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Abstract: Monitoring the operational performance of the sawmilling industry has become important
for many applications including strategic and tactical planning. Small-scale sawmilling facilities do
not hold automatic production management capabilities mainly due to using obsolete technology
which is an effect of low financial capacity and focus their strategy on increasing value recovery
and saving resources and energy. Based on triaxial acceleration data collected over five days at a
sampling rate of 1 Hz, a robust machine learning model was developed with the purpose of using
it to infer the operational events based on lower sampling rates adopted as a strategy to collect
long-term data. Among its performance metrics, the model was characterized in its training phase
by a very high overall classification accuracy (CA = 98.7%), F1 score (98.4%) and a very low error
rate (LOG LOSS = 5.6%). For a three-class problem, it worked very well in classifying the main
events related to the operation of the machine, with active work being characterized by an F1 score
of 99.6% and an error of 3.6%. By accounting for the same metrics, the model was proven to be
invariant to the sampling rates of up to 0.05 Hz (20 s) and produced even better results in the testing
phase (CA = 98.9%, F1 = 98.6%, LOG LOSS = 5.5%, for a testing sample extracted at 0.05 Hz), while
there were no differences in the share of class data irrespective of the sampling rate. The developed
model not only preserves a high classification performance in the training and testing phases but
it also seems to be invariant to lower sampling rates, making it useful for prediction over data
collected at low sampling rates. In turn, this would enable the use of cheap data collectors to be
operated for extended periods of time in various locations and will save human resources and money
associated with data collection. Further tests would be required only for validation and they could be
supported by collecting and feeding new data to the model to infer the long-term performance of
similar sawmilling machines.

Keywords: forestry 4.0; automation; artificial intelligence; wood technology; sawmilling; productivity;
prediction; long-term

1. Introduction

Sawmilling facilities represent one of the key components of the wood supply chain,
because they enable the first important transformation of roundwood into finite products,
acting as a hub between the provision of raw wood materials and the markets [1]. With
the growing demand for wood products and globalization in a relatively stable market,
important changes occurred in the technology used to process the wood, favoring the
establishment of large stakeholders who followed a trend of automating their business to a
large extent. However, to be both resilient and efficient, such facilities depend largely on a
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steady supply and resource availability, therefore, they could be less flexible to significant
fluctuations in provision.

On the opposite side, there are the small to medium-sized sawmilling facilities charac-
terized by low processing capacities [2] and, typically, by the absence of automation [3,4].
With some exceptions, these use rather obsolete technology, are operated by a small number
of workers and do not hold production planning and management capabilities [5–8]. Still,
they support local economies by providing added value and by diversification in opportu-
nities for employment, while also complementing the sawmilling capabilities of a region to
valorize wood assortments which are less demanded by large processing facilities [9,10].

Due to the lack of production monitoring systems that comes with using obsolete
technology, as well as due to limited financial ability to procure updated technology, such
small to medium businesses may become fragile in a dynamic, changing and competi-
tive market. The main reasons for still operating are those related to cutting down the
investments in updated technology and struggling in value recovery and energy saving,
which generally characterize the sawmilling operations [11,12] and which have lately
turned out to be important parameters for optimization, particularly when facing new
challenges in energy and resource security. In addition, these challenges might not be area-
or technology-specific since some have found efficiency issues in rather well-established
wood industries [13]. Consequently, the above-mentioned were among the reasons for
which the usefulness of cheap solutions was researched in previous studies with the aim
of providing data and tools to support operational planning and management, although
they were externally generated and implemented. The rationale behind developing them
was that once data could be extracted, or part of the functions of a system could be auto-
mated, they would positively be contributing to the overall efficiency, either by developing
models in a traditional way with the aim of predicting efficiency or as an effect of function
automation, as proved by other studies [14]. For instance, concepts of using different
kinds of sensors to automate the extraction of useful data were described for rather more
complicated operations and equipment [15,16]. In relation to sawmilling operations, the
beginning of operational monitoring was most likely characterized by the use of manual
solutions based on the concepts of traditional time-and-motion studies [17,18], which aimed
at characterizing the productive performance in small-to-medium sawmilling operations
of various configurations [3,5–8,19]. However, these became less practical to implement
due to the resources spent to collect and process large amounts of data [20], the reluctance
of operators when facing observation, and the capability limits of the observers [21]; in
addition, manual data collection procedures hold a limited ability to capture the pattern in
operational performance over a long term, restricting the applicability of the developed
statistics in a range of variations from which they were built [18]. As potential solutions
to the above limitations, cheap sensor systems [4] and methods of computer vision [22]
associated with machine learning techniques were tested. Although they were found to be
very useful and accurate, by their application, they were intended to externally monitor the
sawmilling performance, serving more the science, although practical applications could
have been supported, assuming that business holders were willing to internally implement
such systems to monitor their operations. While this may not change, and despite the fact
that it is not formally acknowledged, the interest in monitoring the long-term performance
of several facilities and operations has increased lately, mainly because such information
is required in strategic and tactical planning of the wood processing sector. In addition,
getting long-term data at a low cost would support optimization or at least help in identify-
ing and characterizing in the time frame those factors which cause variation in sawmilling
efficiency. However, this would require several systems or data loggers and significant
resources to be spent by researchers conducting observations in several locations when
opting for a very fine sampling rate.

A typical example is that of using accelerometer data loggers, which were found to
be very sensitive to motion and vibration, making them very versatile in getting useful
information in many disciplines. There are already many examples of studies using ac-
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celerometer data, which were implemented in forestry and other sectors with the aim of
solving specific problems, mainly those related to operational activity recognition [4,23–30],
proving that acceleration data may be successfully used in many tasks. As a fact, electron-
ics have increasingly been used in forestry [31] to find efficient solutions to the current
challenges. For some applications which are known to yield high vibrations, which are
typical of many sawmilling configurations, patterns in acceleration were found to be useful
in inferring specific events, as well as to feed machine learning algorithms able to predict
the operational behavior in sawmilling operations [24,25,32,33]. Once an accurate machine
learning model is trained, more data could be brought on a regular basis to feed the models
and to build an overview of performance over very long time periods and at low costs.
This would require a robust model which nowadays can be built by using freely available
tools [34,35] as well as some lower degree programming in commonly used office tools
such as Microsoft Excel® (Microsoft, Redmond, WA, USA). In relation to data collectors,
however, this would require enough memory on a given device and a sufficient life span of
the power source to be able to run the observation in the long term. Currently, most of the
affordable offline data loggers come with rather a limited memory availability and time
span of the batteries. With the above-mentioned in mind, solutions need to be researched so
as to build a robust machine learning model able to accurately classify the most important
events in the time domain while being invariant to the data collection location. In addition,
it is important to check what sampling rate would be sufficient to enhance the performance
in memory and battery use while preserving the timeshare of events, which is typically
dependent on the monitored equipment and underlying process [36].

Previous studies integrating signal data collection and machine learning have focused
on rather more flexible band saws [4,22], which tend to replace the older, fixed sawmilling
equipment due to the possibility of enhancing value recovery. However, they could require
more energy to be spent per processed unit, given their typical operational pattern which
requires returning the cutting frames before starting new cuts and readjusting the logs
during processing [3,4,22]. On the other hand, fixed-post cutting frame equipment holds
the advantage of feeding the logs into the sawing blades, therefore log processing is carried
out in one turn, although the sawing speed may be lower. Such sawmilling machines are
made of a steel frame that supports the vertical cutting device, enabling the adjustment of
the sawing thickness by the distance at which the blades are fixed on a vertically moving
frame, therefore they require a rather exact sawing pattern that is established a priori.

The goal of this study was to explore the possibility of building a robust machine
learning model able to accurately work in classifying triaxially collected acceleration data
to predict three main operational events which are characteristic of fixed-post, multi-blade
vertical sawing machines while providing the opportunity for collecting long-term data.
The first objective was that of inferring the best machine learning model and its architecture
by a trial-and-error hyperparameter tuning of two popular machine learning model classes,
namely Neural Network (NN) and Random Forest (RF). The second objective was to see
how much variation would be in the classification performance in relation to the amount
of data used to train the model, and if there are significant differences in classification
performance between the training and testing phases brought by the amount of data used,
with the aim of validating the general model. The third objective was to check if there are
high variations in classification performance due to the variation in sampling rate with the
aim of extending data collection capabilities to longer periods of time.

2. Materials and Methods
2.1. Machine Description, Observed Functions and Data Collection

A fixed-post electrically-powered, multi-blade vertical sawing machine (Figure 1)
was selected for observation based on two reasons. First of all, in Romania, this kind of
equipment still accounts for an important share in use in both private and state companies;
secondly, this kind of equipment is lacking the functions of operational monitoring and
production management.



Forests 2022, 13, 1115 4 of 24

Figure 1. Sawmilling machine used in study and the placement of the triaxial acceleration data logger;
(a) Main components of the machine: 1—multi-blade steel frame, 2—degrees of movement restricted
to the vertical plane, 3—steel blades, 4—exhausting and guiding rollers, 5—sawn wood, 6—exhaust
direction; (b) Data logger placement: 1—triaxial acceleration data logger placed on the steel frame at
the log-feeding part of the machine, 2—log feeding direction.

For this type of machine, during operation, the logs are continuously fed into a vertical
go-forth displacing blade frame that converts them into pre-processed lumber. Width of
the resulting lumber can be adjusted by the way and distance at which the blades are fixed
on the frame. For a given time window, the machine can be identified in four possible
states related to its operation, namely off, when the engine is off and the blades are not
moving (hereafter, OFF), turning on—the engine is turned on and the blades start to move
until full speed and displacement (hereafter, TON), on—the engine is turned on and the
blades are moving at full speed and displacement, which is the operational state in which
the machine is working and the logs are sawn (hereafter, WORK), and turning off—the
engine is turned off and the speed and displacement of the blades start to decrease until
full stop (hereafter, TOFF). For simplicity, TON and TOFF events were merged together in
a machine state switching event (hereafter SWITCH).

Machine monitoring data were collected over five operational days by the means of a
VB300 tri-axial acceleration data logger (Extech® Instruments, FLIR Commercial Systems
Inc., Nashua, NH, USA). The data logger was set to collect time-labeled acceleration data at
1 Hz, and it was placed on the machine’s frame (Figure 1) in a location that was chosen
by considering several criteria such as that of collecting a good signal characterizing the
underlying process (closeness to the active blades), possibility to reproduce the experiment
in each day of observation as well as on long term, avoiding the variance in the collected
signal by using the same location of the data logger and avoiding the obstruction of
operations. In parallel, an HD 1080 Pro Black Box digital camera (Shenzen AISHINE
Electronics Co. Ltd., Shenzen, China) was set up and used to continuously collect time-
labeled video data over the observed period. It was placed in a location that enabled
convenient monitoring of the machine.
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2.2. Data Processing

The data collected by the accelerometer and video camera were downloaded to a
personal computer at the end of each day of observation. A Microsoft Excel® spreadsheet
(Microsoft, Redmond, USA) was used to merge, store the original tri-axial acceleration data
and label the machine’s operational state for each observation. Following the removal of
that data covering the setup and placement, as well as taking down the data logger from
the machine, the labeled dataset contained a number of 78,707 observations, accounting
for approximately 22 h of observation (Table 1). It included the identification number,
responses on the x, y and z axis, vector magnitude (Euclidian Norm, which is the squared
root of the sum of squared axial responses), measurement unit of acceleration (g) and a
time and date label for each observation.

Table 1. Main statistics of the triaxial acceleration data in the labeled dataset.

Day of
Observation

Number of Observations
(Samples Taken at 1 Hz)

Share in the
Dataset (%) Time Covered (h)

Day 1 15,646 19.88 4.35
Day 2 15,817 20.09 4.39
Day 3 15,780 20.05 4.38
Day 4 15,701 19.95 4.36
Day 5 15,763 20.03 4.38
Total 78,707 100.00 21.86

As shown in Table 1, the size of the daily collected datasets was relatively even in
terms of number of observations collected and share in the labeled dataset. The data also
show a rather low machine utilization rate (approximately 50% of the shift time), which is
typical for such facilities and level of technology used. Data collected in the five days of
observation were merged into a single file by keeping the order of data collection. Data
labeling comprised a visual analysis of video files in the sequence used to collect them at
the sawmilling facility as well as of the patterns in data (magnitude of Euclidian Norm
plotted in the time domain), followed by data coding to account for the three operational
states (OFF, SWITCH, WORK).

In data processing and machine learning tasks, the data in the form of Euclidian Norm
(hereafter EN, g) was used as a feature and the classes OFF, SWITCH and WORK were
used as target variables. Hereafter, this dataset was called the initial dataset (ID).

To answer the first objective of the study, a first data processing workflow (hereafter
WF1, Figure 2) was that of using the initial dataset (ID) for checking which machine learning
algorithm and what kind of architecture set for it could produce the best classification
performance. For that reason, the ID’s data were fed into two popular machine learning
algorithms (neural network and random forest, respectively) which were tuned by a trial-
and-error approach, as described in Section 2.3, and the results were evaluated based on
the performance indicators described in Section 2.4.

The best-performing machine learning architecture was then used to achieve the sec-
ond objective of the study by implementing a second data processing workflow (hereafter
WF2, Figure 3) which consisted of an iterative splitting of the initial dataset into a training
(hereafter TRAIN) and a testing (hereafter TEST) subset. Data partitioning was based on
a step of 10% of the data and was applied over the same sequence of data contained in
the initial dataset. The procedure started by allocating the first 20% of the initial data to
the TRAIN and the rest (80%) to the TEST subset, then it added and subtracted 10% of
the data to and from the TRAIN and TEST datasets, respectively, resulting in a proportion
of 30 to 70%, and so forth until reaching a proportion from 80 to 20% of the data in the
TRAIN and TEST datasets, respectively. By doing so, in total, 7 new pairs of subsets were
created and each time the best machine learning architecture was trained and tested on the
respective subsets (Figure 3). Evaluation of the classification performance was carried out
by the metrics described in Section 2.4 for both the training and testing phases.
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Figure 2. Description of Workflow 1 (WF1) used to infer the best model architecture. Legend:
ID—input dataset; NN—neural network; RF—random forest; Identity, Logistic, Tangent and
ReLU—activation functions used for NN; α—regularization parameter used for NN, NT—number of
trees used for RF; Depth—parameter controlling the depth of the RF, Split—parameter controlling the
number of observations when splitting the data; PM—performance metrics; BPA—best-performing
architecture; SGM—save general model; GM—general model characterizing the best-performing
architecture, trained over all data from ID. Note: input datasets are represented in green, architecture
of the machine learning algorithms including hyperparameter tunning options are represented in
orange, performance metrics are represented in light brown, the purpose of the workflow is rep-
resented in red, actions taken are represented in yellow and the produced models are represented
in dark brown. Architecture of the machine learning options used is described in Section 2.3 and
performance metrics used to choose the best architecture are described in Section 2.4.

Finally, to check the last objective of the study, a third data processing workflow (here-
after WF3, Figure 4) was implemented. The initial dataset was systematically resampled at
0.500, 0.333, 0.250, 0.200, 0.167, 0.143, 0.125, 0.111, 0.100, 0.067 and 0.050 Hz (from 2 to 10 s at
a step of 1 s, 15 and 20 s, respectively). Then, the best-performing machine learning model
obtained from WF1 (Figure 1) was used for testing the data from the newly created datasets
(11 datasets); the evaluation of the classification performance considered the performance
indicators described in Section 2.4.
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Figure 3. Description of Workflow 2 (WF2) used to infer the best ratio of data partitioning in training
and testing subsets. Legend: ID—input dataset; D—division of input dataset; TRAIN—training
sample (the shares following the TRAIN word stand for the amount of data used in the training
samples); TEST—testing sample (the shares following the TEST word stand for the amount of data
used in the training samples); BPA—best-performing architecture; SM1 to SM7—saving models 1 to
7; M1 to M7—saved models 1 to 7, trained on their respective training datasets; PM—performance
metrics; BRTT—best ratio of training to testing datasets. Note: input, training and testing datasets
are represented in green, architecture of the algorithm is represented in red; performance metrics
are represented in light brown, the purpose of the workflow is represented in red at the end of the
workflow, actions taken are represented in yellow and the produced models are represented in dark
brown. Architecture of the machine learning options used is described in Section 2.3 and performance
metrics used to choose the best architecture are described in Section 2.4.

2.3. Machine Learning Algorithms

Two machine learning algorithms were considered, namely the Artificial Neural
Networks (hereafter, NN) and Random Forests (hereafter, RF). The choice was based on the
popularity of these two machine learning techniques [4,22–24,26,30,37] as well as on the
capabilities and functionalities of the software used [34] to tune, train and test the models
(Section 2.4). By the software used, NN models are implemented in the form of multilayer
perceptrons with backpropagation [34,38]. They require tunning of several parameters,
many of which were developed so as to increase the computational performance. RF is a
machine learning algorithm proposed by Ho [39] and further developed by Breiman [40]. It
has the advance of working well on high dimensional data and fast training. Both machine
learning algorithms may be used for classification tasks.

Architecture of the NN machine learning algorithms is commonly described by the
depth and width, where the depth stands for the number of hidden layers and the width
stands for the number of neurons stored in the hidden layers. Recent findings on testing the
performance of NNs over acceleration signal data [41] have indicated that developing the
architecture towards a maximal one (i.e., increasing the number of neurons and of hidden
layers) may contribute to increments in classification performance. In addition, neural nets
were found to increase their representational capacity by increasing the number of neurons
in them [42]. The maximum depth and width of the NN was used, as enabled by the used
software [34], namely the number of hidden layers was set at 3 and the number of neurons
was set at 100 per hidden layer. Providing a better chance to learn was also considered
by setting the number of iterations to the maximal one enabled by the software [34], that
is 1,000,000 iterations. Adam solver (the stochastic gradient descent optimizer) was set
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and used for all scenarios due to its enhanced performance [43]. Learning process of the
NNs is typically controlled by the type of activation (transfer) function used, and by the
value set for the regularization parameter. The activation function controls whether or not
a neuron will produce an output. The software used for training and testing purposes
enables the use of both linear and nonlinear activation functions [34]. In the first category,
the software provides the Identity (Linear) activation function (hereafter Identity) whose
output is not confined in a given range [44]. In the second category, the software enables the
use of Logistic (hereafter Logistic), Hyperbolic Tangent (hereafter Tangent) and Rectified
Linear Unit (ReLU, hereafter ReLU) activation functions. Logistic and Tangent activation
functions hold output ranges between 0 and 1 and -1 and 1, respectively [44]. ReLU
has become the most used activation function due to its high performance [45,46]. For
values less than 0 it returns 0 and for values higher than 0, it returns the actual value [44].
All of the above-described functions were considered in the first workflow used to infer
the best architecture of the NN model. The second component of the learning process
is the regularization parameter, a hyperparameter which controls the shape of decision
functions [44]. For the NN machine learning model, and for all the activation functions, the
parameter of the regularization term (α) was tuned to take values of 0.0001, 0.001, 0.01, 0.1,
1 and 10 (Figure 2).

Figure 4. Description of Workflow 3 (WF3) used to evaluate the invariance of the best model
architecture to the sampling rate. Legend: ID—input dataset; S—systematic sampling of input dataset;
GM—general model developed in WF1 (Figure 2); TEST—systematically sampled testing sample
(sampling rate is given both in seconds and Hz); PM—performance metrics; ISR—invariance in
performance to sampling rate. Note: input and testing datasets are represented in green, performance
metrics are represented in light brown, the purpose of the workflow is represented in red, actions
taken are represented in yellow and the input models are represented in dark brown. Architecture
of the machine learning options used is described in Section 2.3 and performance metrics used to
choose the best architecture are described in Section 2.4.

Typically, the architecture of the RF algorithm may be controlled at two levels, namely
the tree and the forest level. There is a set of hyperparameters that can affect the perfor-
mance of the model [47]. For instance, the depth of the RF algorithm is characterized
by longest path between the root and leaf nodes, and higher depths may contribute to
performance enhancement in the training phase but may also overfit the model. If not
controlled, the number of splits that can happen in a model may reach to nodes which
are completely pure, resulting in tree growth and model overfitting. Number of trees is
an important parameter in RF, as more trees would help producing a more generalized
result [47]. However, as the number of trees increases, similar to the depth and size of
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the NNs, the time complexity of the model will increase [47]. In this study, the number of
attributes considered at each split was kept at the default value provided by the software,
which is the square root of the number of attributes present in the data [48]. The models
were trained by controlling two parameters of tree growth, namely the depth, which was
set successively at 10, 20 and 30 nodes, and the subset splitting restriction, which was
set successively at 10, 50, 100, 500 and 1000 observations (Figure 2). Acknowledging that
significant changes in performance could be produced when using smaller numbers of trees,
this parameter was varied from 10 to 50 with a step of 10, from 50 to 250 with a step of 50,
from 250 to 1000 with a step of 250 and from 1000 to 5000 with a step of 1000 (Figure 2).

In total, 24 (4 activation functions × 6 values set for α) models were trained in the
case of NN algorithm, and 240 (6 options for the number of trees × 3 values for the tree
depth × 5 values for the split control) models were trained for RF which, together, took
a computational time of close to 97 h. In both cases a cross-validation by five folds was
used to evaluate the training performance. Evaluation of the best model architecture from
each class as well as choosing the best model architecture were mainly based on the overall
values of the log loss error function which was the first criterion to differentiate among the
264 models. The minimum values were those indicating the model to choose and, in case
of ties, the values of F1 score were used for differentiation (maximum values). When there
was a tie also for F1 score, the selection algorithm was repeated at the class level in the order
WORK–OFF–SWITCH. Although the log loss error and F1 metric were used for selection,
several other performance metrics such as the classification accuracy, precision, recall, and
sensitivity were estimated as well (Section 2.4). Once the best architecture was inferred
it was used over the training datasets from WF2 (Figure 3). For this purpose, the tuned
parameters of the best-performing architecture were kept the same during the tests. Each
time, and for each ratio of data in the training and testing datasets, a new model was saved
with the purpose of testing it. Additionally, a general model was saved characterizing
the inferred best architecture (Figure 2), which was then used to test the invariance of
classification performance to systematic data sampling (Figure 4). For this purpose, the
general model was tested over the systematically sampled datasets.

2.4. Computer Architecture and Software Used—Performance Evaluation

The tasks of training and testing the machine learning models were performed on a
computer architecture that included the following features: system type—Alienware 17 R3,
processor—Intel® Core™ i7-6700HQ CPU, 2.60 GHz, 2592 MHz, 4 cores, 8 Logical Proces-
sors, installed physical memory (RAM)—16 GB, operating system—Microsoft Windows 10
Home. Microsoft Excel ® (Microsoft, Redmond, WA, USA) was used to store and preprocess
the data, including the tasks of dividing data into the necessary subsets, performing simple
computations, and of resampling the data. Part of the artwork used in this study was built
with the same software. The software used to train and test the machine learning models,
as well as to build a part of the artwork, was the Orange Visual Programming Software,
version 3.31.1 [34], which holds the necessary functionalities for building and running
NN (multi-layer perceptron models with backpropagation) and RF models based on the
creation of widget-based workflows. Data, Neural Network, Random Forest, Test and
Score, Save Model, Load Model and Predictions widgets were used for training and testing
purposes. Based on the multidimensional input data, Scatter Plot widget including its
“color regions” and “jittering” graphical features were used to depict the relations between
the parameter tuning options and key-selected classification performance metrics for both,
NN and RF architectures.

Orange Visual Programming Software enables the computation of several classification
performance metrics. The full list of metrics computed for the training and testing phases
includes the training and testing time, area under the ROC (receiver operating characteristic,
hereafter AUC), classification accuracy (hereafter CA), F1 score, which is the harmonic
mean of the classification’s precision and recall (hereafter F1), precision (hereafter PREC),
recall (hereafter REC), log loss (cross-entropy) error (hereafter LOG LOSS) and specificity
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(hereafter SPEC). All of these metrics were computed for all the training and testing
tasks and the most important ones were reported where appropriate. For exemplification,
however, performance metrics such as the LOG LOSS, F1 score and CA, were compared in
more detail in the results section of the paper, including their differences as an effect of the
parameters used for tuning (WF1), partition of the data in training and testing subsamples
(WF2) and data resampling in the testing subsets (WF3), respectively. For reference, the
performance of classifiers is discussed, for instance, in [49]. References on definitions and
explanations of the classification performance metrics are given in [50]. Classification
accuracy (CA) is one of the important metrics used for evaluating classification models. It is
defined as the ratio of correct predictions to the total number of predictions. Recall (REC), or
the hit rate [49,50], is defined as the ratio of correctly classified true positives (true positives)
to the total number of positives (true positives + false negatives). Precision (PREC) is
the ratio of correctly classified positives (true positives) to the total predicted positives
(true positives + false positives) [49,50]. F1 score is a metric that balances precision and
recall, being better adapted to class imbalance [50]. Orange Visual Programming software
computes the LOG LOSS according to the equation given in [51]. Class level and overall
ratio values of the performance metrics which characterize the training and testing datasets
are typically multiplied by 100 to obtain a percent-based overview of the classification
performance [50], an approach that was used in the Results and Discussion section.

In the testing phase, a given model operates over the test data by providing the
probability of each instance being classified in a true class. Given the one-dimensionality of
the input data, such probabilities were assigned to EN (Euclidian Norm) of the data in the
testing datasets to map each instance in a given class (WORK, SWITCH, OFF).

3. Results
3.1. Best-Performing Model Architecture

The variation of the main classification performance metrics as a function of the models’
architecture is shown in Figures 5–9. Figure 5, for instance, plots the LOG LOSS values
against the activation functions and regularization terms used in the NN architecture.

There were no major differences in LOG LOSS except those returned by the Logistic
activation function when using regularization terms set at 1 and 10 (less complex decision
functions). In general, the values of LOG LOSS were in the range of between 5.6 and 6.3%
for the 24 trained NN models. Figure 6 shows the variation in F1 score as a function of the
models’ architecture, indicating a similar trend. In general, the values of the F1 score varied
between 97.9 and 98.4%, indicating a high classification performance of the NN models. A
similar data organization is shown in Figures 7–9 for the RF model, where each dot stands
for a model of a given architecture by jittering the data so as to be visible in the plots. Lower
depths (Depth) of the RF model coupled with higher amounts of data preserved at node
splitting (Split) were among the highest contributors to lower LOG LOSS errors (Figure 7),
which was also generally true for the highest values of the F1 score (Figure 8). In terms of
model specificity (Figure 9), there were found two classes, in which highly specific models
were generally shaped by lower amounts of data preserved at splits. In general, the LOG
LOSS values decreased as a function of the number of trees used to train the models. LOG
LOSS and F1 score values varied between 5.8 and 6.9% and 98.3 and 98.4%, respectively.
Based on the fixed parameters and criteria described in the Materials and Methods section,
the best-performing architecture was identified for a NN machine learning model when
using the ReLU activation function and the regularization parameter set at α = 0.01.
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Figure 5. Variation in LOG LOSS as a function of NN architecture in WF1. Note: legend at the bottom
right part of the figure describes the values of the LOG LOSS error.

Figure 6. Variation in F1 score as a function of NN architecture in WF1. Note: the legend at the
bottom right part of the figure describes the values of the F1 score.
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Figure 7. Variation in LOG LOSS as a function of RF architecture in WF1. Note: legend at the bottom
right part of the figure describes the values of the LOG LOSS error; size of the dots stands for the
number of trees used (i.e., more trees correspond to bigger dots).

Figure 8. Variation in F1 score as a function of RF architecture in WF1. Note: the legend at the bottom
right part of the figure describes the values of the F1 score; size of the dots stands for the number of
trees used (i.e., more trees correspond to bigger dots).
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Figure 9. Variation in specificity (SPEC) as a function of RF architecture in WF1. Note: the legend at
the bottom right part of the figure describes the values of the specificity; size of the dots stands for
the number of trees used (i.e., more trees correspond to bigger dots).

3.2. Effect of Data Share in the Training and Testing Subsets on Classification Performance

The results shown in Figures 10–12 and in Table 2 are consistent with the rule of thumb
of using a high share of data in the training (TRAIN, TR) as opposed to the testing (TEST,
TE) dataset. For instance, Figure 10 shows the variation in LOG LOSS error in the training
and testing datasets as well as the absolute differences in values as a function of the share
of data used in the subsets divided according to WF2 (Figure 3). A share of 20%–80% has
produced the most contrasting results in terms of LOG LOSS error, which was close to 11%
in the dataset used for training and close to 6% in the dataset used for testing. However, a
model trained on a small data partition (20%) was able to generalize very well on the rest
of the data, as proved by the absolute differences between the training and testing values
of LOG LOSS error, which was the highest among the tested options (5.4%).

As the share of data used for training increased, the classification error decreased,
reaching a value of 6% for a share of 80%–20% in the training and testing datasets in the
training phase, respectively (Figure 10). The range of LOG LOSS values also decreased
as the amount of data used in the training sample increased. Irrespective of the share of
data used for training and testing, the results show that the errors of the testing phase
were much lower compared to those of the training phase (Figure 10), ranging from 2
(80%TR-20%TE) to 5.5% (20%TR-80%TE), a fact that proves that the learned models had a
high generalization ability. This can be seen also in the variation of F1 (Figure 11) and CA
(Figure 12) values which followed a similar trend of improvement as more data were fed
into the training sample, with the most important differences occurring up to a data share
of 50 to 50%. However, the absolute differences were smaller accounting for 0.7 to 2.3%
in the case of F1 score (Figure 11) and for 0.5 to 1.6% in the case of classification accuracy
(CA, Figure 12).
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Table 2. Summary of the classification performance metrics and of their differences as a function of
the data shared in the training (TRAIN) and testing (TEST) datasets.

Dataset and Share of Data
Classification Performance Metrics

AUC CA F1 PREC REC LOGLOSS SPEC

TRAIN 20% 0.979 0.973 0.966 0.967 0.973 0.109 0.969
TEST 80% 0.991 0.989 0.989 0.988 0.989 0.054 0.970
Difference −0.012 −0.016 −0.023 −0.021 −0.016 0.055 −0.001

TRAIN 30% 0.981 0.979 0.973 0.974 0.979 0.087 0.964
TEST 70% 0.991 0.988 0.987 0.987 0.988 0.051 0.962
Difference −0.010 −0.009 −0.014 −0.013 −0.009 0.036 0.002

TRAIN 40% 0.983 0.980 0.974 0.975 0.980 0.083 0.965
TEST 60% 0.991 0.991 0.991 0.990 0.991 0.041 0.964
Difference −0.008 −0.011 −0.017 −0.015 −0.011 0.042 0.001

TRAIN 50% 0.985 0.981 0.977 0.977 0.981 0.078 0.967
TEST 50% 0.991 0.993 0.992 0.991 0.993 0.034 0.963
Difference −0.006 −0.012 −0.015 −0.014 −0.012 0.044 0.004

TRAIN 60% 0.985 0.982 0.978 0.978 0.982 0.074 0.967
TEST 40% 0.990 0.994 0.993 0.992 0.994 0.030 0.956
Difference −0.005 −0.012 −0.015 −0.014 −0.012 0.044 0.011

TRAIN 70% 0.986 0.985 0.981 0.981 0.985 0.065 0.966
TEST 30% 0.990 0.992 0.991 0.991 0.992 0.035 0.959
Difference −0.004 −0.007 −0.010 −0.010 −0.007 0.030 0.007

TRAIN 80% 0.988 0.986 0.982 0.983 0.986 0.060 0.967
TEST 20% 0.983 0.991 0.989 0.991 0.991 0.040 0.932
Difference 0.005 −0.005 −0.007 −0.008 −0.005 0.020 0.035

Figure 10. Variation of LOG LOSS error and of its absolute difference in the training (TRAIN) and
testing (TEST) datasets as a function of data shared in the training (TR) and testing (TE) datasets.
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Figure 11. Variation of F1 score and of its absolute difference in the training (TRAIN) and testing
(TEST) datasets as a function of data shared in the training (TR) and testing (TE) datasets.

Figure 12. Variation of classification accuracy (CA) and of its absolute difference in the training
(TRAIN) and testing (TEST) datasets as a function of data shared in the training (TR) and testing
(TE) datasets.
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Table 2 summarizes the values of the main classification performance metrics com-
puted for the two datasets and data sharing strategy, including the differences found
between the values of the metrics.

Precision (PREC) and recall (REC), which are used to compute the F1 score, followed a
similar trend in values and in differences as the F1 and CA did. In all, CA, F1, PREC, REC
and LOG LOSS, the most important differences were between using a share of 20 to 80%.
For the rest of the data partitioning strategies, the differences were much less, typically
less than 1% in the case of TRAIN datasets and less than 0.5% in the case of TEST datasets.
Altogether, these trends indicate important improvements, sustain the practice rules of data
partitioning, show the variance of classification performance as a function of the strategy
used for data partitioning and are useful in providing hints for data partitioning attempts.

3.3. Effect of Sampling Rate on Classification Performance

By resampling, the original dataset (ID) used to train the general model (WF1, Figure 2)
was progressively reduced in size from 78,707 (100%) to 3953 instances (5%). The reduction
in size compared to ID is illustrated in Figure 13, which shows the 11 newly created testing
datasets (WF3, Figure 4) plotted in the time domain. Figure 14, on the other hand, shows
the size of the systematically sampled datasets relative to the original dataset (ID).

Figure 13. A representation of the original (brown) and resampled (green) datasets in the time domain.
Legend: in brown is given the original dataset (ID, Train) and in green (2 to 20 s) are represented the
systematically resampled datasets; red arrows placed near the bottom of each dataset indicate the
occurrence of the OFF event, while yellow (middle) and green (up) arrows indicate the occurrence of
the SWITCH and WORK events, respectively.

For example, by systematically resampling ID at 15 and 20 s, respectively, the amount
of data in the testing sets was reduced to less than 7%. However, the used sampling
procedure has preserved the share of data on true classes which differed between the
original (ID) and sampled datasets by less than 0.1% in all classes. Therefore, a relative data
share of ca. 14%–1%–85% was preserved in all datasets for the OFF, SWITCH and WORK
classes, respectively.
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Figure 14. Share of the data in the original (ID, TRAIN) and resampled (TEST) datasets and their
relative size.

The results summarized in Table 3 prove the invariance of classification performance
metrics of the testing phase to the amount of data used in the testing datasets. Differences
brought by the testing sample size in LOG LOSS error are illustrated in Figure 15. Although
they were both positive and negative, they were only minor, accounting for a maximum
absolute value of 0.2%. Figures 16 and 17 indicate similar trends of differences in F1
score and classification accuracy, which did not exceed an absolute value of 0.2%. As
observed (Table 3, Figures 15–17), there were no evident increasing or decreasing trends
in the differences between LOG LOSS, F1 and CA as a function of the sampling rate used,
although higher differences were found for F1 and CA in the TEST 20 s data subset as
compared to the initial dataset (ID, TRAIN).

Table 3. Summary of the classification performance metrics in the systematically sampled testing
(TEST) datasets.

Dataset Share Number of
Observations

Classification Performance Metrics

AUC CA F1 PREC REC LOGLOSS SPEC

TRAIN 100.00 78,707 0.987 0.987 0.984 0.984 0.987 0.056 0.964
TEST 2 s (0.500 Hz) 50.00 39,353 0.988 0.987 0.984 0.985 0.987 0.054 0.964
TEST 3 s (0.333 Hz) 33.33 26,235 0.987 0.987 0.984 0.985 0.987 0.055 0.964
TEST 4 s (0.250 Hz) 25.00 19,676 0.988 0.988 0.985 0.986 0.988 0.055 0.965
TEST 5 s (0.200 Hz) 20.00 15,741 0.988 0.987 0.984 0.985 0.987 0.055 0.965
TEST 6 s (0.167 Hz) 16.67 13,117 0.987 0.988 0.985 0.986 0.988 0.054 0.964
TEST 7 s (0.143 Hz) 14.28 11,243 0.988 0.988 0.985 0.986 0.988 0.056 0.964
TEST 8 s (0.125 Hz) 12.50 9838 0.988 0.988 0.985 0.986 0.988 0.055 0.965
TEST 9 s (0.111 Hz) 11.11 8745 0.986 0.987 0.984 0.984 0.987 0.057 0.961

TEST 10 s (0.100 Hz) 10.00 7870 0.987 0.988 0.985 0.986 0.988 0.057 0.966
TEST 15 s (0.067 Hz) 6.67 5247 0.986 0.987 0.984 0.985 0.987 0.058 0.963
TEST 20 s (0.050 Hz) 5.00 3935 0.986 0.989 0.986 0.988 0.989 0.055 0.969
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Figure 15. Differences in LOG LOSS error of the testing datasets as opposed to the initial dataset
(ID, TRAIN).

Figure 16. Differences in F1 score of the testing datasets as opposed to the initial dataset (ID, TRAIN).

Figure 17. Differences in classification accuracy (CA) of the testing datasets as opposed to the initial
dataset (ID, TRAIN).

These results illustrate well the invariance of the general model in terms of classifi-
cation performance when performing on newly generated datasets, although they were
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artificially created. In particular, the differences in terms of LOG LOSS, F1 and CA were
minor, accounting for up to 0.2% for that case in which the data sample used for testing
was the smallest one. Taking as a reference the general model built by the WF1, it correctly
classified close to 99% of the data. The F1 score which balances the precision (PREC) and
recall (REC) also indicated a high performance, accounting for 98.4%, while LOGLOSS was
5.6%. With minor differences (up to 0.2%) this classification performance was preserved in
all of the testing models.

4. Discussion

Several studies have tested the capability of NN models in correctly predicting class-
based outcomes with various applications in forestry, some of which have focused on
using acceleration signals to make predictions by machine learning [4,24,52]. Most of them
agree that general classification accuracies of up to 100% may be achieved depending
on several factors such as the complexity of classification, signal quality and accuracy of
data labeling. In contrast, some have opted for using RF machine learning algorithms for
classification purposes [23,26], finding also highly accurate classifications when collecting
data multimodally. Unless a given device holds the capabilities and can be used to collect
data multimodally by integrating several sensors, the procurement of separate devices
would incur more costs, limiting the economic efficiency of data collection. Nevertheless,
by the use of a multimodal approach and RF algorithms, the classification outcomes
were found to be similar to those provided by NN, with values of between 97.7 and
99.6% [23,26]. Therefore, it is obvious that when several machine learning algorithms
enable classification over a given signal typology, several options need to be checked to
evaluate their performance.

With some minor exceptions in regard to the activation function used for NN and
the amount of data preserved at a node and the depth of the trees, the classification
performance measured by the LOG LOSS error, F1 score and classification accuracy did
not vary widely and returned no evident contrasts as an effect of the machine learning
architectures used. Therefore, the best model architecture was selected using the first
criterion, namely the error during training which was found to be the lowest for an NN
architecture when using the ReLU activation function and α set at 0.01. It turns out that
the best-performing models reported in other studies checking the effect of classification
performance on acceleration data had similar architectures, placing the use of the ReLU
activation function and of the regularization terms of up to 0.1 among the best options
in terms of classification performance [24,52]. However, the performance of NN depends
also on several other factors [53,54], including signal quality and other issues specific to
classification tasks such as intra-class variability and inter-class similarity. Altogether, the
classification performance of the selected architecture was very high, with a classification
accuracy of 98.7%, an F1 score of 98.4%, a precision of 98.4% a recall of 98.7% and an
error of 5.6%. Transition parts in the acceleration signal (SWITCH) were poorly classified
compared to OFF (CA = 99.4%, F1 = 98.0%, PREC = 99.4%, REC = 99.4%, LOG LOSS = 2.2%)
and WORK (CA = 99.3%, F1 = 99.6%, PREC = 99.2%, REC = 99.9%, LOG LOSS = 3.6%)
events, although their classification error was still low (LOG LOSS = 5.2%). In addition,
there was an evident class imbalance with a relative data share of ca. 14%–1%–85% for
OFF, SWITCH and WORK events, respectively. This may raise the question of how the
developed model would perform in cases in which the data collection will be deployed
for longer periods of time. In this regard, it is likely that the share of SWITCH events
will decrease in the data samples, mainly at the expense of increasing the share of OFF
events since the data loggers would also need to operate during the night, at weekends and
during legal holidays. As such, the two classes characterized by the highest performance
will dominate the data, potentially making the model more effective in classification. In
relation to the SWITCH events which were poorly classified, previous studies have already
described how the inter-class similarity, which was typical to this event, may affect the
classification performance [4,24,52].
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The general rule of using most of the data in the training phase held true. However,
the differences in performance were not particularly contrasting in relation to the share of
data used in the training and testing subsets, although the LOG LOSS error in the training
dataset decreased as it contained more data. Along with improved values of the F1 score
and of the classification accuracy as more data were added to the training data subset, this
indicates that a model trained over all data would hold better predictive capabilities. What
is to be emphasized is that the generalization ability (testing phase) measured by the value
of the LOG LOSS error, F1 score and classification accuracy was improved. Accordingly,
the LOG LOSS was lower in the testing phase from 2 to 5.5%, while the F1 score and
classification accuracy were higher in the testing phase from 0.7 to 2.3 and 0.5 to 1.6%,
respectively. All of these results are coming in high contrast to those of the previous studies
which have found either similar [4] or higher values of classification errors and lower
values in terms of classification accuracy in the testing phase [24,52].

The battery life of a data logger such as that used herein is assumed to be ca. 1000 h
while its internal memory (4 MB) can hold 168,042 readings made in the normal data
collection mode [55]. More or less this means that, in theory, one can cover close to two
days of observation at a sampling rate of 1 s (1 Hz) before downloading the data. However,
the data collection time frame can be effectively managed by assuming that a higher
sampling rate would still accurately reflect the operational pattern in the collected data. By
their functional construction, machines such as that described herein may be characterized
by relatively long events of working intercalated by short events of switching and long
events of being off. With the capabilities of the data logger in mind, a sampling rate of
2 s would double data collection capabilities, while sampling rates of 10 and 20 s would
extend the data collection period by ca. 5 to 20 times, meaning that sampling at 20 s
would cover a timeframe of more than one month. Therefore, increasing the value of the
sampling rate will only prolong further the memory and battery availability. In this regard,
by systematically sampling the initial dataset at rates of 2 to 20 s, the share of classes was
preserved. Moreover, the general model performed better and similarly in the testing
phase, irrespective of the testing dataset used, which is an indication that further data
sampled at different rates may be fed into the model which would be able to output a high
classification performance. Overall, the generalization errors were improved in the testing
phases by up to 0.2% and only in three cases did the testing phase yield higher values of
the LOG LOSS. Similar patterns were found in the F1 score and classification accuracies
which were generally either the same or higher in values at the testing phase.

As in any other studies on the topic, there are some limitations to be addressed. A first
limitation is that of collecting the acceleration data by considering only coniferous logs.
As known, a given acceleration signal contains three important components: movement,
gravity and noise [56]. Therefore, in the case of processing hardwoods, it is likely to obtain
a more differentiated (higher) response in the magnitude of acceleration during the WORK
events as the interaction between the logs and blades will produce more vibration. If this
does occur, the performance of the model could be an issue that may need additional
checking. However, the NN tools of the software used perform by default a normalization
procedure over the data before feeding it to the model [57], a fact that serves in weighting
the importance of high magnitude data and still preserving the relationships between the
original data [58,59]. The same may apply to the variance in log dimensions, particularly
to their diameters by reducing or increasing the contact area between the blades and logs
which, in theory, would decrease or increase the amount of vibration. On the opposite
side, a validation of the model would be required by feeding it with long-term collected,
unseen data. In this regard, and based on the performance of the selected machine learning
architecture, it is likely to obtain a high classification performance in such a validation
phase. Once proved to have a high performance on new datasets, the rest of the steps
required to automatically extract and systematize the data, as well as those required for
prediction, could be easily managed by the software components described in the Material
and Methods section.
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Last but not least, the applicability of the described methods may be extended to
other sawmilling machines assuming a similar operational pattern in the time domain.
This is because, by their construction, they produce vibration during working events.
However, the quality of the milled lumber has become of great concern lately [60] and
this will possibly become a driver of technological change. Until such changes occur, the
proposed model could solve the problems of long-term operational monitoring while after
that it could serve, by adaptation, in monitoring operations when such capabilities are not
embodied in the sawmilling equipment.

5. Conclusions

Monitoring the operational performance of sawmilling facilities is important for both
science and practice. Accordingly, the tools used to obtain useful information need to be
adapted to extend data collection and inference capabilities. A robust machine learning
model was developed with the purpose of using it to infer the operational events based
on lower sampling rates, so as to be able to extend data collection capabilities by low-cost
acceleration sensors.

The results indicate a high performance of the model which was less sensitive to
the amount of data used to train it, although some variation was found. In this regard,
neural networks performed better than random forest algorithms in terms of classification
performance. Indeed, they needed more training time, but at this point, this cannot be
seen as a limitation since the model is readily available for feeding with new data. The
developed model not only preserves a high classification performance in the training and
testing phases but it also seems to be invariant to lower sampling rates, making it useful
for prediction over long-term collected data. These model properties indicate a high degree
of stability to the data potentially fed to the model, as well as a capability enhancement in
the sense of lowering the sampling rate of the data to be fed into it.

Altogether, the proposed approach is promising in enabling the use of cheap data
collectors to be operated for extended periods in various locations and has the capability of
saving human resources and money associated with data collection. Further tests would
be required to validate the model, which could be straightforward given the relatively
high differentiation which was found at the class level, enabling a visual judgment of
predicted classes.
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