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Abstract: It is crucial to accurately identify precious tree pests in a real, complex natural environment
in order to monitor the growth of precious trees and provide growers with the information they need
to make effective decisions. However, pest identification in real complex natural environments is
confronted with several obstacles, including a lack of contrast between the pests and the background,
the overlapping and occlusion of leaves, numerous variations in pest size and complexity, and a great
deal of image noise. The purpose of the study was to construct a segmentation method for identifying
precious tree pests in a complex natural environment. The backbone of an existing Mask region-based
convolutional neural network was replaced with a Swin Transformer to improve its feature extraction
capability. The experimental findings demonstrated that the suggested method successfully segmented
pests in a variety of situations, including shaded, overlapped, and foliage- and branch-obscured pests.
The proposed method outperformed the two competing methods, indicating that it is capable of
accurately segmenting pests in a complex natural environment and provides a solution for achieving
accurate segmentation of precious tree pests and long-term automatic growth monitoring.

Keywords: precious trees control; small pest segmentation; instance segmentation; Mask RCNN;
Swin Transformer

1. Introduction

Precious trees pest control is a global concern that is critical to ecological security and
the forestry industry [1]. The accurate identification of pests in a real, complex natural
environment is essential for effectively monitoring precious trees growth and providing
growers with data they need to make effective decisions [2,3]. Nevertheless, manual pest
identification is a time-consuming and labor-intensive process that requires specialized
forestry knowledge [4,5]. Therefore, it is necessary to develop automatic and accurate
precious tree pest identification methods in real field environments.

Earlier attempts at automatic pest identification centered on traditional machine learn-
ing approaches, which frequently employed standard image processing algorithms or
the manual design of features and classifiers for feature extraction and object identifica-
tion [6–8]. Frequently, this method employs various pest characteristics to develop an
identification scheme based on images captured with the appropriate lighting and shooting
angle. In a natural environment, pest identification is hampered by a number of factors,
including varying illumination, overlap and occlusion of leaves, similarity in color between
the pests in the larva stage and the background, and uneven color and shadows on the
leaf surface. Expecting traditional algorithms to eliminate the effect of scene changes on
results [9,10] is impractical. In such circumstances, conventional identification methods are
often ineffective, and it is difficult to achieve superior identification performance.

Recent years have seen the successful implementation of deep learning models repre-
sented by convolutional neural networks (CNN) in a variety of computer vision-related
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fields [11–15]. Due to its superior performance, it is used for a variety of pest identifi-
cation tasks [16,17]. In contrast to conventional machine learning techniques, it could
automatically extract high-dimensional information from training datasets, reducing the
requirement for labor-intensive feature engineering.

In general, the model for pest identification based on CNN could be subdivided into
classification network, detection network, and segmentation network, based on the differ-
ent network structures required for different tasks [16–18]. For gathering pest information,
the segmentation method, which not only finely separates the pest region but also acquires
the location, category, and matching geometric properties, has proven superior to the clas-
sification and detection network approaches [19]. Pests tend to cluster and overlap in their
native environment. In CNN-based object segmentation models, semantic segmentation
methods accurately segment pests; however, the network generates the same mask for
pests of the same class, preventing the segmentation of overlapping pests. Unlike semantic
segmentation, the instance segmentation method, on the other hand, could generate a
unique mask for each pest instance and differentiate between individual pests.

The mask region-based convolutional neural network (Mask RCNN) [20] is a state-
of-the-art instance segmentation method that has been widely applied to a variety of
segmentation and detection tasks [21,22]. These algorithms, which employ stackable
learnable convolutions to capture rich information in computer vision, have proven to be
highly effective. However, because to the inherent localization of convolution processes [23],
CNN-based modeling of global semantic information still has limits. It is difficult to
identify the small pests if only relying on the local information, as the segmentation of
small pests typically relies on the comparison of local information to global background
information about pests. To liberate the network from the local pattern concentration of
CNNs, numerous attempts have been made to model global contextual information, with
attention mechanisms being the most popular approach [24–28].

Swin Transformer uses a self-attention mechanism to capture global context infor-
mation, which has demonstrated exceptional performance in multiple domains [29–35].
The self-attention mechanism assesses the output at a particular position in a sequence by
concentrating on all positions and calculating the weighted average in an embedding space.
In other words, the mechanism for self-attention collects contextual information from other
instances. By weighting values using an attention matrix, the self-attention mechanism
increases the distance or distinction between classes. Therefore, Swin Transformer auto-
matically incorporates class relationships into its feature maps. According to a number
of researchers, CNN models could be outperformed by the model combined with Swin
Transformer [33]. However, previous research in this field has primarily focused on object
detection [34] and semantic segmentation [35], while the challenge of small precious tree
pest segmentation via instance segmentation has been addressed relatively infrequently.

Swin [36] is one of the transformer methods that utilizes hierarchical information from
multi-scale feature maps and achieves superior performance across a range of vision tasks.
Additionally, it generates higher-resolution feature maps than other transformer methods,
which is advantageous for prediction maps containing small-scale objects. As a result, we
investigated incorporating Swin Transformer into the instance segmentation framework to
address the challenge of frequently small-scale precious tree pest segmentation.

This research proposed a pest instance segmentation method based on an enhanced
instance segmentation framework fused with Swin Transformer, named MT, to guarantee
accurate segmentation of multiple small pest individuals in complex natural environments.
The particular objectives are as follows: (1) Incorporate Swin Transformer method into
the backbone of the Mask RCNN to enhance the ability of the network to extract features,
thereby enhancing the accuracy in precious tree pest segmentation. (2) Train and evaluate
the improved Mask RCNN to achieve precise detection and segmentation of small pests in
the real, complex natural environment.

The remaining sections are organized as follows: Section 2 describes and analyzes
the datasets; Section 3 discusses the proposed approach and technical details; Section 4
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describes and analyzes the experimental results; and Section 5 discusses conclusions and
future work.

2. Materials and Methods
2.1. Image Dataset

This paper uses the larvae of Heortia vitessoides Moore as an example for experimental
research to evaluate the effect of the proposed method on small pest identification and
segmentation in real complex natural environments [37–39]. As the primary pest of the
precious trees Aquilaria sinensis in China, the Heortia vitessoides Moore nibbles the leaves
of Aquilaria sinensis in its infancy, causing the petiole to fall off [40,41], and causes severe
damage to Aquilaria sinensis when it erupts, with a damaged plant rate of more than
90% [42,43], posing a serious threat. The larvae of Heortia vitessoides Moore are small and
mostly group on the leaves of Aquilaria sinensis, and their color and texture are mostly
similar to the surrounding environment, posing some identification and segmentation
challenges for the model.

All images were collected in 2021 in the Tropical Forestry Experimental Center of
the China Academy of Forestry Sciences, Pingxiang City, Guangxi Province. The photos
were taken in a natural setting at Qingshan Forest Farm. Images were collected in natural
daylight with both backlight and direct sunlight situations on sunny and cloudy days
to ensure a diverse set of image samples. The images were taken with a mobile phone
and saved in JPEG format with a resolution of 6240 × 4160 pixels. A total of 987 images
of Heortia vitessoides larva were captured, including little pests, overlapping pests, pests
hidden by foliage and branches, and pests with shadowing and uneven lighting on the
surface, from which 198 images captured under different weather and illuminations were
selected as the test set, and the remaining 798 images were used as the training set for
network training. Details are presented in Table 1.

Table 1. Detailed information of training and test images.

Weather Condition Morphology of Pests Number of Training Images Number of Test Images

Sunny

Direct sunlight

little pests 55 12
overlapping 52 11

hidden by foliage and branches 59 13
uneven 53 12

Backlight

little pests 50 15
overlapping 52 12

hidden by foliage and branches 50 10
uneven 55 12

Cloudy

Direct sunlight

little pests 55 12
overlapping 52 12

hidden by foliage and branches 55 13
uneven 53 11

Backlight

little pests 53 12
overlapping 53 14

hidden by foliage and branches 51 15
uneven 55 12

Total 798 198

Prior to the process of pest segmentation, it was necessary to annotate a substantial
quantity of images of pests, as opposed to just their categories. To accomplish this, over
five forestry specialists utilized the publicly accessible annotation tool Labelme v4.9 [44] to
obtain the ground truth (GT) boundaries of the visible pests in the images. GT is generated
as a json file, and pixels with annotations indicate the location of pests. After labeling, the
annotated images were divided 8:2 into training dataset and test dataset. Examples of the
captured images and annotations are shown in Figure 1.
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This study suggested an enhanced Mask RCNN-based method for accurately seg-
menting pests in complex naturalistic environments. Modern instance segmentation 
methods like Mask RCNN, which extends Faster R-CNN [45] with a segmented mask 
generating branch, allow for accurate classification and detection. The backbone of the 
original Mask RCNN was suggested to be replaced with Swin Transformer model for en-
hancing features extraction. After receiving the outputs from the backbone, the region 
proposal network (RPN) generated region proposals. RoIAlign [20] gathered features 
from each proposal to ensure that the features were accurately aligned with the input. In 
the end, two operations were run simultaneously. Pest classification and regression of 

Figure 1. Examples of captured images and the corresponding annotation. (a) Single larva of
Heortia vitessoides affected by shadows; (b) Multiple larvae of Heortia vitessoides affected by uneven
color on the surface; (c) Multiple clustering larvae of Heortia vitessoides affected by shadows and
occlusion; (d) Multiple clustering larvae of Heortia vitessoides impacted by uneven color on the
surface, occlusion, and shadow; (e) Annotation of (a); (f) Annotation of (b); (g) Annotation of (c);
(h) Annotation of (d).

2.2. Instance Segmentation Method of Larva Based on Improved Mask RCNN
2.2.1. Model Construction

This study suggested an enhanced Mask RCNN-based method for accurately segment-
ing pests in complex naturalistic environments. Modern instance segmentation methods
like Mask RCNN, which extends Faster R-CNN [45] with a segmented mask generating
branch, allow for accurate classification and detection. The backbone of the original Mask
RCNN was suggested to be replaced with Swin Transformer model for enhancing features
extraction. After receiving the outputs from the backbone, the region proposal network
(RPN) generated region proposals. RoIAlign [20] gathered features from each proposal to
ensure that the features were accurately aligned with the input. In the end, two operations
were run simultaneously. Pest classification and regression of bounding boxes were accom-
plished by fully connected (FC) layers, and the fully convolutional network [46] produced
highly accurate segmentation masks to identify the locations of the pests. The segmentation
technique for pests based on an improved Mask RCNN network is shown in Figure 2. The
following section will discuss the details.
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2.2.2. Extraction of Features Based on SWIN Transformer and FPN

(1) Swin Transformer
The architecture of Swin Transformer is depicted in Figure 3. A color image is initially

split into separate, non-overlapping patches by a patch splitting module [36]. The attribute
of each patch is calculated by combining the raw color information of its measurement
of individual pixels. Each patch is regarded as a “token.” Since our implementation uses
a patch size of 4 × 4, each patch has a feature dimension of 4 × 4 × 3 = 48. The raw
value of this feature is projected to an undefined dimension using only a linear sequential
model (denoted as C). These patch tokens have a number of Swin Transformer blocks
(transformers with modified self-attention computation) affixed to them. Along with the
linear embedding, Swin Transformer blocks and token count (H/4 × W/4) are referred to
as “Stage 1”.
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As the network depth increases, the number of tokens is reduced by merging patch
layers to generate a hierarchical representation. The initial patch merging layer merges the
features of each group of 2 × 2 adjacent patches before applying a linear layer to the fused
4C-dimensional features. This sets the output dimension to 2C and decreases the number
of tokens by a factor of 2 × 2 = 4 (2 × down-sampling).

Following that, features are transformed while retaining a H/8 × W/8 resolution using
Swin Transformer blocks. “Stage 2” refers to the initial stage of patch merging and feature
transition. The process is then run twice, with the output resolutions being H/16 × W/16
and H/32 × W/32, respectively. As a result, the backbone networks of existing approaches
for a range of visual tasks are readily replaced by the suggested architecture.

For the detail, the typical multi-head self-attention (MSA) module in transformer block
is replaced with Swin Transformer block based on shifted windows, leaving the other
layers unmodified. A shifted window-based MSA module, a 2-layer MLP, and nonlinearity
are the components of Swin Transformer block. A LayerNorm (LN) layer and residual
connection are applied before and after each MSA module and MLP, respectively. The
shifting window partitioning method computes successive Swin Transformer blocks as

ẑl = W − MSA
(

LN(zl−1)
)
+ zl−1 (1)

zl = MLP
(

LN(ẑl)
)
+ ẑl (2)

ẑl+1 = SW − MSA
(

LN(zl)
)
+ zl (3)

zl+1 = MLP
(

LN(ẑl+1)
)
+ ẑl+1 (4)

where ẑl and zl are the output characteristics of the SW-MSA module and the MLP mod-
ule for block l, respectively. W-MSA and SW-MSA are abbreviations for window-based
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multi-head self-attention utilizing regular and shifted window partitioning configura-
tions, respectively.

(2) Feature Pyramid Network
The pyramid hierarchy is used to build a feature pyramid with strong semantics as part

of the feature pyramid network (FPN) implementation. Lin et al., (2017) indicate that FPN
achieves accurate localization by utilizing high-level semantic information and dimensionality
of the feature maps [47]. Figure 4 illustrates the network architecture of the FPN.

Forests 2022, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. The network structure of FPN. 

2.2.3. ROI Alignment and Region of Interest (ROI) Generation 
The RPN was then allowed access to the collected extracted features from the back-

bone network so that it could examine the ROIs for pest-infested areas. The size of the 
larva varies dramatically between images because of the different shooting angles. When 
generating the ROIs, three different area scales were created: 128 × 128, 256 × 256, and 512 
× 512 based on the total number of pixels comprising pests in the captured datasets. Three 
aspect ratios were used: 1:2, 1:1, and 2:1. To increase the precision of the areas of interest 
(ROIs) that were output, nine anchors on the original image were created for each pixel 
on the feature map using a randomized combination of different region scales and aspect 
ratios. The anchors were used to predict the locations of the pests. To identify whether a 
target was in the front or background, the class of the ROIs was employed. Prior to gen-
erating the class and boundary values of regions of interest, the RPN performed class and 
boundary box regression operations. A target sequence in the foreground indicates the 
existence of pests within the area of interest. The bounding box was altered to exactly 
cover the pest-infested area using the boundary coordinates of ROIs. The regions of inter-
est that were generated and the related feature maps were derived via RoIAlign 
model[20]. Using RoIAlign, the anchor box’s dimensions were adjusted to a fixed size. The 
retrieved features were accurately matched with the input to increase pixel-level segmen-
tation accuracy. 

2.2.4. Pest Instance Segmentation and Loss Function 
RoIAlign produced feature maps, which were then fed into the convolutional and 

fully connected layers. The fully connected layer was used for regression analysis and 
classification on the bounding box, meanwhile the fully convolutional layer was em-
ployed to segment pest instances. Convolution and deconvolution were employed for in-
stance segmentation, and the outputs of the fully connected layer were transferred to a 
Softmax layer for classification. 

The loss function, which is essential for network training, represents the differences 
between the predictions and the actual data. In this work, the neural network is trained 
utilizing the combined loss function of the classification, mask prediction, and bounding 
box regression branches. The network loss is computed using Equations (5)–(8). 

Figure 4. The network structure of FPN.

The four stages of the attended Swin Transformer correspond to the four different
scales of the feature map (C1, C2, C3, and C4). The feature maps are then sent to the FPN,
which generates the feature pyramid and new features [P1, P2, P3, P4]. P1 is not used in
the subsequent procedures because the computation of the corresponding feature map of
C1 takes a considerable amount of time. P5, which was obtained by down-sampling P4, is
used in this instance.

The FPN combines the characteristics of each stage of the attended Swin Transformer,
increasing network accuracy and giving the network robust semantic and spatial insight.
By using the attentive Swin Transformer plus the FPN as the backbone network in this
study instead of the initial backbone network, the network’s capacity to extract features
was improved.

2.2.3. ROI Alignment and Region of Interest (ROI) Generation

The RPN was then allowed access to the collected extracted features from the backbone
network so that it could examine the ROIs for pest-infested areas. The size of the larva varies
dramatically between images because of the different shooting angles. When generating
the ROIs, three different area scales were created: 128 × 128, 256 × 256, and 512 × 512
based on the total number of pixels comprising pests in the captured datasets. Three aspect
ratios were used: 1:2, 1:1, and 2:1. To increase the precision of the areas of interest (ROIs)
that were output, nine anchors on the original image were created for each pixel on the
feature map using a randomized combination of different region scales and aspect ratios.
The anchors were used to predict the locations of the pests. To identify whether a target
was in the front or background, the class of the ROIs was employed. Prior to generating the
class and boundary values of regions of interest, the RPN performed class and boundary
box regression operations. A target sequence in the foreground indicates the existence
of pests within the area of interest. The bounding box was altered to exactly cover the
pest-infested area using the boundary coordinates of ROIs. The regions of interest that
were generated and the related feature maps were derived via RoIAlign model [20]. Using
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RoIAlign, the anchor box’s dimensions were adjusted to a fixed size. The retrieved features
were accurately matched with the input to increase pixel-level segmentation accuracy.

2.2.4. Pest Instance Segmentation and Loss Function

RoIAlign produced feature maps, which were then fed into the convolutional and
fully connected layers. The fully connected layer was used for regression analysis and
classification on the bounding box, meanwhile the fully convolutional layer was employed
to segment pest instances. Convolution and deconvolution were employed for instance
segmentation, and the outputs of the fully connected layer were transferred to a Softmax
layer for classification.

The loss function, which is essential for network training, represents the differences
between the predictions and the actual data. In this work, the neural network is trained
utilizing the combined loss function of the classification, mask prediction, and bounding
box regression branches. The network loss is computed using Equations (5)–(8).

L = Lcls + Lbbox + Lmask (5)

Lcls = ∑
i
− log[p∗i pi + (1 − p∗i )(1 − pi)] (6)

Lbbox =
1

Nreg
∑

i
p∗i R(ti − t∗i ) (7)

Lmask = − 1
m2 ∑

1≤i,j≤m

[
y∗ij log yij + (1 − y∗ij) log

(
1 − yij

)]
(8)

where Lcls is the classification loss, Lbbox is the bounding box regression loss, and Lmask stands
for the mask loss, ti and t∗i represent the predicted and ground truth coordinates, whereas
pi and p∗i represent the expected probability and actual value of the anchor, respectively.
The smoothing L1 function is R(·). The mask branch output for each ROI in the enhanced
Mask RCNN has a m2 dimension, yij represents the predicted value and y∗ij represents the
actual value of the coordinate point (i, j) in the m × m region.

2.3. Network Training

Experiments were performed on a platform with an Intel(R) Xeon(R) CPU E5-2643 v4
processor, 96 GB of memory, and an NVIDIA Tesla K40c GPU (12 GB memory). Python 3.7
was utilized for training and testing the pest instance segmentation network on Windows 10.

The basic Mask RCNN model, which had been previously trained on the COCO
dataset, was used to initialize the improved Mask RCNN in order to accelerate the training
process [48]. The improved Mask RCNN network was then trained using the pest-labeling
images. The following parameters were set to their respective values: 0.00001, 2.0, 0.90,
0.05, and 100 epochs for learning rate, batch size, learning momentum, weight decay, and
iterations. Six hours were spent on training in its entirety.

2.4. Evaluation of the Performance of the Network Model

The performance of the suggested pest instance segmentation method was assessed using
three parameters: precision, recall and F1 score [49]. Equations (6)–(8) can be used to calculate
the parameters. The greater the values of the three parameters, the better the outcomes.

precision = TP/(TP + FP)× 100% (9)

recall = TP/(TP + FN)× 100% (10)

F1 = 2 × precision × recall/(precision + recall) (11)

where TP, FP, and FN, respectively, represent true positive, false positive, and false negative.
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3. Results
3.1. Instance Segmentation of Pests

To evaluate the effectiveness of the proposed method, 198 images of pests captured
in a real complex natural environment were used to test the method, taken under various
lighting and weather conditions. The precision, recall and F1 score were 87.2%, 90.95% and
89.0%, respectively. Examples of segmentation results and precise segmentation accuracy
resulting from this approach are shown in Figure 5 and Table 2, respectively.
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Figure 5. Examples of instance segmentation of pests: (a1,a2) Single larva of Heortia vitessoides and
the corresponding instance segmentation result. (b1,b2) Single larva of Heortia vitessoides affected by
shadows and the corresponding instance segmentation result. (c1,c2) Single larva of Heortia vitessoides
sheltered by leaves and the corresponding instance segmentation result. (d1,d2) Multiple non-
overlapped larvae of Heortia vitessoides and the corresponding instance segmentation result. (e1,e2)
Multiple non-overlapped larvae of Heortia vitessoides affected by shadows and the corresponding
instance segmentation result. (f1,f2) Multiple larvae of Heortia vitessoides affected by uneven color on
the surface and the corresponding instance segmentation result. (g1,g2) Multiple clustering larvae of
Heortia vitessoides affected by shadows and occlusion and the corresponding instance segmentation
result. (h1,h2) Multiple clustering larvae of Heortia vitessoides affected by uneven color on the surface
and occlusion and the corresponding instance segmentation result. (i1,i2) Multiple clustering larvae
impacted by uneven color on the surface, occlusion, and shadow, as well as the related segmentation
result for the instance.

Table 2. Segmentation results of pests under different conditions.

Conditions SL MNL OL SAL MCL

precision(%) 94.85 94.4 86.6 83.9 83.3
recall(%) 96.65 97.2 89.2 88.3 87.2

F1(%) 96.0 96.0 87.9 86.0 85.2
Single larva (SL); multiple non-overlapping larvae (MNL); larvae affected by uneven color and occluded by
branches and leaves (OL); larvae affected by shadow (SAL); Multiple clustering larvae (MCL).

As shown in Figure 5, the proposed method accurately segmented single larva
of Heortia vitessoides (Figure 5a), and single larva affected by shadows and occlusion
(Figure 5b,c). Figure 5d–f represents segmentation results that were satisfactory for larvae
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that were non-overlapped. Our method was effective for segmenting larvae covered by
branches and foliage (Figure 5b,c,h) and affected by shadows (Figure 5e,g) and uneven
color on the surface(Figure 5f,i). In addition, the proposed method accurately segmented
pests that were overlapping one another (Figure 5g–i).

To evaluate the segmentation outputs of larvae affected by various circumstances,
the performance of the larva instance segmentation influenced by branch and foliage
coverage, overlapping, uneven colors, shadowing, and poor lighting on the leaf surface was
computed. (Table 2). Our method produced superior segmentation results in general. With
a 96.0% F1, our method accurately segmented single larva and multiple non-overlapping
larvae. F1 values for larvae affected by uneven color and occluded by branches and leaves
were 87.9%. This suggests that our method could successfully mitigate the effect of color
on segmentation outcomes. Our method could effectively and accurately segment larvae
with shadows, as evidenced by F1 values of 86.0%. Our method was robust for segmenting
overlapped and occluded larvae, as evidenced by F1 values of 85.2% for larvae occluded
by branches and leaves, respectively.

3.2. Comparison with Other Instance Segmentation Methods

Precision, recall, and F1 scores were used to assess the effectiveness of the improved
Mask RCNN-based pest instance segmentation approach, and the performance of the
approach was contrasted to that of Mask RCNN with ResNet50 (MR50), and ResNet101
(MR101). All three networks were trained and assessed using the same test, validation,
and training sets. Mask RCNN was trained with the following parameters: 0.02, 2.0, 0.90,
0.0001, 100 epoch, learning rate, batch size, learning momentum, and weight decay. The
segmentation outcomes for the four techniques used on the test set are displayed in Table 2.

In terms of precision, recall, and F1, as shown in Table 3, our method performed better
than the other methods. Our approach had an accuracy of 87.23%, which was 10.78% and
10.03% greater than MR50 and MR101, respectively. The recall of our approach was 90.95%,
which was greater than both MR50 and MR101. The proposed method was more accurate
in terms of the F1 score than the alternative methods (89.03%). It outperformed the MR50
by 14.33% and the MR101 by 14.38%. Based on the comparison results, it is feasible to
conclude that the approach for pest instance segmentation proposed in this work, based on
the enhanced Mask RCNN, could segment larvae in a real complex natural environment
efficiently and precisely.

Table 3. Comparison with Mask RCNN methods.

Method Precision (%) Recall (%) F1 (%)

MT 87.23 90.95 89.03
MR50 76.45 79.90 74.70

MR101 77.20 81.30 74.65

4. Discussion
4.1. Analysis of the Results of Pest Segmentation

The initial backbone of the Mask RCNN model was replaced with a Swin Transformer
model to better boost segmentation performance. This allowed the approach to concentrate
on pertinent pest characteristics in imagery while ignoring background features. This
increased both the segmentation accuracy and the network’s capacity to retrieve charac-
teristics from larvae. It is possible to draw the conclusion that the suggested method may
successfully separate pests in datasets based on an analysis of the segmented images of the
enhanced Mask RCNN-based method.

The results of the experiment revealed that the clustering larvae obscured by branches
and leaves, as well as affected by shadows, had lower performance than the majority of
the other evaluated conditions (Table 2). This may be due to differences in the factors that
contribute to the situation. Variable lighting and shadows on the surface of overlapping
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larvae are considered to have further contributed to the phenomenon. However, the
training set was unable to cover every possible situation, resulting in a slightly lower recall
rate for these larvae. The extensive similarity between the ground color and the background
color may affect the accuracy of segmentation for green larvae. The training dataset will
be expanded in the future, and the performance of the model to extract features will be
improved. The majority of pests impacted by these inclusion conditions were segregated
accurately, despite recall values for clustering larvae hidden by branches and leaves being
slightly lower.

As illustrated in Figure 6, mis-segmentation was discovered when our approach was
employed to segment pests. In most cases, mis-segmentation was caused by diminutiveness
of the pests depicted in the images. The results of Figure 6a indicated that the larvae of which
only the heads were recorded in the photos were always missed. Another situation that could
easily lead to mis-segmentation is when the background color is significantly similar to that of
multiple pests, as shown in Figure 6b. Despite the existence of mis-segmentation, our method
was capable of achieving optimal segmentation accuracy for all images.
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4.2. Results of Adding SWIN Transformer to Pest Segmentation

The method that was suggested was an enhanced modification of Mask RCNN. To
enhance the feature extraction performance of Mask RCNN on pest segmentation, Swin
Transformer model replaced the basic network backbone. The segmentation results with
various structures and the accompanying model parameters were evaluated on the test set
in order to assess the impact of Swin Transformer component on the functionality of the
network model. Tables 3 and 4 illustrate the corresponding outcomes.



Forests 2022, 13, 2048 11 of 13

Table 4. Comparison of MR50, MR101, and MT parameters.

Method Model Size (MB) GFLOPs Parameters

MT 180 135.38 47.37
MR50 168 329.33 43.75

MR101 240 481.48 62.74

The network model parameters (Table 4) showed that the magnitude and number of
the model’s parameters increased compared to MR50, while the network computation work
was appropriately reduced due to the replacement by Swin Transformer model. Based on the
F1 score, precision, and recall of the Mask RCNN replaced by Swin Transformer, it is clear
that the segmentation accuracy improved significantly after the addition of Swin Transformer
model, indicating that the Mask RCNN with Swin Transformer as its backbone improved
pest segmentation accuracy. The segmentation accuracy improved as the structure and layers
of Swin Transformer became more complex. Despite increasing the model size of the more
complex structure and layers, pest segmentation accuracy was optimized.

5. Conclusions

In this study, an improved Mask RCNN was developed for the accurate instance seg-
mentation of pests in a realistic, complicated natural environment. On the basis of the Mask
RCNN network, a network model incorporating an attention mechanism was developed in
order to enhance the feature extraction capability of the backbone network. The network
was constructed by incorporating deformable convolution and Swin Transformer attention
module into the backbone network of the original Mask RCNN. In comparison to the origi-
nal Mask RCNN, the improved network model showed stronger segmentation capabilities.
The pest instance segmentation approach based on the improved Mask RCNN segmented
small pests, overlapping pests, pests obscured by foliage and branches, and pests with
shadows and uneven lighting on the surface effectively and precisely. The precision, recall,
and F1 score for the approach were 87.23%, 90.95%, and 89.01%, respectively. This approach
accurately segmented pests under various weather and shooting situations in a complex
natural environment. In general, the proposed method could significantly improve the
segmentation performance of Mask RCNN, which may be useful for the effective treatment
of pests that affect precious trees. In the future, we will collect images of other pests, expand
our database of pests in a variety of situations, and explore methods to further optimize
the networking structure and enhance segmentation accuracy.
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