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Abstract: This paper focuses on individual-tree and whole-stand growth models for uneven-aged
and mixed-species stands in Lithuania. All the growth models were derived using a single trivariate
diffusion process defined by a mixed-effect parameters trivariate stochastic differential equation
describing the tree diameter, potentially available area, and height. The mixed-effect parameters
of the newly developed trivariate transition probability density function were estimated using an
approximate maximum likelihood procedure. Using the relationship between the multivariate
probability density and univariate marginal (conditional) densities, the growth equations were
derived to predict or forecast the individual-tree and whole-stand variables, such as diameter,
potentially available area, height, basal area, and stand density. All the results are illustrated using an
observed dataset from 53 permanent experimental plots remeasured from 1 to 7 times. The computed
statistical measures showed high predictive and forecast accuracy compared with validation data that
were not used to find parameter estimates. All the results were implemented in the Maple computer
algebra system.

Keywords: trivariate stochastic differential equation; marginal density; conditional density; basal
area; stand density

1. Introduction

Forest growth forecasts play an important role in the planning of timber resources and
maintaining strategies of sustainable forest management. Significant errors in stand growth
forecasts lead to an unreasonable use of forest resources, and they also result in unsustain-
able forestry. In recent decades, the large number of publications on growth models has
mainly dealt with even-aged pure stands, and has reflected the basic principles of the mean
response regression approach that takes into account the existing experimental databases.

The usefulness of an individual-tree-based machine learning model in predicting and
forecasting a stand’s response to treatment is due in part to the sensitivity obtained by
treating each tree as a separate entity. A modern unified modeling system that can provide
an accurate and realistic forecast of forest growth for different species in different terrain
and stand conditions has many different applications. Stand growth model systems are
composed of many independent system components playing key roles in the behavior of
the whole system, and interacting among themselves. The complexity of stand growth
systems can be characterized by understanding the relationships, interactions, and behavior
of the strongly interdependent variables.

The traditional approach to individual-tree and whole-stand growth modeling is a
complex process of model development and selection, where multiple models or model
variants are developed and evaluated to determine the model that “best” describes a
separate simulated variable [1–3]. The evaluation of the distribution shape of tree size
variables is of particular importance for the assessment of forest resources and the planning
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of future forestry procedures. Diverse shapes of distributions of tree size variables have
long been used in forest statistics to generalize the structure of stands as, firstly, they
are easy to estimate from national forest inventories; and secondly, they become useful
themselves to formalize the relationships between the tree or stand variables [4,5].

Most mathematical models describing the actions of an individual tree or the collective
trees in a stand aim to create reliable formalizations of the problem with the help of limited
experimental datasets. Stochastic consistency with uncontrollable environmental rules
or other random influences in a forest stand pertaining to the greater picture is rarely
imposed. Studies in recent decades have sought to demonstrate the need for a more critical
examination of the paradigms used in the current context, which may lead to models that
would stand the test of time.

Considering the evolution of individual-tree and whole-stand growth paradigms over
the past decades, we focus on the “diffusion process” theory of how trees in a stand can
respond differently individually and collectively to both their internal and environmental
factors, which is based on the Brownian motion model. Diffusion processes operate in many
natural phenomena starting in the field of physics [6], but diffusion processes have been
used in many biological, engineering, economic, and social phenomena [7–9]. In summary,
a diffusion process is a stochastic continuous time process that satisfies the formalized
stochastic differential equation. Since the data on tree or stand variables are obtained from
national forest inventories and experimental plots, they consist of observations through
time, so it is natural to define the kinetics of trees and stands by using stochastic differential
equations. Mixed-effect parameters stochastic differential equations have also been used
to define the kinetics of tree height via age [10] and via diameter [11], and tree crown
width via age [12]. The usefulness of mixed-effect parameters, which account for both fixed
and random effects, in tree or stand growth modeling lies in their ability to split the total
variation into within and between stands by using fixed and random effects. The stochastic
differential mixed-effect models have long been useful tools in medicine and biology for
revealing incomplete or inaccurate model kinetics [13,14].

The mean response regression models used in forestry, in summary, although well
advanced and developed in recent years, are still in a very primitive phase, and it is
necessary to select one of the “best” of the many possible relationships to model a single
variable. First, the models used do not use a mathematical formula describing the evolution
from the beginning of the stand establishment to the age of extinction, and the natural
growth or decay of the tree or the stand growth variables are not continuously maintained.
Second, the equations in the derived models depend on unknown parameters (effects),
the specific physical interpretations of which are usually not understood. Third, the
developed models representing the growth process do not address the covariance between
the fundamental tree size variables. Although many other mean response regression
models that adjust the observed data are already available, it is clear that none of them
are a panacea for the many problems that confront forest statisticians. In this sense, it
is important to propose and evaluate the mixed-effect parameters trivariate stochastic
differential equation model for tree diameter, potentially available area, and height kinetics
by age. For example, fixed- and mixed-effect parameters bivariate stochastic differential
equation models were proposed in [15,16].

The main purpose of this investigation is to explore a trivariate Vasicek–Gompertz–
Vasicek stochastic differential equation with fixed- and mixed-effect parameters. It should
be noted that our proposed trivariate stochastic differential equation has an exact solution
expressed in a trivariate probability density function. All the results were implemented in
the Maple computer algebra system [17].

The novelty and contribution of our work is summarized as follows:

• We introduce a trivariate Vasicek–Gompertz–Vasicek stochastic differential equation
with biologically interpretable parameters (see, for instance, [11]).

• The fixed- and mixed-effect parameters are estimated using the maximum likeli-
hood procedure.
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• Newly derived equations of the mean and quantiles of the tree diameter, potentially
available area, and height kinetics in the case of an individual-tree or the whole stand
are illustrated and tested using a validation dataset.

• Newly derived equations of the stand density are illustrated and tested using statistical
measures and a validation dataset.

• Newly derived equations of the tree and the stand basal area are illustrated and
evaluated using statistical measures and a validation dataset.

• The accuracy of the forecasts for the 5- and 15-year forecast periods is assessed using
statistical measures and a validation dataset.

The forecast provided in this study is understood as a special prediction related only
to data from past events in order to generate or transmit data for the future based on past
events. Foresters typically use a projection to calculate a numerical value associated with a
future event, which allows for more hypothetical inputs that are assumptions consistent
with the purpose of the information, but are not necessarily the most probable [18].

2. Materials and Methods
2.1. Background

A stochastic differential equation model for height and diameter kinetics during a
stand growth period was described in [19], regardless of the potentially available area
dynamics. The potentially available area of an individual tree can be easily and reliably
calculated using Voronoi diagrams [20]. To illustrate a Voronoi diagram, a polygon (poten-
tially available area) of each individual pine, spruce, and birch tree in a randomly selected
plot is shown in different colors in Figure 1.
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There are several standard stochastic differential equations that can be reduced to
the Ornstein–Uhlenbeck model, such as Vasicek, Gompertz, Bertalanffy, and others [21].
Let the tree diameter at breast height (in the sequel–diameter), Xl

1(t), the tree potentially
available area (in the sequel–area), Xl

2(t), and the tree height, Xl
3(t) (t ∈ [t0, T ]; t0 ≥ 0, l = 1,

. . . , M, and M is the number of plots), frame the trivariate homogenous Vasicek–Gompertz–
Vasicek diffusion process, which takes positive values and satisfies the following non-linear
Ito-type [22] system of stochastic differential equations:

dXl(t) = A
(

Xl(t)
)

dt + D
(

Xl(t)
)

B
1
2 · dW l(t) (1)
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where the drift term A(x) is defined as:

A(x) =
(

β1

(
α1 + φl

1 − x1

)
,
((

α2 + ϕl
2

)
− β2ln(x2)

)
x2, β3

(
α3 + φl

3 − x3

))T
(2)

and the diffusion matrix G(x) is defined as:

B =

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 (3)

D(x) =

 1 0 0
0 x2 0
0 0 1

 (4)

G(x) =
(

D(x)B
1
2

)(
D(x)B

1
2

)T
=

 1 0 0
0 x2 0
0 0 1

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 1 0 0
0 x2 0
0 0 1

 (5)

where W l(t) =
(

W l
1(t), W l

2(t), W l
3(t)

)T
is independent multivariate Brownian motion; B

1
2

is the Cholesky factorization for a positive definite symmetric matrix B into the product of a
lower triangular matrix and its conjugate transpose; an initial condition takes the following

form: if t = t0, then Xi(t0) = x0 =
((

x10, δ + ϕl
4, x30

))T
; ϕl

j, l = 1, . . . , M, j = 1, . . . , 4, are
independent and normally distributed random variables with zero mean and constant vari-
ances ( ϕl

j ∼ N
(

0; σ2
j

)
); and {α1, α2, α3, β1, β2, β3, σ11, σ12, σ13, σ22, ρ23, σ33, σ1, σ2, σ3, σ4, δ}

are fixed-effect parameters to be estimated.
Applying the Ito formula [22] to the transformation:

Yl(t) =
(

eβ1tXl
3(t), eβ2tln

(
Xl

2(t)
)

, eβ3tXl
3(t)

)T
(6)

We can deduce that the solution of our original stochastic differential Equation (1) has
a trivariate normal-lognormal-normal distribution N1LN1N1

(
µl(t); Σ(t)

)
, with the mean

vector µl(t) defined by:

µl(t) =
(

µl
1(t), µl

2(t), µl
3(t)

)T
. =


α1 + ϕl

1 +
(

x10 −
(

α1 + ϕl
1

))
e−β1(t−t0)

e−β2(t−t0)ln
(

δ + ϕl
4

)
+ 1−e−β2(t−t0)

β2

(
α2 + ϕl

3 −
σ22
2

)
α3 + ϕl

4 +
(

x30 −
(

α3 + ϕl
4

))
e−β3(t−t0)

 (7)

The variance-covariance matrix Σ(t):

Σ(t) =
(

vjk(t)
)

j,k=1,...,3
=

(
σjk

β j + βk

(
1− e−(β j+βk)(t−t0)

))
j,k=1,...,3

(8)

and the transition probability density function:

f
(

x1, x2, x3, t
∣∣∣θ1, ϕl

)
=

1

(2π)
3
2 |Σ(t)|

1
2 x2

exp
(
−1

2
Ω
(

x1, x2, x3, t|θ 1, ϕl
))

(9)

Ω
(

x1, x2, x3, t
∣∣∣θ1, ϕl

)
=

 x1 − µl
1(t)

ln(x2)− µl
2(t)

x3 − µl
3(t)

T

(Σ(t))−1

 x1 − µl
1(t)

ln(x2)− µl
2(t)

x3 − µl
3(t)

 (10)

θ1 = {α1, β1, α2, β2, α3, β3, σ11, ρ12, ρ13, σ22, ρ23, σ33, δ} (11)
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ϕl =
(

ϕl
1, ϕl

2, ϕl
3, ϕl

4

)
, l = 1, . . . , M. (12)

2.2. Data

For each tree in the considered plots, we recorded the tree species, age, location of
sample trees (planar coordinate position x and y), diameter at breast height, and height
for 53 plots across the municipality of Kazlų Rūda in Lithuania. During the 1983–1987
period, 53 permanent experimental plots were established in the Kazlų Rūda forests in
Lithuania. Regarding the regeneration mode, all the field sample plots vary between
those that were naturally regenerated and those that were artificially regenerated, and
spread in pure or mixed-species stands. The distribution of stands by tree species is: pine
(Pinus sylvestris L.) stands, 63.8%; spruce (Picea abies L. Karst.), 30.2%; silver birch (Betula
pendula Roth.), 5.8%; and others, 0.2%. Each sample plot consisted of about 0.16–0.72 ha
and was remeasured several times. The plots were remeasured one to seven times at
intervals of five years or more. The age of the i-th tree (ranging from all trees to the 10th)
in the first measurement was recorded by counting its growth rings in the growth core
(for even aged stands, from records in documents), and the age of the remaining trees
was obtained from the arithmetic mean. The position accuracy of the plane coordinates
was 1 dcm, the diameter measurements were made with an accuracy of approximately
1 mm, and the height measurements were made with an accuracy of approximately 1 dcm.
The entire field sample plot dataset was randomly divided into estimation (43 plots) and
validation (10 plots) datasets. Table 1 shows the summary statistics of the estimation and
validation datasets.

Table 1. Tree summary statistics for model estimation and validation datasets *.

Species Data Number
of Trees Min Max Arithmetic

Mean St. Dev. Number
of Trees Min Max Arithmetic

Mean St. Dev.

Estimation Validation

Pine

T (year) 6053 5.0 172.0 49.43 27.44 753 29.0 185.0 60.11 24.81
D (cm) 6053 0.2 57.90 17.56 9.94 753 5.50 52.80 23.17 8.54
P (m2) 6053 0.30 83.49 9.39 7.83 753 1.29 33.47 9.89 5.76
H (m) 6053 0.20 37.80 16.87 8.42 753 6.50 34.60 21.67 5.65

B (cm2) 6053 0.03 2632.98 319.88 326.34 753 23.76 2189.56 479.08 351.09

Spruce

T (year) 2575 12.0 207.0 48.94 27.27 850 7.0 162.0 54.90 22.64
D (cm) 2575 0.20 58.90 10.93 8.68 850 3.60 53.20 12.10 7.57
P (m2) 2575 0.22 72.72 8.22 7.24 850 0.61 52.16 8.57 6.97
H (m) 2575 0.50 38.0 11.50 8.07 850 2.0 33.20 12.60 6.48

B (cm2) 2575 0.03 2724.71 152.86 248.41 850 10.18 2222.87 159.97 247.78

Birch

T (year) 438 5.0 116.0 48.13 23.45 101 29.0 101.0 48.22 12.11
D(cm) 438 0.90 44.10 13.48 8.55 101 5.10 40.70 18.32 8.13
P (m2) 438 0.66 55.64 8.57 6.51 101 1.51 32.55 8.32 5.56
H (m) 438 0.50 31.90 14.74 7.77 101 6.0 31.0 19.75 6.21

B (cm2) 438 0.64 1527.45 200.13 238.64 101 20.43 1301.0 315.37 265.42

All

T (year) 9079 5.0 207.0 49.26 27.22 1705 7.0 185.0 56.79 23.40
D (cm) 9079 0.2 58.90 15.47 9.99 1705 3.6 53.2 17.36 9.67
P (m2) 9079 0.22 83.49 9.02 7.62 1705 0.61 52.16 9.14 6.42
H (m) 9079 0.20 38.00 15.24 8.63 1705 2.0 34.60 17.03 7.55

B (cm2) 9079 0.03 2724.71 266.41 311.59 1705 10.18 2222.87 310.27 336.27

* T—tree age, D—tree diameter, P—tree potentially available area, H—tree height, B—tree basal area.

2.3. Statistical Measures

In this study, we assessed the prediction and forecast accuracies of the newly developed
models based on statistical measures, such as the mean bias B (the percentage mean bias,
%B), the absolute mean bias AB (the percentage absolute mean bias, %AB), the root mean
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square error RMSE (the percentage root mean square error, %RMSE), and the coefficient of
determination R2. These statistical measures are defined by:

B =
1
n

n

∑
i=1

(
yi −

∧
yi

)
,

(
%B =

1
n

n

∑
i=1

yi −
∧
yi

yi
∗ 100

)
(13)

AB =
1
n

n

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣, (%B =
1
n

n

∑
i=1

∣∣∣∣∣yi −
∧
yi

yi

∣∣∣∣∣
)

(14)

RMSE =

√
1
n

n

∑
i=1

(
yi −

∧
yi

)2
,

%RMSE =

√√√√ 1
n

n

∑
i=1

(
yi −

∧
yi

yi

)2

∗ 100

 (15)

R2 = 1−
∑n

i=1

(
yi −

∧
yi

)2

∑n
i=1(yi − y)2 (16)

where: n = ∑K
i=1 ni is the total number of observations used to validate the model; K is

the number of stands; ni is the number of measured trees in the ith plot; and yi,
∧
yi, and y

are the measured, estimated, and average values of the dependent variable. The Student’s
t-test [23] determines whether there is any difference between the observed values of the
validation dataset and the predicted or forecasted values.

3. Results and Discussion
3.1. Marginal Distributions

Traditional height–age or diameter–age relationship modeling methods are based
on a difference equation that requires repeated measurements of data in different stands.
Therefore, these data are hierarchical structures on which observations are dependent and
often lead to bias in parameter estimates [24].

In the previous section, a stochastic differential equation model (1) was formalized for
tree diameter, area, and height assessment against age, with the respective 17 fixed-effect
parameters having been estimated. In this study, the fixed-effect parameters of Equation (1)
were estimated using an approximate maximum likelihood procedure, which is framed by
Equations (A17)–(A21) and implemented using the Maple environment [17]. Computed
fixed-effect parameters estimates using the estimation dataset are given in Table 2. Estimates
of standard errors were obtained as the inverse of the observed Fisher information matrix
(see, for instance, [19]). Parameter estimates of all fitted models were significant (p < 0.05).

Table 2. Vasicek–Gompertz–Vasicek-type Equation (1) for diameter, area, and height: parameter estimates.

Species
Drift Function Parameters

α1 β1 α2 β2 α3 β3 δ

All 51.1037 0.0085 0.1091 0.0364 39.6564 0.0109 1.4026
Pine 54.2402 0.0092 0.1022 0.0334 42.1928 0.0116 1.3826

Spruce 54.5705 0.0052 0.1328 0.0491 42.3987 0.0067 1.3116
Birch 46.5284 0.0080 0.1113 0.0394 39.4933 0.0103 1.7177

Species
Diffusion function and random-effect parameters

σ11 σ12 σ13 σ22 σ23 σ33 σ1 σ2 σ3 σ4

All 1.3103 0.2451 0.8265 0.0288 0.1627 0.7314 10.7950 0.0150 1.5002 8.6801
Pine 0.8247 0.2191 0.6931 0.0266 0.1077 0.3453 8.5855 0.0126 0.6152 7.7658

Spruce 0.8309 0.2927 0.8673 0.0463 0.2188 0.6586 12.2893 0.0187 1.0253 9.3708
Birch 1.9457 0.2189 0.9061 0.0272 0.1728 1.3451 17.2059 0.0117 0.9712 12.9084
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As can be seen from Table 2, the asymptotic values (α1) of the tree diameter are 54.2402,
54.5705, and 46.5284 cm for Scots pine, Norway spruce, and silver birch trees, respectively.
The silver birch trees have the smallest asymptotic diameter value compared with the Scots
pine and Norway spruce species, but the difference between the Scots pine and Norway
spruce species is insignificant. Similarly, Table 2 shows that the asymptotic values (α3)
of the tree height are 42.1928, 42.3987, and 39.4933 m for the Scots pine, Norway spruce,
and silver birch, respectively. The silver birch has the smallest asymptotic height value
compared with the Scots pine and Norway spruce species, but the difference between the
Scots pine and Norway spruce species is also insignificant.

In further study, only the validation dataset will be used, the fixed effect parame-
ters will be taken from Table 2, and the random effects will be calibrated according to
Equation (A22).

According to regeneration treatment, forest trees are often in a cyclical regime, which
includes artificial or natural regeneration, spread in pure or mixed stands. As a special
case of continuous stochastic process, a stationary system of marginal probability density
functions may be obtained (by limiting age, t, to infinity), which displays a type of forest
stand equilibrium. The marginal transient probability density functions for the diameter,
area, and height variables for the three different age groups of 30, 70, and 120 years are
shown in Figure A1, Figure A2 and Figure A3, respectively.

Figures A1–A3 show that marginal probability density functions change with stand
age and show quite significant differences for different stands. These distributions allow us
to define the trajectories of the mean and various moments for diameter, area, and height.
According to the equations of the mean and quantile trajectories presented in Table A1, the
kinetics of diameter, area, and height for the different tree species are shown in Figures 2–4
along with the measurement dataset for the plot.

Forests 2022, 13, x FOR PEER REVIEW 7 of 27 
 

As can be seen from Table 2, the asymptotic values (α1) of the tree diameter are 

54.2402, 54.5705, and 46.5284 cm for Scots pine, Norway spruce, and silver birch trees, 

respectively. The silver birch trees have the smallest asymptotic diameter value compared 

with the Scots pine and Norway spruce species, but the difference between the Scots pine 

and Norway spruce species is insignificant. Similarly, Table 2 shows that the asymptotic 

values (α3) of the tree height are 42.1928, 42.3987, and 39.4933 m for the Scots pine, Norway 

spruce, and silver birch, respectively. The silver birch has the smallest asymptotic height 

value compared with the Scots pine and Norway spruce species, but the difference be-

tween the Scots pine and Norway spruce species is also insignificant. 

In further study, only the validation dataset will be used, the fixed effect parameters 

will be taken from Table 2, and the random effects will be calibrated according to Equation 

(A22). 

According to regeneration treatment, forest trees are often in a cyclical regime, which 

includes artificial or natural regeneration, spread in pure or mixed stands. As a special 

case of continuous stochastic process, a stationary system of marginal probability density 

functions may be obtained (by limiting age, t, to infinity), which displays a type of forest 

stand equilibrium. The marginal transient probability density functions for the diameter, 

area, and height variables for the three different age groups of 30, 70, and 120 years are 

shown in Figures A1–A3, respectively.  

Figures A1–A3 show that marginal probability density functions change with stand 

age and show quite significant differences for different stands. These distributions allow 

us to define the trajectories of the mean and various moments for diameter, area, and 

height. According to the equations of the mean and quantile trajectories presented in Ta-

ble A1, the kinetics of diameter, area, and height for the different tree species are shown 

in Figures 2–4 along with the measurement dataset for the plot. 

 

Figure 2. Kinetics of the mean, 0.05 quantile, and 0.95 quantile of the diameter for two randomly 

selected stands from a validation dataset: (a) all species; (b) pine (Pinus sylvestris); (c) spruce (Picea 

abies); (d) silver birch (Betula pendula Roth and Betula pubescens Ehrh.); solid line—mean trajectory; 

dashed line—quantile trajectories; black—first stand; red—second stand; and circle—observed data. 

Figure 2. Kinetics of the mean, 0.05 quantile, and 0.95 quantile of the diameter for two randomly
selected stands from a validation dataset: (a) all species; (b) pine (Pinus sylvestris); (c) spruce (Picea
abies); (d) silver birch (Betula pendula Roth and Betula pubescens Ehrh.); solid line—mean trajectory;
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circle—observed data.
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stands from a validation dataset: (a) all species; (b) pine (Pinus sylvestris); (c) spruce (Picea abies);
(d) silver birch (Betula pendula Roth and Betula pubescens Ehrh.); solid line—mean trajectory; dashed
line—quantiles trajectories; black—first stand; red—second stand; and circles—observed data.
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3.2. Diameter, Area and Height Predictions and Forecasts

The consistent conservation of forest resources can only be achieved through the use
of reliable forest inventories, and accurate forest prediction and forecast models. Kinetic
models of tree size variables are needed to evaluate and verify the long-term performance
of biological and economic tree-growing programs.

In order to apply the stochastic differential Equation (1) model to the modeling of tree
size variables in a new plot, we distinguished two scenarios (prediction and forecast) based
on the calibration of random effects using Equation (A22). For the first scenario (prediction),
the random effects for a new plot from the validation dataset were calibrated using all
remeasurement cycles in a plot. For the second scenario (forecast), the random effects for
a new plot from the validation dataset were calibrated using only the first measurement
cycle in a plot in order to define the forecasts (at the 5- and 15-year forecast periods) of the
diameter, area, and height for each individual tree or stand. Most remeasured plots from
the validation dataset were uneven-aged and mixed-species. The results of the statistical
measures calculated using the plots from the validation dataset for the diameter, area,
and height equations against the age (see Table 1), against the age and one additional
explanatory variable (see Tables A1 and A2), and against the age and two additional
explanatory variables (see Equations (A11)–(A16) and Table A2) are presented in: Table 3
for the predictions of the individual-tree scenario models; Table 4 for the predictions of
the whole-stand scenario models; Table 5 for the forecasts of the individual-tree scenario
models; and Table 6 for the forecasts of the whole-stand scenario models, respectively.

Table 3. Statistical measures and p-values of the Student’s t-test for the predictions of the individual-
tree scenario models.

Tree
Species

Marginal Trends (Table A1) Conditional Trends (Equations (A11)–(A16) and Table A2)

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

Tree Diameter

All
−0.0914 5.0501 6.6271

0.4957 0.6908
−0.0185 2.5286 3.4917

0.8557 0.9357(−20.98) (39.35) (38.63) (−3.22) (17.07) (20.66)

Pine
0.0837 4.4172 5.6186

0.5494 0.6955
0.0196 3.0611 4.0577

0.7650 0.8987(−7.02) (22.66) (25.0) (−3.92) (14.59) (18.05)

Spruce −0.0692 3.1621 4.6121
0.6194 0.6980

−0.0079 1.5720 2.3284
0.9030 0.9299(−13.56) (30.72) (39.30) (−1.19) (14.77) (19.84)

Birch
0.6833 4.1726 5.0916

0.5485 0.1923
0.0694 2.3833 3.1569

0.8264 0.8315(−9.35) (31.08) (31.09) (−1.80) (16.72) (19.28)

Tree area

All
−0.3722 3.9768 5.4289

0.3197 0.0239
−0.3477 3.9528 5.5090

0.2631 0.1149(−45.77) (68.20) (59.71) (−43.04) (65.87) (31.52)

Pine
−0.7079 3.8385 4.7860

0.3103 0.0008
−0.7424 4.0039 5.0954

0.2182 0.0004(−40.53) (60.22) (48.39) (−41.22) (61.82) (51.52)

Spruce −0.4558 4.0732 5.7709
0.3797 0.0408

−0.3552 3.9025 5.6337
0.4089 0.1027(−57.27) (80.18) (68.11) (−51.25) (74.18) (66.88)

Birch
0.4635 4.3288

(61.73)
6.4125

0.2246 0.4838
0.3977 4.3294 6.3441

0.2411 0.5439(−36.25) (69.14) (−36.12) (61.40) (68.40)

Tree height

All
−0.0709 3.7219 4.6896

0.5609 0.6886
−0.0060 1.9134 2.5178

0.8734 0.9727(−15.09) (31.16) (28.24) (−5.42) (15.16) (15.16)

Pine
0.0648 2.2847 3.0373

0.7110 0.5585
0.0274 1.650 2.1998

0.8484 0.7321(−2.11) (11.91) (14.01) (−0.83) (8.17) (10.15)

Spruce −0.0652 2.9135 3.8682
0.6157 0.6628

−0.0070 1.5194 2.0091
0.8963 0.9278(−14.19) (30.19) (31.38) (−5.70) (15.86) (16.30)

Birch
0.5355 3.2252 4.0065

0.6363 0.1941
0.0442 1.9584 2.5463

0.8531 0.8667(−5.81) (22.60) (22.07) (−2.55) (12.48) (14.03)
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Table 4. Statistical measures and p-values of the Student’s t-test for the predictions of the whole-stand
scenario models.

Tree
Species

Marginal Trends (Table A1) Conditional Trends (Equations (A11)–(A16) and Table A2)

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

Tree Diameter

All
0.1513 1.0388 1.4262

0.9055 0.5698
0.1428 0.5478 0.7964

0.9705 0.3344(0.82) (5.45) (7.72) (0.46) (2.96) (4.31)

Pine
0.0901 0.9458 1.3091

0.9618 0.7131
0.2195 0.8466 1.3618

0.9588 0.3862(0.35) (4.02) (5.12) (0.79) (3.34) (5.33)

Spruce 0.3334 1.1693 1.8149
0.8822 0.4132

0.1101 0.7703 1.0933
0.9573 0.6555(2.62) (7.83) (14.29) (0.08) (5.74) (8.61)

Birch
1.0350 2.3129 3.0686

0.7708 0.1348
0.2628 0.9397 1.0876

0.9712 0.2912(6.16) (16.57) (18.27) (1.78) (7.33) (6.47)

Tree area

All
−0.4078 0.8748 1.2163

0.9112 0.0651
−0.3594 0.7453 0.9942

0.9407 0.0756(−4.01) (8.41) (11.98) (−2.40) (6.96) (9.76)

Pine
−0.7808 1.0433 1.3798

0.8645 0.0017
−0.7150 0.9282 1.2410

0.8904 0.0013(−7.36) (9.66) (13.01) (−6.23) (8.43) (11.70)

Spruce -0.0531 1.5625 2.2083
0.8492 0.9154

−0.0813 1.4245 1.9910
0.8774 0.8567(−0.54) (15.08) (22.77) (−2.31) (13.78) (20.53)

Birch
1.9603 3.3576 4.6046

0.2635 0.0543
1.8403 3.2109 4.4424

0.3145 0.0618(17.29) (26.33) (40.61) (4.94) (25.28) (39.18)

Tree height

All
-0.1529 0.6971 0.9169

0.9441 0.3697
−0.1964 0.3969 0.5769

0.9779 0.0608(−0.86) (3.77) (5.20) (−1.08) (2.28) (3.27)

Pine
−0.1892 0.7804 1.0782

0.9492 0.3717
−0.1810 0.5714 0.8071

0.9716 0.2512(−0.84) (3.44) (4.79) (−0.87) (2.54) (3.58)

Spruce 0.0590 0.9288 1.3785
0.8801 0.8499

−0.1414 0.6265 0.8996
0.9489 0.4847(6.67) (6.67) (11.03) (−1.12) (4.91) (6.54)

Birch
0.5076 1.9618 2.6134

0.8119 0.3987
−0.1832 0.8151 1.0137

0.9717 0.4329(2.88) (16.45) (14.84) (−3.04) (6.94) (5.76)

Table 5. Statistical measures and p-values of the Student’s t-test for the forecasts of the individual-tree
scenario models.

Tree
Species

5-Year Forecast Period 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

Tree Diameter

All
−0.1367 0.9781 1.4398

0.9780 0.0172
0.0695 2.1320 2.9242

0.9191 0.7726(−3.87) (7.41) (7.95) (−4.97) (11.80) (12.98)

Pine
−0.1213 0.8653 1.2661

0.9746 0.1245
0.0745 1.9546 2.6211

0.9090 0.7936(−1.35) (4.02) (5.12) (−2.18) (8.65) (10.08)

Spruce 0.2007 0.8819 1.4324
0.9652 0.0095

1.1264 2.0542 2.9809
0.9264 0.0048(−1.52) (7.65) (11.12) (0.46) (12.45) (16.89)

Birch
0.0748 1.1157 2.3053

0.8441 0.8918
−1.6608 2.0378 2.6368

0.8249 0.0210(−2.01) (9.55) (12.70) (−14.13) (15.58) (14.58)

Tree area

All
−0.4873 1.1495 1.5950

0.9437 0.0
−1.0848 2.7021 3.6579

0.7232 0.0002(−11.24) (15.71) (16.73) (−21.16) (31.18) (31.62)

Pine
−0.7428 1.2868 1.8015

0.9061 0.0
−1.8144 3.0295 4.1088

0.5435 0.0(−11.41) (15.03) (17.11) (−25.53) (33.67) (35.56)

Spruce −0.3260 1.2067 1.6183
0.9499 0.0002

0.4634 2.4532 3.2655
0.8462 0.3060(−14.07) (19.52) (18.40) (−11.73) (27.51) (26.87)

Birch
−0.3018 0.9129 1.1084

0. 9249 0.2454
−1.0712 1.9849 2.4591

0.7396 0.1367(−8.41) (14.77) (13.48) (−32.74) (37.36) (27.08)
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Table 5. Cont.

Tree
Species

5-Year Forecast Period 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

Tree height

All
−0.3345 1.7206 2.3412

0.9112 0.0003
−0.5697 1.8928 2.4267

0.8672 0.0038(−7.38) (14.42) (13.15) (−4.85) (11.52) (11.99)

Pine
0.0695 1.6114 2.2917

0.8952 0.6273
−0.4468 1.8256 2.3940

0.7475 0.0842(−0.67) (7.30) (9.77) (−2.36) (8.32) (10.53)

Spruce −0.3556 1.7092 2.2788
0.8822 0.0039

0.0304 2.1093 2.5892
0.8790 0.9327(−8.96) (18.39) (17.27) (−165) (16.92) (16.05)

Birch
−0.2760 1.9773 2.5717

0.8164 0.6524
−1.6480 2.2176 2.6751

0.7735 0.0250(−5.20) (11.59) (12.42) (−11.19) (13.24) (13.15)

Table 6. Statistical measures and p-values of the Student’s t-test for the forecasts of the whole-stand
scenario models.

Tree
Species

5-Year Forecast Period 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

Tree Diameter

All
−0.0975 0.3549 0.4491

0.9886 0.5211
0.0558 0.9070 1.2920

0.9340 0.8995(−0.60) (1.93) (2.56) (−0.57) (3.65) (5.65)

Pine
−0.1302 0.2417 0.3163

0.9973 0.2369
0.1858 0.6692 0.7733

0.9862 0.4765(−0.59) (0.96) (1.19) (0.22) (2.50) (2.75)

Spruce 0.4715 0.6162 0.7619
0.9484 0.0755

0.9839 1.5750 2.0111
0.9196 0.1813(3.87) (5.17) (6.17) (3.38) (8.80) (12.35)

Birch
−0.2460 0.8674 1.0419

0.9586 0.7638
−1.8016 2.1785 2.4829

0.5260 0.1652(−3.42) (6.34) (5.87) (−12.49) (14.14) (13.93)

Tree area

All
−0.7478 0.8740 0.9128

0.9541 0.0021
−1.2113 1.5593 2.5379

0.6541 0.1376(−11.94) (12.62) (9.49) (−10.65) (14.15) (21.73)

Pine
−0.8092 0.8092 1.1174

0.9085 0.0179
−1.1989 1.5945 2.5002

0.4557 0.1357(−7.58) (-7.58) (10.9) (−9.89) (13.55) (21.91)

Spruce −0.7452 0.7452 0.8311
0.9669 0.0011

0.2668 1.2567 1.3011
0.9595 0.5966(−11.03) (11.03) (9.51) (−2.59) (13.64) (10.63)

Birch
−0.9090 0.9090 0.9514

0.7514 0.0545
−1.0396 1.7376 1.9865

0.6064 0.3655(−14.65) (14.65) (13.42) (−19.85) (25.15) (34.01)

Tree height

All
0.0051 0.6554 0.8177

0.9582 0.9855
−0.5446 0.9711 1.2567

0.8729 0.1829(0.52) (4.40) (4.79) (−2.58) (4.79) (6.09)

Pine
0.3443 0.7088 0.9020

0.9522 0.2763
−0.5750 1.5814 1.8746

0.7664 0.3589(1.17) (2.79) (3.69) (−2.28) (6.46) (7.76)

Spruce 0.2678 0.9488 1.0899
0.8440 0.5238

0.0274 1.4992 1.5916
0.8937 0.9649(3.20) (8.46) (8.85) (0.53) (10.91) (12.17)

Birch
−0.7664 0.9171 1.2751

0.9136 0.3981
−1.3176 1.3177 1.4762

0.8361 0.0416(−5.62) (6.31) (6.58) (−7.34) (7.34) (7.23)

To validate the mixed-effect parameters stochastic differential equation model, a
validation dataset was applied to establish the main objective of the study, which was to
develop prediction and forecast models for the individual tree and the whole stand. It is
evident that the whole-stand models (see Tables 3 and 4) show better statistical measures
and the highest compatibility with the individual-tree models. In summary, it can be stated
that the observed validation dataset of the Scots pine species best corresponded to the
diameter and height predictions (see Tables 3 and 4). The diameter and height predictions
for the silver birch species were significantly worse than for the other tree species because,
on the one hand, the number of measurements for this species was not large and, on the
other hand, the age of the tree was accurately recorded for a small number of trees. The
simulated conditional diameter and height models listed in Table A2 show that the inclusion
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of the tree potentially available area in the form of an explanatory variable improves the
diameter and height predictions very slightly by up to 3%. Tables 3 and 4 show that the
individual-tree predictions of the potentially available area have low statistical measures,
but the whole-stand predictions of the potentially available area show significantly better
statistical measures. The stochastic differential equation kinetic model developed in this
study appears to allow a more accurate prediction of tree or stand diameter and height
growth than previous models [25–27]. The relationship between the potentially available
area of individual trees and the tree size variables is critical for scaling up individual-tree
effects to whole-stand phenomena. However, this problem has rarely been discussed in the
literature, with the exception of a few separate studies [28,29].

The following Tables 5 and 6 provide statistical measures for the 5- and 15-year
forecasts forward, with the fixed-effect parameters taken from Table 2 and the random-
effects calibrated by Equation (A22) using only first-cycle measurements from a validation
dataset. An initial condition xin = (x1in, x2in, x3in)

T at initial age tin is defined using only
first-cycle measurements from a validation dataset.

As can be seen from Tables 5 and 6, the statistical measures acquired worse val-
ues with an increasing forecast period. It is also clear that the statistical measures (see
Tables 5 and 6) for the forecasts of the whole-stand variables were higher than the forecasts
for the individual-tree variables. In summary, we can confirm that the observed validation
dataset of the Scots pine species best corresponded to the diameter and height forecasts
than the area (see Tables 5 and 6). The forecasts of the diameter, area, and height for the
silver birch species were the worst compared with the other tree species, probably due
to the small number of observations, which was three plots with 19 trees for the 5-year
forecast period, and four plots with 12 trees for the 15-year forecast period, respectively.

Traditionally used empirical models develop statistical relationships to observed
datasets and are not explicitly linked to the mechanisms that determine kinetics [30,31].
Our derived model, based on Equation (1), is able to characterize individual-tree and
whole-stand developments, and can be used for understanding and analyzing the behavior
of forest stands. The advantage of the presented model is that it enables us to link any
variable (diameter, area, or height) of the individual-tree or whole-stand with a separate
remaining variable, both remaining or only with age, and formalize a dependency that
additionally includes covariance between size variables.

3.3. Tree and Stand Basal Area Predictions and Forecasts

The static growth models that are commonly used in forest modeling aim to predict
directly at a given age the individual-tree or whole-stand quantities of interest (diameter,
height, and basal area). As more remeasurements of the network of permanent plots were
available, a kinetic growth model was formalized. The basal area of the individual tree or
the whole stand is directly related to other very important tree or stand variables, such as
volume, biomass, and CO2 uptake. On the basis of stochastic differential Equation (1), the
basal area kinetic model was formulated by use of the mean trends listed in Table A1 for
the individual tree, b (measured in cm2), and the whole stand per hectare, B (measured in
m2), modes in the following forms, respectively:

bl(t) =
∫ 100

0

πx2

4
fD

(
x, t
∣∣∣α̂1, β̂1, ˆσ11, ϕ̂l

1

)
dx, l = 1, 2, . . . , K (17)

Bl(t) = kl
s

10, 000

exp
(

µl
2(t) +

1
2 v22(t)

) ∫ 100

0

πx2

40, 000
fD

(
x, t
∣∣∣α1, β1, σ11, ϕl

1

)
dx (18)

where K is the number of observed plots in the validation dataset; kl
s is the part of the

area occupied by the tree species concerned (kl
all = 1, 0 ≤ kl

pine ≤ 1, 0 ≤ kl
spruce ≤ 1,

0 ≤ kl
birch ≤ 1); the fixed-effect parameter estimations are denoted by “hat” and are taken
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from Table 2; the random effects ϕ are calibrated using Equation (A22); and the probability
density function is defined using Equation (A1).

The kinetics of the mean tree basal area for the different tree species and the four
different stands are shown in Figure 5. As can be seen from Figure 5, the trajectory of
the mean tree basal area of the pine species trees is significantly higher than that of other
species, and the trajectory of the spruce trees is the lowest.
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Figure 5. Kinetics of the mean tree basal area for four randomly selected stands from a validation
dataset: (a) all species; (b) pine (Pinus sylvestris); (c) spruce (Picea abies); (d) silver birch (Betula pendula
Roth and Betula pubescens Ehrh.); black—first stand; red—second stand; blue—third stand; and
green—fourth stand.

The results of the statistical measures calculated using the plots from the validation
dataset for the mean tree basal area against the age; and against the age, area, and height
(see Equations (17) and (18)) are presented in: Table 7 for the tree basal area predictions of
the individual-tree scenario models; and Table 8 for the basal area per hectare predictions
of the whole-stand (the basal area per hectare predicted values are compared with the basal
area per hectare in a corresponding observed stand) scenario models.

Table 7. Statistical measures and p-values of the Student’s t-test for the predictions of the tree basal
area (individual-tree scenario).

Tree
Species

Explanatory Variables: Age Explanatory Variables: Age, Area, and Height

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

All
8.2162 155.81 234.73

0.4555 0.1617
1.3994 81.756 142.39

0.7996 0.6945(2.82) (53.63) (80.79) (0.48) (28.12) (49.01)

Pine
3.1247 152.13 215.88

0.5756 0.6764
6.6267 109.51 167.93

0.7432 0.2549(0.77) (37.50) (53.21) (1.63) (26.99) (41.39)

Spruce −3.1639 82.634 168.74
0.5439 0.6277

−0.7102 38.916 95.014
0.8554 0.8467(−2.08) (54.34) (110.98) (−0.46) (25.59) (62.49)

Birch
2.0748 116.89 147.62

0.5385 0.8918
−0.7705 66.545 96.361

0.8034 0.9383(0.81) (45.72) (57.74) (−0.30) (26.03) (37.69)
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Table 8. Statistical measures and p-values of the Student’s t-test for the predictions of the mean tree
basal area (whole-stand scenario).

Tree
Species

Explanatory Variables: An Average Age of a Plot Explanatory Variables: An Average Age and Area

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

All
24.3002 37.991 64.717

0.8600 0.0573
14.3375 34.599 57.768

0.8884 0.1782(7.19) (11.24) (19.15) (4.24) (10.24) (17.09)

Pine
4.3631 32.266 47.303

0.9737 0.6217
−3.0197 32.152 47.345

0.9736 0.7331(0.84) (6.27) (9.18) (−0.57) (6.25) (9.20)

Spruce 18.312 36.282 81.397
0.7996 0.3141

10.519 36.423 76.402
0.8217 0.5412(10.25) (20.31) (45.58) (5.89) (20.39) (42.78)

Birch
8.6195 55.123 71.779

0.8453 0.6041
−5.1739 50.301 68.432

0.8594 0.7446(3.19) (20.45) (26.63) (−1.91) (18.66) (25.38)

Looking at the accuracy of the basal area predictions expressed by the statistical
measures calculated in Tables 7 and 8, we can state that the Norway spruce species trees
are the worst predicted. Moreover, the addition of the tree potentially available area
with the additional explanatory variable improves the basal area predictions only slightly;
for example, the coefficient of determination is only up to 3%. The p-values of all the
discussed models indicate that there is no bias between the predicted basal area values and
the observed values (from the validation dataset). The statistical measures presented in
Table 8 (calculated by comparing the values of the predicted basal area per hectare with the
observed basal area per hectare) show better accuracy than comparing the predicted and
observed basal areas of the individual trees (see Table 7).

Tables 9 and 10 show that the 5-year forecasts are in good agreement with the observed
values and have the normal property of a good forecast that it is unbiased. The statistical
measures calculated for the 15-year forecasts declare worse values compared with the
5-year forecast accuracy measures.

Table 9. Statistical measures and p-values of the Student’s t-test for the forecasts of the tree basal area
(individual-tree scenario).

Tree
Species

5-Year Forecast Period 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

All
2.3774 28.323 50.666

0.9756 0.2592
11.098 77.621 137.14

0.8841 0.3265(0.76) (9.13) (16.33) (2.57) (18.0) (31.81)

Pine
−4.2711 30.494 41.553

0.9843 0.0801
−9.4083 77.309 118.36

0.8996 0.4389(−0.98) (7.01) (9.54) (−1.86) (15.35) (53.21)

Spruce 10.838 23.185 57.210
0.9523 0.6277

54.154 71.869 165.81
0.8692 0.0325(6.30) (13.49) (33.29) (18.20) (24.16) (55.74)

Birch
−12.309 31.824 49.757

0.9551 0.1875
−50.575 51.955 64.603

0.9154 0.0044(−4.11) (10.63) (16.62) (−16.18) (16.62) (20.67)

The kinetics of the stand basal area per hectare against the age or the predictions of
the mean tree diameter for different tree species and four different stands are shown in
Figure 6. As can be seen from Figure 6, the trajectory of the stand basal area of the pine
species trees is significantly higher than that of the other species, and the trajectory of the
spruce trees is the lowest.
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Table 10. Statistical measures and p-values of the Student’s t-test for the forecasts of the tree basal
area (whole-stand scenario).

Tree
Species

5-Year Forecast Period 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

All
50.929 56.037 72.281

0.7125 0.0655
44.380 61.262 92.744

0.7797 0.1364(16.97) (18.68) (24.09) (9.96) (13.75) (20.82)

Pine
10.766 31.647 39.098

0.9826 0.4412
−12.032 58.260 97.613

0.8697 0.7180(1.99) (5.85) (7.23) (−2.04) (9.91) (16.60)

Spruce 34.724 34.724 56.026
0.7692 0.1012

61.679 63.252 119.32
0.7849 0.1895(22.70) (22.70) (36.63) (24.20) (24.82) (46.82)

Birch
13.901 22.604 32.537

0.9764 0.2911
−24.464 59.321 66.095

0.7366 0.5042(4.90) (7.98) (11.49) (−7.95) (17.83) (19.87)
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Figure 6. Kinetics of the stand basal area for four randomly selected stands from a validation
dataset: (left panel) against the age; (right panel) against the diameter predictions; (a1,a2) all
species; (b1,b2) pine (Pinus sylvestris), kpine = 0.73, 0.18, 0.73, 0.25 (black, red, blue, and green),
respectively; (c1,c2) spruce (Picea abies) kspruce = 0.05, 0.80, 0.68, 0.74 (black, red, blue, and green),
respectively; (d1,d2) silver birch (Betula pendula Roth and Betula pubescens Ehrh.) kbirch =

0.22, 0.02, 0.04, 0.07 (black, red, blue, and green), respectively; black—first stand; red—second
stand; blue—third stand; green—fourth stand; and circles—observed dataset.
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The results of the accuracy of the stand basal area per hectare predictions and the
forecasts expressed by the statistical measures are calculated in Table 11. Table 11 shows
that the stand basal area per hectare predictions and the 15-year forecasts are in good
agreement with the observed values and are unbiased.

Table 11. Statistical measures and p-values of the Student’s t-test for the prediction and forecast of
the stand basal area per hectare.

Tree
Species

Prediction 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

All
0.0151 2.1761 2.5589

0.8289 0.9749
1.0996 2.9812 4.2393

0.4321 0.8057(0.05) (7.01) (8.24) (3.58) (9.73) (13.83)

Pine
1.3531 2.6346 3.5103

0.4333 0.0522
0.1118 2.1873 2.6985

0.5993 0.1244(6.59) (12.84) (17.10) (0.55) (10.88) (13.43)

Spruce −0.3047 1.5765 1.9226
0.9071 0.4492

0.5655 1.7742 2.5298
0.8312 0.5631(−3.13) (19.76) (19.76) (5.84) (18.33) (26.14)

Birch
−0.0499 0.2998 0.3871

0.9651 0.4889
−0.2378 0.4290 0.5745

0.9293 0.2037(−1.83) (11.02) (14.23) (−8.55) (15.37) (20.58)

3.4. Stand Density Predictions and Forecasts

In large-scale forest scenario analysis tools, the key is the inclusion of models on stand
density effects. Having formulated appropriate mathematical models of stand density, there
is the need to have multi-cycle measurement data on stand density that cannot normally
be obtained from European-scale forest inventories. As the data in this study include
remeasurements from 1 to 7, the accuracy of stand density models is not difficult to assess.
On the basis of stochastic differential Equation (1), the stand density kinetic model can be
formulated using the mean trends of the area listed in Table A1 in the following form:

Nl(t|tinitial , xinitial) = kl
s

10,000
ml

2(t|tinitial ,xinitial)
, l = 1, 2, . . . , K

ml
2(t|tinitial , xinitial) = exp

(
µl

2(t
∣∣∣tinitial , xinitial) +

1
2 v22(t

∣∣∣tinitial)
) (19)

where K is the number of observed plots in a validation dataset; kl
s is the part of the

stand occupied by the tree species concerned (kl
all = 1, 0 ≤ kl

pine ≤ 1, 0 ≤ kl
spruce ≤ 1,

0 ≤ kl
birch ≤ 1); the fixed-effect parameter estimations are taken from Table 2; and the

random effects ϕ are calibrated by Equation (A22) using the validation dataset. The
kinetics of the stand density area against the age for the different tree species and the four
different stands are shown in Figure 7. The results of the statistical measures of the stand
density predictions and forecasts are calculated in Table 12.

The mathematical models of individual-tree and whole-stand variables discussed in
Sections 3.1–3.3 are extensively analyzed in the previous literature. Most models remain
static over a long period of intensive research and ignore the importance of covariance
relationships. Another disadvantage of the existing models is that a large system of
mathematical equations is used to model a specific tree or stand variable, and the most
appropriate relationship is selected from the list using simple statistical indices. It is worth
noting a few works, such as [32–38]. In [32], the description of tree size variables is made
by applying statistical models to the diameter distributions. The authors of [33] studied
the problems of the performance of the height–diameter models in a local and regional
context, and analyzed their use for modeling stand variables. They then considered the
extensions and possible limitations of a system of algebraic difference equations [34,35].
Cieszewski and Bailey examined the generalized algebraic difference approach that can be
used to derive age-dependent invariant difference equations capable of describing variable
asymptotes [36]. Pommerening and Muszta explored and analyzed the definitions of
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absolute and relative growth rates, growth acceleration, growth multipliers, and allometry
from a mathematical point of view [37]. General physical ideas combined with modern
methods in forest growth modeling are considered in detail in [4,38].
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Figure 7. Kinetics of the stand density area for four randomly selected stands from a val-
idation dataset: (a) all species; (b) pine (Pinus sylvestris), kpine = 0.73, 0.18, 0.31, 0.93
(black, red, blue, and green ), respectively; (c) spruce (Picea abies) kspruce = 0.05, 0.23, 0.80, 0.61
(black, red, blue, and green), respectively; (d) silver birch (Betula pendula Roth and Betula pubescens
Ehrh.) kbirch = 0.22, 0.02, 0.09, 0.07 (black, red, blue, and green), respectively; black—first stand;
red—second stand; blue—third stand; green—fourth stand; and circles—observed dataset.

Table 12. Statistical measures and p-values of the Student’s t-test for the prediction and forecast of
the stand density.

Tree
Species

Prediction 15-Year Forecast Period

B AB RMSE
R2 T B AB RMSE

R2 T

(%) (%) (%) p-Value (%) (%) (%) p-Value

All
36.057 84.449 105.02

0.9442 0.0587
63.107 121.21 147.51

0.8545 0.1893(3.08) (7.22) (8.98) (5.99) (11.52) (14.02)

Pine
46.441 52.362 61.997

0.9619 0.0
27.407 49.920 85.230

0.8940 0.3349(8.88) (10.01) (11.85) (5.82) (10.60) (18.11)

Spruce −7.4042 20.478 28.693
0.9161 0.4436

0.5655 1.7742 2.5298
0.8312 0.5631(−8.40) (23.23) (32.55) (5.84) (18.33) (26.14)

Birch
3.7943 14.126 20.789

0.9678 0.3258
−7.4042 20.478 28.693

0.9161 0.4436(3.66) (13.64) (20.07) (−8.40) (23.23) (32.55)

4. Conclusions

The main stage in this study consisted of adjusting the Gompertz- and Vasicek-type
diffusion processes to model the stand density and basal area in both individual-tree and
whole-stand scenarios for uneven mixed-species stands. The newly developed mixed-effect
parameters trivariate probability density function of the tree diameter, potentially available
area, and height enabled the formulation of the equations for the mean, quantile, and
variance trends of the stand density, and the tree or stand basal area in mixed-species forest
stands. The model forms and predictors were derived in such a way that the models can be
used in all stand structures, and are able to be employed to simulate transformation from
even-aged to multi-layered structures.
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Our future research will be focused on the creation of a general multivariate copula
model for the evaluation of individual-tree or whole-stand variables, such as basal area,
density, volume, and their increments. Copula models are very popular because they sim-
plify the specification of a multivariate distribution, allowing the marginal distributions to
be modeled arbitrarily at different sample sizes, and then combined using a copula function.
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Appendix A

Appendix A.1. Marginal and Conditional Distributions

The univariate marginal distributions of the tree diameter
(

Xl
1(t)

∣∣∣Xl
1(t0) = x10

)
,

l = 1, . . . , M is normal N1

(
µl

1(t); v11(t)
)

, the marginal distribution of the tree area(
Xl

2(t)
∣∣∣Xl

2(t0) = δ + ϕl
4

)
, l = 1, . . . , M is lognormal LN1

(
µi

2(t); v22(t)
)
, and the marginal

distribution of the tree height
(

Xl
3(t)

∣∣∣Xl
3(t0) = x30

)
, l = 1, . . . , M is normal N1

(
µl

3(t); v33(t)
)

,
with the transition probability density functions, respectively:

fD

(
x1, t

∣∣∣α1, β1, σ11, ϕl
1

)
=

1

(2πv11(t))
1
2

exp

−
(

x1 − µl
1(t)

)2

2v11(t)

 (A1)

fA

(
x2, t

∣∣∣α2, β2, σ22, δ, ϕl
2 , ϕl

3

)
=

1

(2πv22(t))
1
2 x2

exp

−
(

ln(x2)− µl
2(t)

)2

2v22(t)

 (A2)

fH

(
x3, t

∣∣∣α3, β3, σ33, ϕl
4

)
=

1

(2πv33(t))
1
2

exp

−
(

x3 − µl
3(t)

)2

2v33(t)

 (A3)

By assuming the initial condition P
(

Xl(t0) = x0

)
= 1, l = 1, . . . , M, and using the

probability density functions in Equations (A1)–(A3), the marginal mean, median, mode,
p-quantile (0 < p < 1), and variance trends of tree diameter, area, and height are listed in
Table A1. The mean functions defined in Table A1 represent the cumulative growth of the
diameter, area, and height attained by a tree at any particular age.
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Table A1. Marginal mean, median, mode, p-quantile (0 < p < 1), and variance trends.

Variable Trajectory Type Equation

Diameter
Height(

Xl
j(t)
∣∣∣Xl

j(t0) = xj0

)
, l = 1, 3

Mean, median and mode µl
j(t)

Quantile (0 < p < 1) Φ−1
p

(
µl

j(t); vjj(t)
)

*

Variance vjj(t)

Area(
Xl

2(t)
∣∣∣Xl

2(t0) = δ + ϕl
4

)
Mean exp

(
µl

2(t) +
1
2 v22(t)

)
Median exp

(
µl

2(t)
)

Mode exp
(

µl
2(t)− v22(t)

)
Quantile (0 < p < 1) LΦ−1

p

(
µl

2(t); v22(t)
)

*

Variance
exp

(
2µl

2(t) + v22(t)
)
·

(exp(v22(t))− 1)

* Φ−1
p (·; ·) is the inverse of the standard normal distribution function; and LΦ−1

p (·; ·) is the inverse of the lognormal
distribution function.

The univariate conditional distribution of
(

Xl
j(t)
∣∣∣Xl

j(t0) = xj0

)
, j = 1, 3, l = 1, . . . ,

M at a given
(

Xl
2(t) = x2

)
is univariate normal N1

(
ηl

j2(t, x2); λj2(t)
)

, and the univariate

conditional distribution of
(

Xl
2(t)

∣∣∣Xl
2(t0) = δ + ϕl

4

)
at a given

(
Xl

j(t) = xj

)
, j = 1, 3 is

univariate lognormal LN1

(
ηl

2j
(
t, xj

)
; λ2j(t)

)
, with the means and variances defined by:

ηl
12(t, x2) = µl

1(t) +
v12(t)
v22(t)

(
ln(x2)− µl

2(t)
)

(A4)

ηl
13(t, x3) = µl

1(t) +
v13(t)
v33(t)

(
x3 − µl

3(t)
)

(A5)

ηl
23(t, x3) = µl

2(t) +
v23(t)
v33(t)

(
x3 − µl

3(t)
)

(A6)

ηl
23(t, x3) = µl

2(t) +
v23(t)
v33(t)

(
x3 − µl

3(t)
)

(A7)

ηl
31(t, x1) = µl

3(t) +
v13(t)
v33(t)

(
x1 − µl

1(t)
)

(A8)

ηl
32(t, x2) = µl

3(t) +
v23(t)
22(t)

(
ln(x2)− µl

2(t)
)

(A9)

λjk(t) = vjk(t)−

(
vjk(t)

)2

vkk(t)
, 1 ≤ j, k ≤ 3 (A10)

The conditional mean, median, mode, p-quantile (0 < p < 1), and variance trends of
the diameter, area, and height are listed in Table A2. The conditional functions defined in
Table A2 represent the cumulative growth of the diameter, area, and height attained by a
tree at any particular age and any particular value of additional explanatory variable (such
as diameter, area, and height).
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Table A2. Conditional mean, median, mode, p-quantile (0 < p < 1), and variance trends with
one predictor.

Diameter
Height
j, k ∈

{(1, 2), (1, 3), (3.1), (3.2)}

Mean, Median, and Mode ηl
jk(t, xk)

Quantile
(0 < p < 1) Φ−1

p

(
ηl

jk(t, xk); λjk(t)
)

Variance λjk(t)

Area
j, k ∈ {(2, 1), (2, 3)}

Mean
exp

(
ηl

jk(t, xk) +
1
2 λjk(t)

)
Median exp

(
ηl

jk(t, xk)
)

Mode exp
(

ηl
jk(t, xk)− λjk(t)

)
Quantile (0 < p < 1) LΦ−1

p

(
ηl

j(t, xk); λjk(t)
)

Variance
exp

(
2ηl

jk(t, xk) + λjk(t)
)
·(

exp
(

λjk(t)
)
− 1
)

The univariate conditional distribution of
(

Xl
1(t)

∣∣∣Xl
1(t0) = x10

)
at a given

(
Xl

2(t) = x2

)
and

(
Xl

3(t) = x3

)
is univariate normal N1

(
Πl

1(t, x2, x3); Λ123(t)
)

, the univariate condi-

tional distribution of
(

Xl
2(t)

∣∣∣Xl
2(t0) = δ + ϕl

4

)
at a given

(
Xl

1(t) = x1

)
and

(
Xl

3(t) = x3

)
is univariate lognormal LN1

(
Πl

2(t, x1, x3); Λ213(t)
)

, and the univariate conditional distri-

bution of
(

Xl
3(t)

∣∣∣Xl
1(t0) = x30

)
at a given

(
Xl

1(t) = x1

)
and

(
Xl

2(t) = x2

)
is univariate

normal N1

(
Πl

3(t, x1, x2); Λ312(t)
)

, with the means and variances defined by:

Πl
1(t, x2, x3) = µl

1(t) +
(

v12(t) v13(t)
)( v22(t) v23(t)

v23(t) v33(t)

)−1( ln(x2)− µl
2(t)

x3 − µl
3(t)

)
(A11)

Πl
2(t, x1, x3) = µl

2(t) +
(

v12(t) v23(t)
)( v11(t) v13(t)

v13(t) v33(t)

)−1( x1 − µl
1(t)

x3 − µl
3(t)

)
(A12)

Πl
3(t, x1, x2) = µl

3(t) +
(

v13(t) v23(t)
)( v11(t) v12(t)

v12(t) v22(t)

)−1( x1 − µl
1(t)

ln(x2)− µl
2(t)

)
(A13)

Λ123(t) = v11(t)−
(

v12(t) v13(t)
)( v22(t) v23(t)

v23(t) v33(t)

)−1( v12(t)
v13(t)

)
(A14)

Λ213(t) = v22(t)−
(

v12(t) v23(t)
)( v11(t) v13(t)

v13(t) v33(t)

)−1( v12(t)
v23(t)

)
(A15)

Λ312(t) = v33(t)−
(

v13(t) v23(t)
)( v11(t) v12(t)

v12(t) v22(t)

)−1( v13(t)
v23(t)

)
(A16)

The conditional mean, median, mode, p-quantile (0 < p < 1), and variance with two
explanatory variables for diameter, area, and height trends can be expressed as shown
in Table 2 additionally by changing the mean ηl

jk(t, xk) and variance λjk(t) defined by

Equations (A4)–(A10) to the mean Πi
j(t, xk, xm) and variance Λjkm(t) defined by Equa-

tions (A11)–(A16).

Appendix A.2. Parameter Estimates

Given a set of discrete trivariate process measurements of the diameter (x1), area
(x2), and height (x3)

{(
xl

11, xl
21, xl

31

)
,
(

xl
12, xl

22, xl
32

)
, . . . ,

(
xl

1ni
, xl

2ni
, xl

3nl

)}
at discrete times
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(ages)
{

tl
1, tl

2, . . . , tl
ni

}
(nl is the number of observed trees of the lth stand, l = 1, . . . , M) and

having the exact solution of Equation (1) expressed in Equations (9)–(12), all the parameters
of Equation (1) can be estimated using the maximum likelihood procedure. This has been
described in more detail previously; for example, in [39,40]. For the simulation of the
parameter estimates, we present the necessary equations for analyzing fixed- and mixed-
effect models. The optimal parameter values are found by maximizing the maximum
log-likelihood function for the fixed-effect and mixed-effect scenarios, respectively:

LL1

(
θ1
)
=

M

∑
l=1

nl

∑
j=1

ln
(

f
(

xl
1j, xl

2j, xl
3j, tl

j

∣∣∣θ1, (0, 0, 0)
))

(A17)

LL2

(
θ2, Ψ

)
=

M

∑
l=1

∫
R3

(
nl

∑
j=1

ln
(

f
(

xl
1j, xl

2j, xl
3j, tl

j

∣∣∣θ1, ϕi
))

+
k

∑
k=1

ln
(

p
(

ϕl
k

∣∣∣σ2
k

)))
dϕl

1dϕl
2dϕl

3dϕl
4 (A18)

where θ2 = {α1, β1, α2, β2, α3, β3, σ11, σ12, σ13, σ22, σ23, σ33, δ, σ1, σ2, σ3, σ4} and p
(

ϕl
k

∣∣σ2
k

)
,

k = 1, . . . , 4 is a normal probability density function with zero mean and constant variance.
In general, for a mixed-effect parameters scenario, the integral in Equation (A18) does

not have a closed-form solution, so efficient numerical integration methods are needed. The
Laplace method can be used because the exact shape of the transition probability density
is known. Therefore, the two-step approximate maximum log-likelihood procedure is
formalized as:

LL2

(
θ2,
∧
Ψ
)
≈

M

∑
l=1

g

(
∧
ϕl
∣∣∣θ2

)
+

3
2

ln(2π)− 1
2

ln

det


−∂2g

(
ϕl
∣∣θ2
)

∂
(

ϕl
)2

T
ϕl=

∧
ϕl


 (A19)

where:
∧
ϕl = argmax

ϕl
g

(
ϕl

∣∣∣∣∣ ∧θ2

)
, l = 1, . . . , M (A20)

g

(
ϕl

∣∣∣∣∣ ∧θ2

)
≡

nl

∑
j=1

ln

(
f

(
xl

1j, xl
2j, xl

3j, tl
j

∣∣∣∣∣ ∧θ1, ϕl

))
+

4

∑
k=1

ln
(

p
(

ϕl
k

∣∣∣σ̂2
k

))
(A21)

The maximization of L2
(
θ2, Ψ

)
is a two-step optimization problem. The internal

optimization step estimates the ϕl for every plot l = 1, . . . , M with Equation (A20). The

external optimization step maximizes LL2

(
θ2,
∧
Ψ
)

after plugging
∧
ϕl , l = 1, . . . , M into

Equation (A19).

Appendix A.3. Random Effects Calibration

Given a set of discrete trivariate process measurements of the diameter (x1), area (x2),
The random effects ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) can be calibrated from the newly observed

dataset {(x11, x21, x31), (x12, x22, x32), . . . , (x1m, x2m, x3m)} at discrete times (ages)
{t1, t2, . . . , tm} as:

∧
ϕ = argmax

(ϕ1,ϕ2,ϕ3,ϕ4)

(
m

∑
j=1

ln

(
f

(
x1j, x2j, x3j, tj

∣∣∣∣∣ ∧θ1, ϕ

))
+

4

∑
k=1

ln
(

p
(

ϕl
k

∣∣∣σ̂2
k

)))
(A22)
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Appendix B

Figures of Marginal Distributions
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Figure A1. Estimated marginal probability density functions of the diameter for two randomly se-

lected stands from a validation dataset: (left) first stand; (right) second stand; (1st row) all species; 

(2nd row) pine (Pinus sylvestris); (3rd row) spruce (Picea abies); (4th row) silver birch (Betula pendula 

Roth and Betula pubescens Ehrh.); black—30-year-old stands; red—70-year-old stands; and blue—

120-year-old stands. 

Figure A1. Estimated marginal probability density functions of the diameter for two randomly
selected stands from a validation dataset: (left) first stand; (right) second stand; (1st row) all species;
(2nd row) pine (Pinus sylvestris); (3rd row) spruce (Picea abies); (4th row) silver birch (Betula pendula
Roth and Betula pubescens Ehrh.); black—30-year-old stands; red—70-year-old stands; and blue—120-
year-old stands.



Forests 2022, 13, 425 23 of 26Forests 2022, 13, x FOR PEER REVIEW 24 of 27 
 

 

Figure A2. Estimated marginal probability density functions of the potentially available area for 

two randomly selected stands from a validation dataset: (left) first stand; (right) second stand; (1st 

row) all species; (2nd row) pine (Pinus sylvestris); (3rd row) spruce (Picea abies); (4th row) silver birch 

(Betula pendula Roth and Betula pubescens Ehrh.); black—30-year-old stands; red—70-year-old 
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Figure A2. Estimated marginal probability density functions of the potentially available area for
two randomly selected stands from a validation dataset: (left) first stand; (right) second stand; (1st
row) all species; (2nd row) pine (Pinus sylvestris); (3rd row) spruce (Picea abies); (4th row) silver birch
(Betula pendula Roth and Betula pubescens Ehrh.); black—30-year-old stands; red—70-year-old stands;
and blue—120-year-old stands.
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Figure A3. Estimated marginal probability density functions of the height for two randomly selected 

stands from a validation dataset: (left) first stand; (right) second stand; (1st row) all species; (2nd 

row) pine (Pinus sylvestris); (3rd row) spruce (Picea abies); (4th row) silver birch (Betula pendula Roth 

and Betula pubescens Ehrh.); black—30-year-old stands; red—70-year-old stands; and blue—120-

year-old stands. 
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