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Abstract: Soil aggregates are the basic structural components of soil, which are important factors
that can predict erosion resistance. However, few researchers have investigated the effects of forest
conversion on the stability of soil aggregates, particularly in subtropical forests. In this study, soils
from various depths (0 to 30 cm) were collected from four forest types (transformed from broadleaved
forests (BMF) to combined coniferous broadleaved (CBMF), Chinese fir (FF), and bamboo forests
(BF)) to determine the impacts of forest conversion on the physical and chemical properties of soil,
water-stable soil aggregates, and aggregate-associated humic substances. The results showed that
forest conversion had no effects on the soil’s physical properties, or the humic substances in bulk
soil, but had significant effects on soil aggregates. In addition, the conversion of broadleaved forest
to Chinese fir forest increased the soil stability, and to bamboo forest, decreased the soil stability.
Finally, the soil’s physicochemical properties were closely related to aggregate-associated humic
substances. In summary, specific forest management measures should be applied to strengthen the
positive impacts and reduce the negative impacts associated with forest conversion.

Keywords: forest conversion; soil aggregates; soil humic substances; soil stability

1. Introduction

Soil aggregates comprise the basic structural components of soil [1,2], which can
determine the biogeochemical C, N, and P cycles [3,4], and are also an important factor
in predicting erosion resistance [5]. Soil aggregates are composed of soil particles that are
repeatedly bound by organic-inorganic colloid compounds [2–4,6]. Soil organic matter can
serve as a binder, and combine with clay particles to form soil aggregates [7,8] Moreover,
soil organic matter may be coated by mineral particulates to create new aggregates, which
can reduce mineralization decomposition and improve stability [9].

Humic substances are dominant in the natural compounds of soil organic matter [10],
which are recalcitrant and rich in functional groups that can interact with mineral surfaces,
thereby acting as a persistent binder [11]. Humic substances are also critical for resisting
microbial degradation and sustaining soil health [10]. Furthermore, the effects of soil
organic matter on intergranular cohesion and soil hydrophobicity within aggregates depend
on the composition of humic substances [12]. The composition of humic substances has
been operationally divided into humic acids, fulvic acids, and humin [13,14] Humic acid
and fulvic acid are the important components of dissolved organic matter [15]. Compared
with humic acid and fulvic acid, humin has a larger molecular weight and a higher degree
of polymerization [13]; it is also difficult to isolate and purify [16]. Therefore, we focused
mainly on the changes in humic acid and fulvic acid when studying the humic substances
in soil aggregates.
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Over the last decade, the large-scale conversion of natural forests to plantations has
become increasingly common in many subtropical regions [6]. Forest conversion can
modify the composition of surface plants, which in turn alters soil conditions through
changes in plant roots, litter, and soil microbial communities [17]. Previous research has
revealed soil organic matter and pH-driven changes in bacterial communities following
forest conversion [6]. Further, the dynamics of nitrogen, phosphorus stocks [18–20], soil
organic carbon dynamics [21], carbon-degrading enzyme activities [22], soil hydrolytic and
oxidative enzyme activities [23], fungal communities [24], and microbial co-occurrence
networks [25] were affected by forest conversion. However, soil aggregates can be affected
by plant root growth, physical and chemical properties, microbial activities, and artifi-
cial management [26]. Therefore, forest conversion could be a driving factor that alters
soil aggregates.

The Feng Yang Mountain Nature Reserve is a type of forest ecological nature reserve,
which was originally a native broadleaved forest (BMF) [27]. In the 1970s, forest man-
agement activities such as logging resulted in the creation of several new forest types,
such as combined coniferous and broadleaved forests (CBMF), Chinese fir forests (FF),
and bamboo forests (BF) [28]. In our previous studies, the creation of several new forest
types altered the saturated hydraulic conductivity [28], organic carbon chemical composi-
tion [27], and nanoscale pores [17], as well as the bacterial community composition and
diversity of soils [29]. However, there is limited research on soil aggregates, particularly
aggregate-associated humic substances.

Consequently, the aim of the present study was to determine the influences of forest
conversion on water-stable soil aggregates and aggregate-associated humic substances. Ac-
cording to previous studies, we proposed the following assumptions, (1) forest conversion
affects the physical and chemical properties of the soil; (2) forest conversion impacts the
water-stable aggregate size distribution within the soil; (3) forest conversion influences
humic substances. These results will provide insights into the effects of forest conversion
on the stability of soil aggregates and associated humic substances, which will be useful for
the management of converted forests.

2. Materials and Methods
2.1. Study Sites

Field experiments were conducted at the Feng Yang Mountain Nature Reserve
(119◦06′ E~119◦15′ E, 27◦46′ N~27◦58′ N) in Lishui City, Zhejiang Province, China. This
nature reserve is located in the hilly Fujian-Zhejiang region, with a range of 15,171.4 hm2.
The soil type in the study area was yellow-brown soil. The experimental area was located
in a warm and humid subtropical climate zone, with an average annual temperature of
12.3 ◦C and precipitation of 2438 mm [30]. The elevation of the study area ranges from 1300
to 1400 m above sea level.

2.2. Experimental Treatments

From 1971 to 1973, intensive selective deforestation and reforestation were conducted,
and portions of the native forests (broadleaved forest) were converted to mixed evergreen
broadleaved forests, coniferous forests, coniferous/broadleaved mixed forests, and bamboo
forests. The four forest types formed in the study area are presented in Table 1. Subsequent
to the establishment of the nature reserve in 1975, the entire study area has been protected
from anthropogenic disturbances. No fire or insect infestation disturbances have been
recorded [29].

In each of the four forest types (broadleaved forest, coniferous and broadleaved forest,
Chinese fir forest, bamboo forest), we selected three stands of similar slope positions,
resulting in a total of 12 sampling stands. In each sampled stand, a 20 m × 20 m plot
was randomly established to represent the stand and was at least 500 m away from the
forest edge.
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Table 1. General status of the trees in sample plots.

Forest Type Main Tree Species Altitude (m) Slope (◦) Stand Age
(Year)

Canopy
Density

Mean
Height (m)

Mean DBH
(cm)

BMF Schima superba,
Quercus glandulifera 1350 15–22 Old-growth 0.8 (0.08) 12.36 (0.24) 8.98 (0.87)

CBMF Pinus taiwanensis,
Eurya japonica Thunb 1400 13–20 45 0.7 (0.03) 8.93 (0.62) 6.36 (0.38)

FF Cunninghamia lanceolata 1365 6–12 44 0.6 (0.11) 15.04 (0.28) 11.16 (0.65)
BF Phyllostachys heterocycla 1340 8–10 44 0.6 (0.07) 13.2 (0.73) 9.86 (0.39)

Note: BMF, broadleaved forest; CBMF, coniferous and broadleaved forest; FF, Chinese fir forest; BF, bamboo forest;
DBH, diameter at breast height. Values in parentheses are standard deviations (SD) (n = 3).

2.3. Soil Sampling

Soil samples were collected from five random locations at every site from three soil
depth layers (0–10 cm, 10–20 cm, and 20–30 cm). These soil samples were mixed in the
laboratory to produce one composite soil sample, after which the following measurements
were made.

2.4. Analysis of Physical and Chemical Soil Properties

The soil pH was measured using a PB-10 pH meter (Sartorius GmbH, Göttingen,
Germany), whereas the soil total organic carbon (TOC) and total nitrogen (TN) contents
were measured with an elemental analyzer (Vario EL III, ELementar, Germany). The
bulk density, total capillary porosity, capillary porosity, and non-capillary porosity were
determined using the ring knife method [31].

2.5. Soil Aggregate Analysis

A wet-sieving method was employed to determine the soil aggregate size fraction [10,32].
First, the samples were sifted through 1.0, 0.5, and 0.25 mm sieves, to obtain four size
fractions at the macro-aggregate scale, namely >1.0, 0.5–1.0, 0.25–0.5, and <0.25 mm. Second,
according to the mass percentage of the aggregates obtained from dry sieving, a composite
soil for wet sieving was prepared. The measurement of water-stable soil aggregates was
conducted using an aggregate analyzer, where the set of sieves was kept consistent with
those used for dry sieving (1.0, 0.5, and 0.25 mm). Third, the aggregate analyzer was shaken
for 30 min, after which the soil was rinsed from every sieve, oven-dried, and weighed.
The mean weight diameter (MWD), the geometric mean diameter (GMD), and the fractal
dimension (D) were expressed by the following relationships:

MWD =
n

∑
i=1

xiωi (1)

GMD = exp

(
n

∑
i=1

ωi ln xi

)
(2)

(3−D)lg(xi/xmax) = lg[ω(δ < xi)/ω0] (3)

where, xi is the average soil aggregate diameter with i; ωi is the mass percentage of soil
aggregates with i; xmax is the average soil aggregate diameter with the maximum particle
size; ω(δ < xi) is the soil mass less than i (g); ω0 is the total soil mass (g).

The horizontal and vertical coordinates of lg[ xi
xmax

] and lg[ω(δ<xi)
ω0

] were drawn, respec-

tively. The 3-D was the slope of the experimental lines of lg[ xi
xmax

] and lg[ω(δ<xi)
ω0

], and the
D value was calculated by the associated equation.

2.6. Soil Humic Substances

The humic substances in bulk soil, or every aggregate fraction, were extracted from the
soil with pyrophosphate-sodium hydroxide-sodium in a 50 ◦C water bath. The suspended
materials were then separated by centrifugation at 3500 rpm for 5 min. The resulting
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supernatant was filtered through a 0.45 µm membrane, and then continuously supplied
with pyrophosphate-sodium hydroxide-sodium until the solution was colorless, and the
supernatant contained humic substances [10].

Furthermore, to extract the humic acid from the humic substances, the supernatant
was acidified with H2SO4 (pH ≤ 1.5) and heated at 80 ◦C for 30 min. The suspended
materials were filtered in the laboratory overnight, and the residues on the filter paper were
percolated with H2SO4 until the precipitate was colorless. Finally, the remaining residues
were dissolved at 60 ◦C with NaOH to separate the humic acids. The fulvic acid level was
measured by subtracting the humic acid from the humic substances [10].

2.7. Statistical Analyses

The Duncan test (SPSS 26) was employed to reveal the effects of forest conversion
on the physicochemical properties, aggregate stability, and humic substances of the soil.
To test the effects of forest type and soil layers on the soil’s physicochemical properties,
aggregate stability, and humic substances, we conducted a two-way ANOVA using SPSS
26. A three-way ANOVA was employed to assess the effects of forest type, soil layer, and
soil aggregate size class on the soil humic substances using SPSS 26. The Pearson test was
performed using R software (R 3.4.3) to reveal the relationships between the aggregate
stability, aggregate-associated humic substances, and physicochemical properties of the
soil samples. Additional charts were created using Origin 2015 (OriginLab Corporation,
Northampton, MA, USA).

3. Results
3.1. Physicochemical Soil Properties

Within the 0–10 cm layer, the pH in the CBMF was significantly lower than the pH
in the BF (p < 0.05) (Figure 1A). For all forest type treatments, there were no significant
differences in the pH between all soil layers (Figure 1A). However, the forest types induced
significant differences in pH (p < 0.05). Conversely, for all soil layers, there were no
significant differences in the TN between all forest types (Figure 1B). For the FF treatment,
the TN in the 0–10 cm layer was significantly higher than the TN in the 20–30 cm layer
(Figure 1B). The SOC was higher in the CBMF than in the FF in the 0–10 cm soil layer; for
the CBMF and BF, the SOC was higher in the 0–10 cm soil layer than in the 10–20 cm and
20–30 cm soil layers; the FF 0–10 cm and 10–20 cm soil layers contained more SOC than in
the 20–20 cm soil layer (p < 0.05) (Figure 1G). Further, for the bulk density, total capillary
porosity, capillary porosity, and non-capillary porosity, there were no significant differences
between all forest types and soil depths (Figure 1C–F).

3.2. Size Distribution of Water-Stable Soil Aggregates

There were some variabilities in the distribution of different aggregate sizes (Figure 2).
The dominant aggregate size (>1 mm), which comprised 51.8–66.7% of most soils, was
significantly affected by the forest type (p < 0.001) (Table 2). When the aggregate size
was >1 mm, its proportion in the FF was significantly higher than in the other forest types
at the 10–20 cm and 20–30 cm soil depths (p < 0.05) (Figure 2). When the aggregate size was
from 0.5 to 1 mm, its proportion in the BF was significantly higher than in the BMF and
CBMF at the 20–30 cm soil depth (p < 0.05). There were no significant differences between
different forest types at the 0–10 cm and 10–20 cm soil depths. When the aggregate sizes
ranged from 0.25 to 0.5 mm, or had a size <0.25 mm, their proportion in the FF was lower
than in the other forest types for all soil depths (Figure 2). Additionally, ANOVA analysis
revealed that the soil depth had no significant effect on the proportional differences of
aggregates across all sizes (Table 2).

Forest type significantly influenced the MWD (p < 0.001), GMD (p < 0.001), and
D (p < 0.05), whereas the soil depth and interactions had no significant effects (Table 3).
Compared to the BMF, CBMF, and FF, the MWD and GMD of the BF were significantly
decreased across all soil layers (Figure 3A,B). For all soil layers in the various forest types,
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the MWD and GMD values, in decreasing order, were as follows: FF, CBMF, BMF, and BF.
In addition, for all forest types, there were no significant differences in the MWD, GMD,
and D between all soil layers (Figure 3A–C).
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Table 2. ANOVA analysis (p values) of the different forest types and soil depths affecting aggregate
distribution, aggregate stability, and humic substances.

Type Index Forest Types Soil Depth Forest Type × Soil Depth

p Value

Aggregate size

>1 mm <0.001 0.998 0.965
0.5–1 mm 0.237 0.093 0.127

0.25–0.5 mm <0.001 0.141 0.419
<0.25 mm <0.001 0.312 0.003

Table 3. ANOVA analysis (p values) of the different forest types and soil depths affecting aggregate
distribution, aggregate stability, and humic substances.

Type Index Forest Types Soil Depth Forest Type × Soil Depth

p Value

Aggregate stability
MWD <0.001 0.896 0.995
GMD <0.001 0.896 0.997

D 0.041 0.883 0.873
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coniferous and broadleaved forest; FF, Chinese fir forest; BF, bamboo forest. Upper case letters (A, B)
indicate significant variations between different forest types in the same soil layer. Lower case letters
(a, b) indicate significant variations between different soil layers within the same forest type.

3.3. Distribution of Humic Substances in Bulk Soil

ANOVA analysis indicated that the soil depth significantly influenced humic sub-
stances, humic acid, and fulvic acid, whereas forest types and their interactions had no
significant effects on humic substances or fulvic acid (Table 4). For the BMF, CBMF, and
FF, the presence of humic acid in the 0–10 cm soil layer was significantly higher than in
the 20–30 cm soil layer (p < 0.05) (Figure 4(A-1)). Humic acid in the BF was higher than
in the other forest types at the 10–20 cm and 20–30 cm soil depths. The fulvic acid in the
BMF was significantly lower than for the CBMF (p < 0.05), which decreased gradually
with the deeper soil layers (Figure 4(A-2)). Humic substances at the 0–10 cm soil depth
was significantly higher than at the 20–30 cm soil depth across all forest types (p < 0.05)
(Figure 4(A-3)). Humic acid, as the dominant component of humic substances, comprised
more than 59% of the humic substances, except for the BF in the 10–20 cm layer (Figure 4B).
Specifically, with increased soil depth, the proportion of humic acid in the BMF, CBMF, and
FF increased, while the proportion of fulvic acid decreased (Figure 4B).

Table 4. ANOVA analysis (p values) of the different forest types and soil depths affecting aggregate
distribution, aggregate stability, and humic substances.

Type Index Forest Types Soil Depth Forest Type × Soil Depth

p Value

Humic substance
humic substances 0.331 <0.001 0.112

Humic acid 0.023 <0.001 0.088
Fulvic acid 0.177 0.005 0.329
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Figure 4. Distribution of humic substances in bulk soils. A, the humic acid (A-1), fulvic acid (A-2),
humic substance (A-3) in bulk soil among different forest types and depth; (B), the percentage
of humic acid and fulvic acid in bulk soil among different forest types and depth. Note: BMF,
broadleaved forest; CBMF, coniferous and broadleaved forest; FF, Chinese fir forest; BF, bamboo
forest. Upper case letters (A, B) indicate significant variations between different forest types in the
same soil layer. Lower case letters (a, b) indicate significant differences between different soil layers
within the same forest type.
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3.4. Distribution of Humic Substances in Aggregate Fractions

According to ANOVA analysis (Table 5), the forest type, soil depth, aggregate size,
and the interactions between the forest type and soil depth had significant effects on
the distribution of aggregate-associated humic substances, humic acid, and fulvic acid
(p < 0.05).

Table 5. ANOVA results for the effects of forest type, soil depth, aggregate size and their interactions
in the distribution of aggregate-associated humic substances.

Index
Humic Substances Humic Acid Fulvic Acid

p p p

Forest type 0.004 <0.001 0.001
Soil depth <0.001 <0.001 <0.001
Aggregate size <0.001 <0.001 <0.001
Forest type × Soil depth 0.002 0.016 <0.001
Forest type × Aggregate size 0.637 0.141 0.361
Soil depth × Aggregate size 0.521 0.181 0.489
Forest type × Soil depth × Aggregate size 0.987 0.131 0.577

Note: ×means interaction effect.

Similar to the humic substances in bulk soils, the concentrations of aggregate-associated
humic substances in the four forest types under study were higher at the 0–10 cm soil
depth than at the 10–20 cm and 20–30 cm soil depths (Figure 5). For humic acid, there
were no significant differences between all forest types at the 0–10 cm soil depth (p < 0.05)
(Figure 5B). At the 20–30 cm soil depth, the humic acid in the FF was significantly higher
than in the other forest types. At the 0–10 cm soil depth, the humic substances and fulvic
acid in the BMF were higher than in the other forest types; however, at the 20–30 cm soil
depth, the humic substances and fulvic acid in the BMF were the lowest (Figure 5A,B). The
humic substances, humic acid, and fulvic acid in the 0.5–1 mm aggregate size was lower
than in the other aggregate sizes for all forest types and soil depths (Figure S1). The humic
acids in the >1 mm aggregate size was higher than in the other aggregate sizes for all forest
types and soil depths (Figure S1). However, for humic substances and fulvic acid, there
were no significant differences between the >1, 0.25–0.5, and <0.25 aggregate sizes for all
forest types and soil depths (except for the fulvic acid between the >1 and <0.25 aggregate
size in the BMF at the 20–30 cm soil depth) (Figure S1).

3.5. Correlations Analysis

In accordance with the partial correlation analysis between the physicochemical prop-
erties, aggregate stability, and aggregate-associated humic substances in the soil (Figure 6),
the pH was found to be significantly negatively correlated with the MWD and GMD
(p < 0.05), but not significantly correlated with aggregate-associated humic substances. The
MWD and GMD were significantly positively correlated with the BD, but significantly
negatively correlated with the TOC, TN, TP, and NCP (p < 0.01). The TOC, TN, TP, and CP
were significantly positively correlated with humic substances, humic acid and fulvic acid
in the four aggregate sizes, whereas the BD was significantly negatively correlated with
humic substances, humic acid and fulvic acid in the four aggregate sizes (p < 0.01).
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total capillary porosity; CP, capillary porosity; NCP, non-capillary porosity.
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4. Discussion
4.1. Physicochemical Soil Properties

Soil properties are affected by vegetation [33], where the plant type and coverage
affect the soil pH [11]. In our study, the conversion from BMF to BF increased the pH of the
topsoil, which was not consistent with previous studies [34]. It might be the case that the
presence of litter in the BMF, and the decomposition of the litter produced acidic conditions,
thus, decreasing the soil pH [35]. With greater soil depth, the pH of the four forest types did
not change. This verified that the acidic conditions generated through the decomposition
of litter were concentrated only at the soil surface.

Previous investigations indicated that forest conversion altered the bulk density and
total capillary porosity of the soil [36]; however, these parameter indices were not markedly
changed in this study, which was inconsistent with our first hypothesis. The potential
reasons include that the forest has been protected since 1975 without anthropogenic dis-
turbances [17,29], such as mechanical tillage or chemical fertilizers that might affect the
physical properties of the soil [35,37]. Furthermore, the change in forest type did not impact
the TN stocks. These results were not consistent with previous investigations [20,38,39], in
that this study area was also protected. However, the stability of TN did not translate to no
changes in the soil N components; the soil N pool and N components were intimately re-
lated to the forest type [40,41]. Therefore, further research and experimentation is required
to elucidate the specific changes in N components.

4.2. Distribution of Differently Sized Water-Stable Aggregates in Soil

The MWD and GMD can be employed to evaluate the stability of soil [42]. In our
study, the stability of the FF soil was the best, with that of BF being the worst. The reason
behind this phenomenon was that the canopy density of FF is higher than that of the other
forest types, with a greater quantity of litter. There was a large amount of organic matter
in the litter, which enhanced the content of water-stable aggregates and promoted their
stability. Furthermore, the decrease in BF might have been due to the decrease in organic
matter. In previous studies, the conversion from broadleaved forest to bamboo plantation
has also decreased the soil resident organic carbon [35,43]. The stable humic substances
content also supported this conclusion (Figure 4), which warrants the further study of soil
organic carbon in forest conversion.

However, there were some variations in the distribution of different aggregate sizes,
which was consistent with our second hypothesis. The conversion from BMF to FF increased
the population of the large aggregate size (>1 mm), while it decreased the presence of the
small aggregate sizes (0.25–0.5, <0.25 mm). This was consistent with the above conclusion,
as the content of >0.25 mm aggregates might be used as an evaluation index of soil aggregate
stability [42,44], with the soil stability of the FF being the best. Further, the soil depth had
no effects on the soil aggregate size or stability, which was not consistent with other
studies [45,46]. The most probable explanation is that the plant root length of the four forest
types can reach 30 cm, which might affect the stabilization of aggregates by physically
binding or chemically bonding the soil [47,48].

4.3. Distribution of Humic Substances in Bulk Soil

Humic substances comprise one of the predominant cements for soil aggregates [10,49];
however, the results for humic substances were different from that of aggregates. Forest
conversion had no effects on humic substances, which was reduced in the deeper soil
layers; this was inconsistent with our first hypothesis. These results reveal that the changes
in aggregates may be determined by further organic and inorganic adhesives [50–52].
Additionally, the accumulation of humic substances in the topsoil might be due to the
decomposition of litter, as the organic matter from the decomposition of litter initially
resides in the topsoil and is subsequently transported to the subsoil [10,53].

Furthermore, the humic substances content in the deeper soil layers of the bamboo
stands was higher than that of the other forest types. Previous studies have demonstrated
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that bamboo forests contain more fine root biomass than other forest types. Additionally,
compared with woody plants (BMF, CBMF, FF), the BF had higher annual growth and
turnover rates [54]. Due to the stand age of our study area, the fine roots were mainly dis-
tributed in toper soil. Our previous study indicated that the soil texture among forest types
and soil layers is not significantly different, though the organic transfer rate from topsoil to
subsoil in BF might be faster than in other forest types. Changes in the proportion of humic
substances revealed that humic acid was concentrated in the topsoil, whereas fulvic acid
was concentrated in the subsoil. It has been demonstrated that the litter distribution can
alter humic substances in great extent; although our results showed a high SOC in all forest
types, the composition of the litter in different forest types and the associated soil microbial
composition are also different [29,55]. The reasons behind both of these phenomena require
further research.

4.4. Distribution of Humic Substances in Aggregate Fractions

The distribution of humic substances in aggregate fractions was significantly affected
by the forest type, soil depth, and aggregate size, which was consistent with previous stud-
ies [10]. In earlier investigations, humic substances were concentrated more in macroag-
gregates than in microaggregates [56], and the concentration of humic substances also
increased with increasing aggregate size [57]. However, for humic substances and fulvic
acid, there were no significant differences between the >1, 0.25–0.5, and <0.25 aggregate
sizes. It might be that physical protection by soil aggregates has a threshold, which deter-
mines the distribution of humic substances in aggregate fractions [12].

Pearson’s correlation analysis showed that the pH affected the soil aggregates; how-
ever, it did not affect the soil humic substances in aggregate fractions. This result was
consistent with previous studies [10]. Furthermore, the soil bulk density, total capillary
porosity, capillary porosity, and non-capillary porosity relating to the soil humic substances
in the aggregate fractions might have been related to the entry of air and water into the
aggregates. This would affect the decomposition of humic substances, and subsequently
influence the distribution of humic substances in the aggregate fractions [58].

5. Conclusions

In summary, forest conversion does not significantly impact the physical properties of
woodland soils. The conversion of broadleaved forests to Chinese fir forests increased the
amount of large aggregates (>1 mm), while decreasing the small aggregates (0.25–0.5 and
<0.25 mm), thereby enhancing soil stability. However, the conversion of broadleaved forest
to bamboo forest decreased soil stability. Furthermore, the humic substances content was
found to decrease in the deeper soil layers, but had no effect on the size of soil aggregates
or soil stability. Forest conversion had no significant effects on the humic acid in the bulk
soil; however, it did have considerable influences on the humic substances, humic acid
and fulvic acid in aggregate fractions. Finally, the physicochemical properties of the soil
were closely related to soil humic substances in the aggregate fractions during the forest
conversion period. These results will be useful for enhancing forest management following
forest conversion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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