3 d−1

Exposure frequency EF Adult: 365 da−1; child: 365 da−1

Exposure duration ED Adult: 24; child: 6
Body weight BW Adult: 53.1 kg; child: 15 kg
Average time AT Adult: 24 × 365 d; child: 6 × 365 d

Soil-adherence factor SL 0.2 mg (cm2 d)−1

Exposed skin area SA Adult: 4350 cm2; child: 1600 cm2

Dermal absorption fraction ABSd 0.001

2.5.2. Non-Carcinogenic Risk Assessment

The non-cancer risk can be characterized by the hazard quotient (HQ) [4]. For a
mixture of contaminated soil, the hazard index (HI), which is equal to the sum of the
HQ values of all of the heavy metals, was calculated and applied to assess the overall
non-carcinogenic risk [34]. The equation is given as follows:

HQi = ∑3
j=1

ADDij

RfDij
(11)

HI =
4

∑
i=1

HQi (12)

where RfDij is the reference dose for the six heavy metals, as presented in Table 2. If HI < 1,
it is considered that there are no significant adverse health effects, whereas if HI > 1, there
is a possibility of non-carcinogenic risks [11,37].

Table 2. Reference doses for non-carcinogenic metals and slope factors for carcinogenic metals.

Elements RfD (mg·(kg·d)−1) SF ((kg·d)·mg−1)

Ingestion Inhalation Dermal Ingestion Inhalation Dermal

Zn 3.0 × 10−1 3.0 × 10−1 0.060 — — —
Cu 0.4 × 10−1 0.040 0.012 — — —
Cr 3.0 × 10−3 2.86 × 10−5 6.0 × 10−5 — 42.0 —
Pb 3.5 × 10−3 3.52 × 10−3 5.25 × 10−4 — — —
Hg 3.0 × 10−4 3.0 × 10−4 2.40 × 10−5 — — —
As 3.0 × 10−4 1.23 × 10−4 3.0 × 10−4 1.5 4.3 × 10−3 1.5

2.5.3. Carcinogenic Risk Assessment

Carcinogenic risk (CR) indicates that the probability of an individual suffering from
any type of cancer due to exposure to carcinogenic risks in their whole lifetime [9]. The CR
is calculated by summing the individual cancer risks of each exposure pathway using the
following equations:

CRi =
3

∑
J=1

ADDijSFij (13)

TCR =
2

∑
J=1

CRi (14)

where the CR is carcinogenic risk (unitless), TCR is the total carcinogenic risk (unitless),
and SF is the carcinogenicity slope factor (mg·kg−1·day−1). The SF values of the six heavy
metals are presented in Table 2. According to the USEPA (2001), if the TCR are <10−6, there
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is no carcinogenic health risk to humans; the carcinogenic risk is acceptable in the range of
10−6 < TCR < 10−4; if the TCR > 10−4, the carcinogenic risk exceeds the tolerable range of
the human body [38,39].

2.6. Data Analysis

The descriptive statistics, coefficient of variation (CV), Ei
r, HI, and CR were calculated

and analyzed in Microsoft Excel 2019 (Microsoft, Redmond, WA, USA). Pearson’s correla-
tion coefficient, Igeo, PI, PRI, and principal component analysis (PCA) were derived using
the SPSS20.0 software package (IBM, Armonk, NY, USA). Spatial distributions of heavy
metals were created by Arc GIS 10.2 (ESRI, NY Str., Redland’s city, Los Angeles, CA, USA).

3. Results and Discussion
3.1. Heavy Metal Concentration in Soil

The descriptive statistics and environmental quality standards of the six heavy metals
in the soil are given in Table 3. In this study, the regional background value and national soil
environmental quality standards of China (GB15618-1995) were selected as the pollution
limits. It was observed that the average contents of Zn, Cu, Cr, Pb, Hg, and As were 55.34,
27.16, 37.31, 79.63, 0.03, and 89.38 mg kg−1, respectively. The order of the contents of the
seven heavy metals was As >Pb > Zn > Cr > Cu > Hg. Among these, the Cu, Pb, Hg, and
As contents exceeded the regional background values by 1.02, 4.10, 1.76, and 7.98 times,
respectively. The Cu, Pb, and As contents were 1.2, 3.06, and 7.98 times greater, respectively,
than the national soil environmental quality standards of China (GB15618-1995). The
coefficient of variation (CV) reflects the average variation in the heavy metal concentrations,
with CV > 35% reflecting a high level of variation, 15% < CV < 35% reflecting a moderate
level of variation, and CV ≤ 15% reflecting a low level of variation [40]. In this study, the
CVs of the six heavy metals were 15% < CV < 35%, indicating moderate variation.

Table 3. Descriptive statistics of the heavy metals in soil.

Elements Range Median Average Standard Coefficient Kurtosis Skewness Regional National
Standard

(mg kg−1) (mg kg−1) (mg kg−1) Deviation of
Variation Value (mg kg−1)

(mg kg−1) (%) (mg kg−1)

Zn 20.63–132.06 55.31 55.34 12.20 22 12.70 1.62 68.8 74.2
Cu 6.38–119.19 26.06 27.16 9.84 36 44.66 4.98 26.7 22.6
Cr 9.06–71.25 36.38 37.31 10.53 28 0.85 0.30 49.3 61
Pb 36.25–129.38 75.63 79.60 19.45 24 0.07 0.68 19.4 26
Hg 0.01–0.06 0.03 0.03 0.01 28 1.25 0.29 0.017 0.065
As 6.19–209.63 92.63 89.38 23.19 26 4.23 0.25 11.20 11.20

3.2. Spatial Distribution of Heavy Metals

The spatial distributions of the heavy metals in the soil are shown in Figure 2. It can
be seen that, in the study area, the distribution trends of Zn, Cr, and Hg were basically
consistent, and the high contents of these elements were mainly distributed in the soil
around the main industrial regions in Jimsar County and Fukang City, including a coal
mine, coal power plant, coal chemical plant, and electric aluminum plant. Except for Hg,
the high values appeared in Qitai County, and Zn and Cr were present in low amounts in
this region. The contents of the three heavy metals in the Midong District were lower than
those in the other regions.
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For Cu, most of the regions presented the same trend. The low values appeared in
Midong District, the northeastern part of Jimsar County, and most of Qitai County. The
high Pb contents appeared in the southern part of Fukang and most of Jimsar County.
The low Pb contents were located in the northern part of Fukang City and Qitai County.
The high As contents were distributed in Midong District, the main industrial region in
the northern part of Jimsar County, and most of Qitai County, whereas the low contents
appeared in the other regions of the study area.

Fukang City is the main industrial area in the East Tianshan Mountain Economic
Belt; in this region, human activities are frequent and the soil is easily affected by human
activities [18]. In the Ganhezi industrial region, which is located between Jimsar County
and Fukang City, the main industries include electric power stations, chemical plants,
cement factories, and fabric production. The deep red region in Figure 2 includes Tudunzi
Town and Laotai Town. These areas are located between Jimsar County and Fukang
City, and these regions are the main agricultural basis of Fukang City and Jimsar County.
By comparing the distribution patterns of the six heavy metals in the four regions, it
was found that the contamination level of Qitai County was lower than that of the other
regions because there is less industrial activity in this region. Midong District is the main
vegetation area, and it provides the vegetation for Urumqi. There is a significant degree
of agricultural activity in this region; in addition, Midong District is the core area of the
largest manufacturing base, a chemical industry city, and an important export processing
base in Xinjiang. These enterprises emit contaminants in a different manner during their
production process, causing the accumulation of heavy metals in this region [37].
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3.3. Assessment of Heavy Metal Pollution in the Soil

The correlation analysis results for the seven heavy metals in the soil are shown in
Figure 3. It can be seen that a high correlation existed between Cr–Hg, Cu–Cr, Cr–As, Zn–
Cr, and Zn–Cu, with correlation coefficients of 0.61, 0.56, 0.52, 0.49, and 0.41, respectively.
Weak correlations existed between the other elements.
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3.3.1. Results of the Igeo and PI

The results of the Igeo calculations (Figure 4) revealed that the Igeo values ranged from
−2.32 to 0.36 (mean of−0.93) for Zn, from−2.65 to 1.57 (mean of−0.63) for Cu, from−3.03
to −0.06 (mean of −1.02) for Cr, from 0.32 to 2.15 (mean of 1.41) for Pb, from −2.11 to 1.07
(mean of 0.04) for Hg, and from −1.44 to 3.64 (mean of 2.35) for As. The mean Igeo values
decreased in the order: As > Pb > Hg > Cu > Zn > Cr. The Igeo values of Zn, Cu, and Cr
were less than 0, indicating no pollution. There was moderate Pb pollution, no to moderate
Hg pollution, and the As pollution was moderate to strong.
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As can be seen from Figure 5, the PI values of Cu, Pb, Hg, and As ranged from 0.24 to
4.64, 1.87 to 6.67, 0.41 to 3.71, and 0.55 to 18.72, with mean values of 1.02, 4.10, 1.90, and
7.98, respectively. The mean PI values of these heavy metals were ranked in the order of:
As > Pb > Hg > Cu > Zn > Cr. The PIs of Zn (0.80) and Cr (0.76) were less than 1, indicating
a low degree of pollution. The PIs of Cu (1.02) and Hg (1.90) indicated moderate pollution
(1< PI ≤ 3), and those of Pb (4.10) and As (7.98) indicated a high level of pollution. The
mean PLI value was 8.20. This mean PLI of greater than 5 (PLI > 5) indicates that all of the
elements in this region exhibited very high levels of pollution.
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3.3.2. Potential Ecological Risk (PRI) of Soil Heavy Metals

The PRI coefficient of the heavy metals in the 171 soil samples are presented in Table 4;
the Ei

r values of Zn, Cu, Cr, and Pb were less than 40, presenting a low risk. The Hg in the
171 soil samples presented a low risk (13), moderate risk (129), and considerable risk (29).
As in the 171 soil samples presented a low risk (13), moderate risk (70), and considerable
risk (88). Therefore, Hg and As were considered to be main sources of risk in this region.

Table 4. Distribution frequency of the potential (Ei
r) of each heavy metal in soil.

Heavy
Metal Minimum Maximum Mean Standard

Deviation Low Risk Moderate
Risk

Considerable
Risk

High
Risk

Very
High
Risk

Zn 1.49 9.97 4.02 0.89 171
Cu 1.20 22.31 5.08 1.84 171
Cr 0.37 2.89 1.51 0.43 171
Pb 9.34 33.34 20.51 5.01 171
Hg 13.87 126.13 64.67 17.15 13 129 29
As 5.52 187.17 79.80 20.70 13 70 88

Based on the analysis of the PRI values of the heavy metals in the soils (Table 5), it
was found that 19.3% of the values of the polluted sites were categorized as low risk, 80.1%
as moderate risk, and 0.6% as considerable risk. In this study, the heavy metals in the soil
of the study area exert moderate risks; this should be paid attention to, for control and to
avoid further pollution.

Table 5. Statistical analysis of the PRI values of the six heavy metals in the soil.

Potential Ecological
Risk Level PRI < 150 150 ≤ PRI < 300 300 ≤ PRI < 600 PRI ≥ 600

Level Low risk Moderate risk Considerable risk Very high risk
Frequency 33 137 1 –
Percentage 19.3 80.1 0.6 –

3.4. Health Risk Assessment
3.4.1. Non-Carcinogenic Risk Assessment

Table 6 presents the non-carcinogenic risk index values of each element, through
the three exposure pathways in soil. The average hazard quotients (HQs) for adults and
children exhibited the same decreasing trend: HQAs > HQPb > HQCr > HQCu > HQZn >
HQHg. The total HQs of Zn, Cu, Cr, Pb, Hg, and As for adults accounted for 0.06%, 0.21%,
3.74%, 7.09%, 0.04%, and 88.87% of the entire HI value, respectively. The total HQs of Zn,
Cu, Cr, Pb, Hg, and As for children accounted for 0.06%, 0.21%, 3.72%, 6.84%, 0.03%, and
89.15% of the entire HI value, respectively. Based on these results, Cr, As, and Pb were
the main non-carcinogenic factors in the heavy metal pollution of the soils in the study
area. Based on comparative analysis, the three main pathways of the HQs are ranked as
follows: HQingest > HQdermal > HQinhale. It can be concluded that oral ingestion and dermal
contact were the main pathways of the non-carcinogenic health risks in this region. The
order of non-carcinogenic HI values of heavy metals for both adults and children were
As > Pb > Cr > Cu > Zn > Hg. Except for the HI values of As, which were higher than
1 (children), HI values for all studied heavy metals were below 1. There was no significant
non-cancer risk for adults. As is the main element causing the non-cancer risk in this region.
Comparison of the HI values of adults and children found that HI values of children were
higher than those of adults. Because children spend more time playing outdoors and
demonstrate more hand-to-mouth activities, HI values of children were higher than those
of adults. Therefore, in this study, non-carcinogenesis risks caused by heavy metals in soil
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in children were greater than in adults, and this research result is consistent with earlier
research [41].

Table 6. The non-carcinogenic risk index values of the heavy metals in soil.

Elements
HQ Ingest HQ Inhale HQ Dermal HI

Adults Children Adults Children Adults Children Adults Children

Zn 3.10 × 10−4 6.20 × 10−4 3.42 × 10−8 1.71 × 10−8 1.35 × 10−5 4.96 × 10−6 3.23 × 10−4 6.25 × 10−4

Cu 1.15 × 10−3 2.31 × 10−3 1.27 × 10−7 6.36 × 10−8 3.35 × 10−5 1.23 × 10−5 1.19 × 10−3 2.32 × 10−3

Cr 2.08 × 10−2 4.17 × 10−2 2.41 × 10−4 1.21 × 10−4 1.81 × 10−4 6.67 × 10−5 2.13 × 10−2 4.19 × 10−2

Pb 3.80 × 10−2 7.61 × 10−2 4.17 × 10−6 2.09 × 10−6 2.21 × 10−3 8.12 × 10−4 4.03 × 10−2 7.69 × 10−2

Hg 1.81 × 10−4 3.61 × 10−4 1.99 × 10−8 9.96 × 10−9 1.96 × 10−5 7.23 × 10−6 2.00 × 10−4 3.68 × 10−4

As 0.5.0 × 10−1 1.00 1.35 × 10−4 6.73 × 10−5 4.35 × 10−3 1.60 × 10−3 5.05 × 10−1 1.01

3.4.2. Carcinogenic Risk Assessment

Table 7 shows the carcinogenic risk assessment results for As and Cr in the soil.
Whether children or adults, the CR value of Cr is higher than that of As. The percentages
of As and Cr of TCR for children are 92.16% and 7.84%, and the TCR values for adults are
92.11% and 7.89%, respectively. There are many industries in the study area, and arsenic
mainly comes from industrial emissions, motor vehicles, and coal combustion. The atmo-
sphere is an important means of transferring heavy metals from pollution sources. There is
a northwest wind in the study area throughout the year, and people inhale pollutants in
the air and from the soil during breathing, leading to the accumulation of heavy metals in
their bodies. In this study, the content of arsenic was found to be greater than the regional
background value of soil and the national soil quality standard, and the arsenic pollution
situation presents a high pollution level. Combined with the carcinogenic risk assessment
results, it can be seen that As is the main carcinogenic heavy metal element in this area.
By comparing the three pathways for the CR of As, it was found that oral ingestion was
the main pathway for the CR of As for both adults and children. Previous studies have
reported that arsenic is a Class-A human carcinogen [42], and its presence in the topsoil
throughout the entire city posed risk factors for children’s health [43]. Earlier research
results showed that the heavy metals that present a cancer risk in this study area are Cr
in food intake and As in food and dust intake; these are very high, i.e., up to 100 times
the threshold (10−4), in Hunan Province in China [44]. The TCRs for adults and children
were 9.85 × 10−4 and 4.89 × 10−4, respectively. The results of this study are consistent with
the results of previous studies [25]. The carcinogenic health risks in this region exceed the
tolerable range for the human body.

Table 7. The carcinogenic risk index values of heavy metals in soils in the study area.

Elements
CRingest CRinhale CRdermal CR TCR

Adults Children Adults Children Adults Children Adults Children

As 7.72 × 10−5 3.86 × 10−5 2.13 × 10−9 1.06 × 10−9 1.93 × 10−9 1.77 ×
10−10 7.72 × 10−5 3.86 × 10−5 9.85 × 10−4

Cr – – 9.08 × 10−4 4.51 × 10−4 – – 9.08 × 10−4 4.51 × 10−4 4.89 × 10−4

4. Conclusions

Our results indicate that the contents of Cu, Pb, and As in the soil exceeded the
regional background values and the Chinese national soil environmental quality standards
(GB15618-1995). The PIs of Zn (0.80) and Cr (0.76) were less than 1, indicating a low degree
of pollution. The PIs of Cu (1.02) and Hg (1.90) indicated a moderate level of pollution
(1< PI ≤ 3). The PIs of Pb (4.10) and As (7.98) indicated a high level of pollution. The mean
PLI value was 8.20, which was greater than 5 (PLI > 5), indicating that all of the heavy
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metals in this region presented very high levels of pollution. The PRI values revealed that
the soil in this region presented a moderate risk level.

The HI values for adults and children were lower than 1, and thus no non-carcinogenic
risks are posed to adults; however, the element As poses non-carcinogenic risks to children.
The results indicate that As is the main carcinogenic factor in this region. A comparison of
the three pathways for the CR of As revealed that oral ingestion was the main pathway
for the CR of As for both adults and children. The TCRs for adults and children were
9.85 × 10−4 and 4.89 × 10−4, respectively. As and Cr are the main heavy metals that pose
human health risks in this region. The heavy metal pollution of these elements in this
area needs to be paid special attention, and relevant departments should take measures to
control the further impact of these heavy metals on human health.
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