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Abstract: Green alder (Alnus alnobetula) is currently the most expanding shrub species in the Alps.
Because dense thickets impair tree establishment, understanding how climate affects shrub growth is
essential for predictions of treeline dynamics. We evaluated ring width data from >50 A. alnobetula
stems sampled at treeline on Mt. Patscherkofel (Central European Alps, Austria) to identify main
climatic drivers and influence of climate warming on radial stem growth (RG). We also compared
RG of A. alnobetula with RG of the co-occurring treeline conifer Swiss stone pine (Pinus cembra). We
addressed our questions through calculation of response functions and evaluation of climate in years
showing exceptional growth deviations. Response function analyses and evaluation of growth trends
during 1991–2020 revealed that RG of A. alnobetula is significantly and directly related to summer
temperatures. Precipitation in January also showed a direct relationship to RG, indicating effects of
frost drought on RG. Surprisingly, nitrogen fixing A. alnobetula showed strikingly lower RG compared
to P. cembra, and the latter also responded more strongly to the increase in summer temperature in the
course of climate warming. We explain these findings by different carbon allocation strategies, i.e.,
preference of “vertical” stem growth in late successional P. cembra vs. favoring “horizontal” spread in
the pioneer shrub A. alnobetula.

Keywords: alpine treeline ecotone; climate-growth relationship; deciduous shrub; frost drought;
green alder; radial stem growth; Swiss stone pine

1. Introduction

In the European Alps global change, especially land abandonment and the decrease
in grazing pressure in recent decades, initiated expansion of green alder (Alnus alnobetula
(Ehrh.) K. Koch = Alnus viridis (Chaix) DC) across the treeline ecotone. A. alnobetula is
currently the most expanding shrub species in the Austrian, French, Italian and Swiss
Alps (e.g., [1–4]). Expansion has also been described for various cold biomes in northern
tundra ecosystems (e.g., [5–8]. Although, in the Alps A. alnobetula is naturally restricted
to avalanche slide path, screes and steep, north-facing slopes exhibiting high water avail-
ability [9–11], expansion into subalpine grasslands and well-drained areas [12] is enhanced
by its clonal growth, high seed production and the symbiosis with N2-fixing actinobacte-
ria [13,14] and ectomycorrhizal fungi [15]. Expansion of A. alnobetula, which forms 2–4 m
tall canopies, causes considerable environmental changes that have mostly a negative effect
on the conservation of vascular plant diversity [4,5,16] and drive grasslands and meadows
into N-saturated, species-poor shrubland [17]. Although the life span of A. alnobetula
individuals is approximately 60 years (maximum age 110 years [18]), it may persist for
centuries due to its ability of clonal growth by layering [19].
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There is extensive evidence that at high elevation, low temperature during the growing
season directly limits metabolic activity, i.e., cell division and differentiation in meristematic
tissues, which leads to growth reductions and ultimately to formation of the treeline
(e.g., [20–22]). There are also reports that range expansion of A. alnobetula is a consequence
of recent climate warming [23–25]. However, Mitchell and Ruess [23] suggest that in the
future, growth of A. alnobetula may be reduced due to increasing constraint of low water
availability with ongoing warming trend, especially when combined with lack of rainfall.
A. alnobetula belongs to anisohydric species, i.e., it is dehydration tolerant and keeps its
stomata open even under high vapour pressure deficit [26–28].

There is a growing need to better understand the drivers of growth of A. alnobetula
to improve projections of vegetation change at the alpine treeline ecotone. Radial growth
indices are known to be valuable long-term measures of overall tree and shrub vigour
(e.g., [29–31]) and dendroclimatological methods (“response functions”) are frequently ap-
plied to identify the climatic factors most closely associated with variations in tree and shrub
growth (e.g., [32–35]). Because shrubs can provide a multi-decadal record of environmental
change, analysing growth over time and climate–growth relationships allow determination
of the influence of climate warming and climate extremes on growth processes.

Our understanding of shrub growth at the alpine treeline remains incomplete. There-
fore, the foremost goal of this study was to determine the main climatic drivers of radial
stem growth (RG) of A. alnobetula at the alpine treeline ecotone on Mt. Patscherkofel, where
Swiss stone pine (Pinus cembra L.) is the dominating tree species. Plant growth at high
elevation is primarily constrained by the prevailing temperature during the growing season
(e.g., [21,36]). Therefore, we expected that RG of A. alnobetula (i) is closely related to summer
temperature and (ii) high water availability at the start of the growing season. Furthermore,
we expected that (iii) the N2-fixing capacity of A. alnobetula enables considerably higher RG
than in the co-occurring tree species P. cembra.

2. Materials and Methods
2.1. Study Area

The study area is situated at the treeline ecotone stretching from c. 1950 up to 2200 m on
Mt. Patscherkofel (2246 m asl; Tyrol, Austria; 47◦12′ N, 11◦27′ E). Mt. Patscherkofel belongs
to the Central European Alps and is located in an inner alpine dry zone where the local
climate is characterized by frequent occurrence of strong southerly winds (Föhn). During
the study period 1991–2020, mean annual precipitation at the top of Mt. Patscherkofel
(location of meteorological station) was 889 ± 128 mm (mean ± standard deviation, SD).
Precipitation maximum is reached during summer (long-term mean (LTM): 371 ± 74 mm
during June through August), while winter is the driest season (LTM: 132 ± 60 mm during
December through February; Figure 1). Both low winter precipitation and strong winds
contribute to frequent occurrence of frost drought effects (i.e., desiccation of above ground
organs) across the treeline ecotone in the dominating tree species Swiss stone pine (Pinus
cembra; [36–38]).

Mean annual temperature during the period 1991–2020 amounted to 0.8 ± 0.7 ◦C and
the coldest and warmest months were February (−6.6 ◦C) and July (8.9 ◦C), respectively
(Figure 1). Air temperature at 2246 m asl can reach a maximum of 20 ◦C during summer.
Snow depth on Mt. Patscherkofel is mostly less than 1 m but shows pronounced spatial
variation due to irregular distribution by frequently occurring strong winds. Whereas
south-facing slopes show only small patches of snow in early to mid-April, an almost
continuous snow cover persists on steep north-facing slopes from late October until May.

The geology of Mt. Patscherkofel is dominated by gneisses and schists [39] and the
soil type within the study area is classified as haplic podzol [40,41]. Alnus alnobetula stands
are developed along the treeline ecotone primarily in leeward avalanche gullies but they
also occur at wind exposed sites on south-to south-east facing slopes. This tall shrub forms
dense monospecific thickets with mean canopy height of c. 2 m.
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Figure 1. Mean monthly minimum (blue line), maximum (red line) and mean (black line) daily air
temperature and mean monthly precipitation sums (bars) during the study period 1991 to 2020 at the
meteorological station on top of Mt. Patscherkofel (2246 m asl). Standard deviations are indicated.

2.2. Stem Sampling and Growth Ring Measurements

A. alnobetula shows clonal growth leading to stocks from which several stems sprout
(mainly > 10). Within each selected plot, stem discs were sampled from shoots belonging
to different stocks. Stem discs were taken as close to the stem base as possible. Five to
ten stems were sampled in each plot. In order to cover a large range of environmental
conditions, eight plots were selected within the treeline ecotone in relation to different
geomorphic features (Table 1). The selected plots are located close to each other within an
area of c. 0.5 km2, having a size between 100 and 700 m2, except for the plot at the highest
elevation (plot 5), which is composed of several scattered bushes covering 5–10 m2 each.

Table 1. Site description and characteristics of selected Alnus alnobetula stands with elevation (m
above sea level (asl)), slope (S, ◦), soil depth (SoD, cm), stem length (StL, m), canopy height (CH, m),
age (years) mean sensitivity (MS, %), ring width (RW, µm) and sample depth (n radii/stems). Mean
values ± standard deviation (SD) are shown for stem length, age and ring width.

Plot # Elevation
(M asl) Aspect S (◦) Sod (cm) Stl (m)

Mean ± SD CH (m) Age 1 (Yrs)
Mean ± SD

MS 2

(%)
RW (µm)

Mean ± SD
N 3

Radii/Stems

1 2050 NNW 25 15 4.7 ± 0.6 3.5 30 ± 8 34 463 ± 90 11/8
2 2170 SSE 20 5 1.8 ± 0.3 1.7 16 ± 4 40 501 ± 149 6/4
3 2130 ESE 35 15–20 2.7 ± 0.2 2.2 21 ± 5 30 583 ± 119 12/7
4 2190 E 25 5–10 1.8 ± 0.5 1.6 14 ± 9 45 587 ± 171 10/6
5 2190 SSE 30 5 0.8 ± 0.2 0.6 9 ± 6 64 485 ± 107 10/5
6 2130 W 35 15 2.0 ± 0.5 1.8 17 ± 5 29 626 ± 212 10/5
7 2150 N 35 10–15 2.9 ± 0.5 2.7 20 ± 3 27 564 ± 157 11/7
8 2140 SE 30 5–10 1.7 ± 0.3 1.5 21 ± 7 32 339 ± 83 16/9

1 Mean cambial age of stems. 2 Mean sensitivity is a measure of the mean relative change between adjacent ring
widths 3 Sample depth (n) after cross-dating using COFECHA software (see Materials and Methods).

Due to prostrate growth form, wedging rings and eccentricity of the pith are character-
istics of RG of A. alnobetula. Serial sectioning, i.e., sampling of discs at multiple points along
the stem, was conducted on a sub-selection of three stems per plot to check for possibly
missing rings [25,42]. Final averaging of several radii along the stem was found to be useful
for correct dating and the construction of time series of RG [43,44]. Stem discs were marked
and harvested at regular intervals (every 20 cm) along the shoot. Depending on shoot
length, between 5 and 15 stem discs were sampled per stem. Canopy height and stem
length were determined by measuring the vertical distance of the canopy (i.e., branch tips)
to the ground and the length from the base of the stem to the tip, respectively.
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Additionally, increment cores were sampled from co-occurring Pinus cembra individ-
uals (n = 25 trees; two radii per tree taken perpendicular to the slope to avoid reaction
wood). Trees with a height of 2–4 m, which do not show severe damage due to, e.g., wind
breakage, were sampled between 2050 and 2150 m asl on south to east facing slopes. Stem
discs and increment cores were air dried and the surface was prepared with a sharp razor
blade. For contrast enhancement of ring boundaries, the surface was treated with a diluted
wood stain or chalk for samples of A. alnobetula and P. cembra, respectively. Ring widths
were measured to the nearest 1µm (two radii) using a light microscope (Olympus SZ61,
Tokyo, Japan) fitted with a LINTAB measuring system (Frank Rinn, Heidelberg, Germany).

Inherent age/size trends in ring width measurements of both species were deter-
mined by averaging cambial-age-aligned ring width series (e.g., [45]). Trends in these ring
width series, expressed as a cubic function, were used to detrend raw measurements for
“biological-noise” (i.e., age/size trend) by calculating residuals (i.e., ring width series minus
trend function). This procedure makes it possible to capture the long-term growth response
to climate warming. Correct dating of measured ring width time series was statistically
checked with COFECHA [46]. The partially low agreement in ring width variations among
radii within and between A. alnobetula stems, which was caused by frequent occurrence
of asymmetric growth, anomalous growth patterns and high portions of discontinuous
rings (Supplementary Material, Figure S1), made it necessary to exclude about a quarter
of the measured radii when creating the composite A. alnobetula chronology. Finally, the
developed composite ring width chronologies comprised 86 radii taken from 51 stems
of A. alnobetula and 24 radii from 16 stems of P. cembra. We refrained from analysing site-
specific time series of radial stem growth because low sample depth and different series
length would have made a comparative analysis impossible.

2.3. Climate–Growth Relationships

The relationships between climate and growth were determined by elaborating “re-
sponse functions”. This is a form of principal component regression used to account
for the collinearity of monthly climate predictors [47]. Total monthly precipitation and
mean maximum, minimum and mean monthly air temperatures, which were collected on
Mt. Patscherkofel (2246 m asl), were used in response function analyses by applying the
software package Dendroclim2002 [48]. The meteorological station was <500 m in linear
distance from the selected plots. Prior to calculating response functions, the ring width time
series were standardized by the ARSTAN program [49]. To remove differences in growth
rate of individual stems and the low-frequency variability that is assumed to be unrelated to
climate (age/size trend, stand development), we applied a conservative detrending method,
i.e., a linear regression of negative slope or a negative exponential decline was fitted to each
ring series. Dimensionless radial growth indices were formed by dividing the observed
ring width value by the predicted ring width value. Climatic variables used in the response
function analysis included climate variables for individual months June–December of the
previous year’s growth and January–September of the current year’s growth. The statistical
relationship between ring-width and each monthly climatic variable was examined over
the period 1991–2020 (n = 30 yrs) at the 95% confidence level.

Extreme growth years in the standardized ring width chronology of A. alnobetula
were determined according to [50] by calculating the difference between the current year’s
growth and the average growth of the last five years and subsequent division by the
standard deviation for the period 1991–2020. Years showing growth deviation >±1 SD
were related to climate factors that were found to significantly limit RG.

3. Results

Selected A. alnobetula stands were located at elevations between 2050 to 2190 m asl, on
slopes ranging from 20 to 35◦ and facing all aspects (Table 1). Soil depth varied from very
shallow (c. 5 cm) to a maximum of 20 cm. Stems had mean age of 18 ± 7 yrs (mean value
± standard deviation) and the oldest stem had 47 annual rings. Canopy height varied
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between 0.6 and 3.5 m and mean length of sampled stems amounted to 2.3 ± 0.12 m. Mean
ring width of all stands amounted to 519 ± 92 µm with a mean sensitivity of 37% (Table 1).
After cross-dating, 86 radii from 51 stems were used to establish the composite chronology
(Figure 2a). Individual site chronologies show a low degree of agreement in year-to-year
variations of ring widths at low cambial age, and in the most recent decade a decreasing
trend in radial growth is obvious at two plots having shallow soil depth (plots 2 and 8). In
Table S1 (Supplementary Material), the agreement of year-to-year changes in ring width
series among all study plots is quantified using percentage of sign agreement W [51] and
the correlation coefficient t [52]. We obtained a 30-year-long ring width chronology of
A. alnobetula with a sample depth of at least 8 radii. In this composite, chronology periods
of predominantly constant growth in the 1990s and between 2004 and 2011 alternate with
years showing strong fluctuations in RG. Distinct deviations from mean growth occurred
in 2003 and in the most recent decade (Figure 2b,c).
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Figure 2. (a) Composite ring width time series (±standard error; closed symbols and bold line) and
site chronologies (grey lines) of Alnus alnobetula stems from 8 study plots (see Table 1). Number
of stems included in the composite chronology (n > 5) is shown as dashed line. (b) Standardized
chronology used as predictand in response function analysis. (c) Current year growth in relation
to average value of previous 5 years given in standard deviation units (SD). Extreme growth years
showing deviation >±1 SD are indicated (for details see Materials and Methods).
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Results of response function analyses are depicted in Figure 3. Climate factors signifi-
cantly (p < 0.05) controlling RG of A. alnobetula were air temperature in June and August
and precipitation in January. Anomalies in summer (June through August) air temperature
were more consistent with extreme growth deviations than anomalies in January precipita-
tion (Figure 4, Supplementary Material Table S2). Distinct positive deviations in RG in 2003,
2012 and 2015 are in line with above LTM summer temperature and January precipitation.
However, in years when distinct negative growth deviations occurred, these climate vari-
ables decreased compared to the previous year but were similar to LTM in 2016. In 2020,
January precipitation was strongly reduced (−69%) compared to LTM (Supplementary
Material, Table S2). During the period 1991–2020, mean summer temperature und January
precipitation show an increase by c. 1.5 ◦C and c. 100 mm, respectively.
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Figure 3. Response function analysis between standardized composite chronology of Alnus alnobetula
and monthly precipitation sum (blue line and circle) and monthly mean, maximum and minimum
air temperature (red line and filled circle, dashed black line and upward triangle, dotted line and
downward triangle, respectively). Horizontal dashed lines represent 95% confidence intervals.
Symbols indicate significant relationships at p < 0.05 (pr = previous year climate variable).
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Figure 4. Comparison of standardized radial stem growth (black line) of Alnus alnobetula with anoma-
lies in summer mean monthly air temperature (June–August; red line) and January precipitation (blue
line) from long-term mean 1991 to 2020. Long-term means of air temperature during summer and
January precipitation amounted to 8.3 ◦C and 45 mm, respectively. Trend lines (linear regressions)
for summer temperature (R2 = 0.212) and January precipitation (R2 = 0.138) are indicated by dashed
lines. Extreme growth years are labelled and marked with vertical dashed lines.

Mean age of P. cembra trees amounted to 18 ± 4 yrs (mean ± standard deviation)
and was not significantly different from mean age of A. alnobetula stems (18 ± 7 yrs).
However, a comparison of RG during the period 1995–2020 revealed striking differences
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(Figure 5a–d): (i) mean ring width of P. cembra (2311 ± 628 µm; mean sensitivity 24%) was
more than four-times larger than that of A. alnobetula (Figures 2a and 5a), (ii) P. cembra
showed markedly increasing growth rates with age/size while A. alnobetula stems showed
only slightly increasing growth during the first decade which steadily declined thereafter
(Figure 5b), (iii) the long-term trend in ring widths after eliminating age/size trend was
more pronounced in P. cembra than in A. alnobetula (Figure 5d), and (iv) up to 2015 there was
some synchrony in the ring width time series between A. alnobetula and P. cembra which
is lost thereafter (Figure 5d). The different growth response to environmental conditions
prevailing in 2016 and continuously decreasing RG in A. alnobetula since 2017 stand out
in particular.
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Figure 5. (a) Ring width time series of Pinus cembra (red line and open circles; dashed line indicates
sample depth) and Alnus alnobetula (black line and filled circles), (b) ring widths aligned by cambial
age for Alnus alnobetula (left y-axis; black lines and filled circles) and P. cembra (right y-axis; red lines
and open circles); age/size trends in ring width are expressed as cubic functions and R2-values are
indicated, (c) sample depth for age/size trend analysis and (d) residuals taking age/size trends into
account (for details see Materials and Methods). Equations for the linear trend fitted, the squared
correlation coefficient (R2) and the significance of the regression slope (p-value) are indicated. Time
series of P. cembra and A. alnobetula are shown by red lines and open circles and black lines and filled
circles, respectively. Mean values ± standard error are shown.
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Although A. alnobetula shows strikingly lower RG compared to co-occurring P. cembra,
aerial photographs of the study area dating back to 1974 show that A. alnobetula stands are
spreading rapidly within the treeline ecotone (Figure 6), amounting to c. 450 m2 ha−1 decade−1

at some sites (F Bernich, unpublished data). Spread of A. alnobetula within the treeline
ecotone as seen from the ground is shown in Figure S2 (Supplementary Material).
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Figure 6. Example plot showing the spread of green alder (Alnus alnobetula) within the treeline
ecotone on Mt. Patscherkofel. Orthophotos were taken in 1974 (a) and 2019 (b); elevation range:
c. 2100–2200 m asl. The marked rectancle includes stands that were sampled in this study. Source:
Orthophoto Land Tirol, tiris (https://lba.tirol.gv.at/public/karte.xhtml; 24 February 2022, and
https://maps.tirol.gv.at/; 24 February 2022).

4. Discussion
4.1. Age Structure and Growth Characteristics of Alnus alnobetula

Due to frequent re-sprouting from the rootstock and formation of adventitious shoots,
the age of a particular stem can be determined by counting the number of tree rings but not
the precise age of the rootstock. Nevertheless, the different age structure of selected stands
indicates that A. alnobetula is spreading at the treeline ecotone on Mt. Patscherkofel into
habitats that are outside their primary ecological habitat requirements, i.e., north-facing
slopes with a long snow cover or moist sites with high geomorphic activity [9,10,53,54].
This view is corroborated by evaluation of times series of aerial photographs of the study
area which revealed that A. alnobetula stands are rapidly expanding on south-east facing
slopes. That A. alnobetula is capable of developing stands on shallow, drought-prone
south to south-east facing slopes is in accordance with findings in several other studies
(see [12] and references therein). The small-scale fragmentation of stands indicates that
the development of A. alnobetula depends on microsite conditions, i.e., adequate water
availability during the growing season and/or a sufficient depth of snow as a protection
against frost drought. Although these environmental factors might be a prerequisite for
successful establishment, low synchronicity in annual increments among individual stands,
which was predominantly found at low cambial age, most likely is related to site-specific
differences in mechanical strain of young stems due to varying extent of snow load and/or
snow creep.

4.2. Climate Forcing of Radial Stem Growth of Alnus alnobetula

Although the geomorphic characteristics of the selected stands differed considerably,
ring width series of 86 radii from 8 plots could be assembled into a composite chronology,
suggesting that common climatic drivers control RG of A. alnobetula in the study area. In
our composite chronology RG varied greatly from year-to-year (mean sensitivity amounted
to 37%) and response function analysis revealed that this variability was associated with air
temperature during summer, confirming our first hypothesis. That shrub growth in cold
environments is constrained by low temperatures during summer was reported by several
authors (e.g., [33,44,55–58]). This is in accordance with the growth limitation hypothesis

https://lba.tirol.gv.at/public/karte.xhtml
https://maps.tirol.gv.at/
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of treeline formation put forward by [21,59], which states that low temperatures during
the growing season (global mean: 6.4 ± 0.7 ◦C) restrict meristematic activity and tissue
renewal at high-elevation treelines around the globe [60].

Our second hypothesis, that precipitation at the start of the growing season favours
RG by supporting cambial activity and expansion growth (cell enlargement), could not be
confirmed. Our findings suggest that the root system of A. alnobetula is capable of providing
adequate water supply during bud-break, leaf unfolding and onset of secondary growth,
i.e., earlywood formation. As the soil water content is generally above field capacity at the
start of the growing season [61,62], differences in January snow depth hardly affect water
availability for A. alnobetula at the time of bud-break and onset of RG. Ample summer
precipitation ensures sufficient water availability during the growing season. Unexpectedly,
snow cover during winter (i.e., precipitation in January) positively affected RG. It is well
known that at high elevation in the temperate climate zone, snow cover during winter
is a crucial factor for tree growth, preventing adverse effects of winter desiccation (frost
drought). Frost drought is a frequent phenomenon affecting growth of tree species at the
treeline within the study area [36,37], where it is favoured by a precipitation minimum in
winter (Figure 1). That the distribution of A. alnobetula is affected by snow cover (depth and
duration) was already suggested by [10,11]. Occurrence of frost drought in A. alnobetula is
also supported by an experimental study carried out by Frey [63], who found that seedlings
suffer from frost drought if snow protection was not provided. These findings suggest
that high snow depth is crucial to protect overwintering buds from frost drought. Ref. [31]
also suggested that reduction of snow cover could predispose alder stems to frost drought,
reducing their vitality and inducing decline of stands with the participation of biotic agents
(fungi, insects). Because A. alnobetula has symbiotic association with nitrogen-fixing bacteria,
it is highly unlikely that the direct relationship found between January precipitation (as a
proxy of snow depth) and RG is related to an increase in nutrient supply caused by increase
in microbial activity under higher snow depth [64,65].

Climate in extreme growth years mostly confirmed results of response function analy-
sis, i.e., in years showing distinct positive deviations in RG (2003, 2012 and 2015) above
average temperature and precipitation prevailed during summer and January, respectively.
In 2016, when RG showed a striking decrease, climate variables found to constrain RG were
lower compared to the previous year but corresponded to LTM. However, it should be
noted that alternating warm and cold phases may cancel each other out and are therefore
not reflected in monthly averages. Furthermore, a late frost event in late April through
early May 2016 caused daily mean temperatures to drop below −10 ◦C. Although A. al-
nobetula does survive freezing temperatures down to −45 ◦C in the frost-hardened state
during winter [66], frost resistance was found to strongly decrease during the develop-
ment of the current year’s shoot growth, i.e., during bud-break and expansion growth
temperatures <−8 ◦C cause extensive frost damage (e.g., [67]). Because leaf primordia and
young leaves are a main source of the hormone auxin [68], which is a key factor in the
control of cambial cell division [69], damage to young shoots by this late frost event may
have indirectly affected RG. Growth decrease in 2020 is most likely related to effects of
frost drought (decrease in January precipitation by −69% compared to LTM) and/or below
average temperature in June (−0.8 ◦C compared to LTM).

4.3. Long Term Trend in Radial Stem Growth of Co-Occurring Alnus alnobetula and Pinus cembra

Climate records show an increase in summer temperature during the study period
1991–2020 amounting to c. 1.5 ◦C and also an increase in January precipitation by about
40 mm. Because both climate variables are directly related to RG of A. alnobetula and
P. cembra [36,70], an increase in annual increments in recent decades was expected. Time
series of annual increments are inherently influenced by ontogeny of the stem (age/size), i.e.,
ring widths in trees and shrubs are increasing in first decades and subsequently decreasing
with increasing age/size (e.g., [71,72]). After correcting for the age/size trend in ring width
time series, A. alnobetula and P. cembra show an increase in RG during the study period,
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which is more pronounced in the tree species P. cembra. Several authors [34,73,74] also
reported diverging growth trends to climate warming among coexisting shrubs and tree
species in cold environments (alpine and polar biomes). Authors suggested that growth
of trees is more closely coupled to rising temperature than growth of shrubs, indicating
marked influence of ground microclimate or indirect effects, e.g., reduced period of snow
cover, on shrub growth. Although microclimatic effects may also play a role in the minor
response of A. alnobetula to climate warming, differences in growth rates (four-fold larger
annual increments in P. cembra compared to A. alnobetula), in age/size and long-term
growth trends of single stemmed P. cembra and multi-stemmed A. alnobetula may be due
to different carbon allocation strategies, i.e., preference of aboveground stem growth in
late successional tree species P. cembra vs. clonal growth in the pioneer shrub A. alnobetula.
Ref. [75] already stated that the development of adventive shoots and root suckers are key
parts of the “horizontal competition strategy” of A. alnobetula. In contrast to other treeline
conifers, e.g., Larix decidua or Picea abies, P. cembra does not have the ability to clonally
propagate [53].

We are aware that the age/size trend used to correct the ring width chronologies
of both species for non-climatic trends is based on a limited number of samples [76,77].
Although a cautious interpretation of the long-term growth trend is therefore required,
our trend analysis for P. cembra is supported by Oberhuber et al. [78], who reported that
several treeline conifers in the Eastern Central Alps (including P. cembra) respond to cli-
mate warming with a comparable increase in radial stem growth. Whether the declining
growth in A. alnobetula in recent years is the start of a general growth decline as found by
Pisetta et al. [31] in the Trentino mountains (Italy) requires further monitoring in combina-
tion with detailed physiological studies (e.g., intra-annual records of radial growth, sapflow,
leaf water potential and soil moisture availability) to be able to clarify the underlying causes.

5. Conclusions

As expected, this study revealed predominant influence of air temperature during
summer on RG of A. alnobetula. Additionally, results suggest that frost drought effects
caused by low precipitation in winter and late frost events constrain radial growth. Hence,
if other abiotic and biotic factors are disregarded, ongoing climate warming will promote
further spread of A. alnobetula across the alpine treeline ecotone as long as (i) adequate
winter precipitation minimizes the effects of frost drought and (ii) the occurrence of shoot
damage due to late frost events in a warming induced lengthened growing season (e.g., [79])
is not a frequently recurring phenomenon.

The comparison of composite RG chronologies among co-occurring A. alnobetula and
P. cembra at the treeline ecotone on Mt. Patscherkofel let us conclude that two widespread
species at the alpine treeline ecotone of the Central European Alps, which belong to
distinct functional groups (deciduous shrub having prostrate growth form vs. evergreen
tree with arborescent growth), strongly differ with respect to RG at the stem base. In
multi-stemmed A. alnobetula clonal propagation, i.e., spatial extension by development
of adventitious shoots and root suckers might be favoured in contrast to what is seen in
single-stemmed P. cembra. By favouring clonal propagation over individual stem growth,
A. alnobetula is able to quickly spread at the alpine treeline ecotone, which was frequently
reported to occur in the European Alps (e.g., [12]) and elsewhere (e.g., [7,80]). Because a
reduction in grazing pressure facilitates shrub encroachment [81–83], changes in ecosystem
properties, e.g., decrease in biodiversity, increase in nitrate leaching and suppression of
forest succession [4,19], can be expected at the alpine treeline ecotone with ongoing land
abandonment and global change.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13030440/s1, Figure S1: Cross-sections of Alnus alnobetula wood
samples. Figure S2: Spread of A. alnobetula within the treeline ecotone on Mt. Patscherkofel. Table
S1: Agreement of year-to-year changes in ring width series of A. alnobetula among study plots. Table
S2: Anomalies in January precipitation and summer air temperature in extreme growth years of
A. alnobetula.
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