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Abstract: The aim of this research was to investigate the influence of an electric field and gamma
radiation upon the germination of spruce seeds. In order to carry out the research, spruce seeds
from different provenances have been subjected to different treatments: electric field (EF) with 10 V,
30 V, and 50 V voltages and intensity of E = 266V/m, exposure time of 15 and 35 min, and gamma
(G) radiation with several treatments (1 Gy-31 min, 1.5 Gy-46 min, 2 Gy-62 min, and 6 Gy-186 min).
Under the influence of EF, the best results upon seed germination (80.83%) were recorded when seeds
were treated with 30 V for 15 min, for all provenances investigated. Regarding gamma radiation, the
highest germination percentage (87.50%) was achieved in T5G when seeds were subjected to 6 Gy
for 186 min. It was also considered the interaction between seeds origin and the different EF and
G treatments applied to the seeds to induce germination and further seedlings’ development. The
results obtained after seeds were exposed to gamma radiation came out on top compared to electric
field treatments, both for the germination and seedlings’ height.

Keywords: electric field; gamma radiation; germination; plant development; spruce; treatment

1. Introduction

Coniferous forests contribute to global forestry, therefore, natural forests and conif-
erous forest plantations are widely distributed across diverse climate zones on different
continents [1]. Due to their carbon storage capacity, they play a key role in the global
carbon cycle [2,3], helping to conserve and protect soil resources, and last but not least,
enhancing the beauty of the landscape [4]. Picea abies L., known as Norwegian spruce, is
one of the most important species of conifers but also one of the dominant species in the
forests of the Carpathian Mountains, which is one of the largest forest-covered regions of
the continent [5,6]. In addition, it is considered one of the most economically important
species in Central and Northern Europe [7], extending to more than 30 million hectares [8].
It is one of the most commonly used wood species for construction, but also for the paper
industry [9,10]; a special quality is its resonant wood, which, compared to pine or larch
wood, has a lower density, a higher tensile strength, and a higher modulus of elasticity
along the fiber [11], so that the species is suitable for the production of musical instru-
ments [12]. Spruce forests also have an important role in soil protection and erosion control
while having a great recreational value [13].

Spruce prefers a cold and humid climate, and fertile soils, being a shade-tolerant
species that grows well in the companionship of other trees [14]. It is the main species
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widespread in the boreal and temperate regions of Europe [15], whereas in Romania, it can
be usually found at altitudes between 1200 and 1800 m [16], while it also grows at lower
altitudes, in mixt forests of fir and beech [17].

Conifer seeds generally have a high degree of dormancy, even if they undergo favor-
able environmental conditions for germination [18]. Regarding spruce, the germination
capacity of the seeds is unsatisfactory in many stands (less than 60%) [19], which increases
the interest and preoccupation of any forestry department and research institute to find
solutions to stimulate spruce seed germination and thus help reforestation movements. Sev-
eral procedures, such as exposure to various forms of energy (radiation, light, ultrasound)
or treatments with chemicals, have already been used to accelerate seed germination and
produce high-quality planting material [20].

The optimum temperature for spruce seed germination is 20–22 ◦C [21–23], while
the optimum pH is between 5–6, which indicates the need for acid soils [23,24]. Previous
findings suggest that the germination capacity of trees can be highly influenced by species,
age, seed traits, climatic conditions during the pollination process, and biotic factors such as
fungal or insect infestation, which can decrease germination capacity [25]. Due to frequent
periods of drought, found within many regions lately, the vitality of the seeds is lower,
being affected by climatic factors at the time of ripening [20,26].

Currently, electric and magnetic fields are used as an alternative in non-chemical meth-
ods to induce germination [27], having fewer pollutant effects on the environment [28,29],
so that the methods can also be applied to ecological agriculture [30]. It was demon-
strated [31,32] that a magnetic field was beneficial for bean culture, also being used against
pathogens and diseases. Chemical products can be harmful to the ecosystem and can
increase the overall cost of a crop [30,33]. Since the use of chemical germination and plant
growth regulators and nonorganic inputs has been disputed, even though being efficient
for controlling pathogens, their ecological impact is not constructive [32]; therefore, the use
of low-cost alternatives and ecological treatments such as gamma radiation, laser lights,
microwaves, radio frequency energies, and magnetic field, became more feasible for seed
bio-stimulation, thus increasing germination efficiency and accelerating initial growth
and development of plants [32,34,35]. One of the most common practices for inducing
genetic variation in plant species is gamma irradiation (γ-rays) [36], the method being
proper to be also used for trees [37]. Gamma rays influence the growth and development
of plants by inducing cytological, genetic, biochemical, physiological, and morphogenetic
changes in tissues and cells [38]. According to previous research, irradiation of seeds with
low doses of gamma γ rays stimulates seed germination, plant growth, and synthesis of
photosynthetic pigments [39].

Beside gamma irradiation, another physical method used in the process of seed
germination is the electric field (EF). Several studies have revealed the positive effects of
electric fields on plants, even though these effects may vary depending on plant species [40].
Researchers [41,42] showed that EF increased the germination rate of several vegetables.
Other findings indicate that cotton seeds had a higher growth rate when exposed to EF [43],
as well as lettuce [41]. In rice, the electric field had no effect on the germination rate but
positively influenced the development of seedlings [44]. An electric field exerts certain
effects also on the soil, as reported in tomatoes, when the soil was treated, and the growth
rate was accelerated [43,45]. The use of the electric field can be efficient under other specific
conditions [46] as it induces electroosmosis, electrophoresis, and electrolysis in the soil [47].

On these bases, the main aim of the present study was to test the germination of spruce
seeds under the influence of electric field and gamma radiation treatments and evaluate
their effect considering different aspects (variation within treatments based on specialty
literature, seed origin influence, and further seedlings development).
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2. Materials and Methods
2.1. Biological Material

Spruce seeds (Picea abies) have been collected from different locations from Romania and
were used as biological material for this research. The location (provenances) from where the
spruce seeds were collected are: (1) Măria Mică (Bistrit,a-Năsăud County, S, ant, City Hall, O.S.
Izvorul Somes, ului, UB.VIII), coordinates (47◦25′ N/24◦50′ E); (2) Făina (Maramures, County,
RNP-Romsilva, O.S. Vis, eu, UP. III), coordinates (47◦50′ N/24◦38′ E); (3) Alunis, (Harghita
County, RNP-Romsilva, O.S. Borsec, UP. VI), coordinates (46◦45′ N/25◦20′ E); (4) Putnis, oara
(Suceava County, RNP-Romsilva, O.S. Pojorâta, UP.III), registered in the National Catalog
of basic materials for the production of forest reproductive materials [48] (Figure 1). Thus,
the provenances (P) were noted as follows: P1 (Măria Mică), P2 (Făina), P3 (Alunis, ), and P4
(Punis, oara) and were investigated within the perspective of different origin of seeds in the
current study.
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Figure 1. Romanian provenances of Picea abies seeds: 1—P1 (Măria Mică), 2—P2 (Făina), 3—P3
(Alunis, ), 4—P4 (Putnis, oara).

Spruce cones were harvested in October and stored at room temperature (20–25 ◦C) to
dry and spill out the seeds. Further, the seeds were collected for each provenance, visually
sorted so that only seeds with no visible damage were kept, and then evaluated based
on morphological traits. All the incomplete and degraded seeds were eliminated. The
selected seeds were cleaned, using 50 seeds/provenance/treatment, in 3 repetitions and
further subjected to electric fields and gamma radiation treatments, then germinated along
with control (non-treated seeds) in Linhardt pots. After germination, the seedlings were
transferred to seedling trays using a peat and perlite mixture (Figure 2).
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2.2. Exposure of the Seeds to Electric field (EF) Treatments

The seeds were subjected to electric field (EF) treatments in the Biophysics and Af-
forestation laboratory of the University of Agricultural Sciences and Veterinary Medicine
from Cluj-Napoca. The electric field was generated with an electric field generator (with an
armature of 26 cm and d = 0.073 m). The applied voltages were as follows: 10 V, 30 V, and
50 V, with an exposure time of 15 and 35 min. The combination of the above-mentioned
treatments were named as follows: T1EF (Control), T2EF (10 V-15 min), T3EF (10 V-35 min),
T4EF (30 V-15 min), T5EF (30 V-35 min), T6EF (50 V-15 min), and T7EF (50 V-35 min).

2.3. Exposure of Seeds to Gamma Irradiation (G) Treatments

The irradiation of the biological material was carried out at the Babes, -Bolyai Uni-
versity from Cluj-Napoca, in the laboratory of Anatomical and Nuclear Physics, Isotopes.
The Gamma Chamber apparatus was used to irradiate the seeds using the 60C Isotope.
This unit consists of an annular source, which has an activity of 900 Curries. For the
irradiation of spruce seeds, the experimental treatments were set as follows: a non-treated
variant was used as control T1G (Control), T2G (1 Gy-31 min), T3G (1.5 Gy-46 min), T4G
(2 Gy-62 min) and T5G (6 Gy-186 min). Irradiation and exposure intervals were selected
based on speciality literature.

2.4. Seeds and Seedlings Characteristics Measurements

Seed characteristics were measured with the help of existing tools in forestry laborato-
ries. The length (mm) and diameter (mm) of the seeds were measured with an electronic
caliper. For determining the weight (mg) of the seeds, an analytical balance was used.
Regarding seedlings’ development, their heights were determined with electronic callipers,
since it was considered the most relevant quantifiable parameter at this stage.

2.5. Experimental Design and Data Analysis

The experimental design was a factorial combination of a physical factor (EF, G; fixed
factor) and seeds’ provenance (four sites; random factor). Data were analyzed by a mixed
model 2-Way ANOVA to test for the significance of the mean of the main effects of the factors
and their interaction. When the null hypothesis was rejected, Duncan’s multiple range test
at p < 0.05 was applied to determine statistically significant differences between the means.
In total, 4.050 spruce seeds were used for the experiment (50 seeds/provenance/treatment,
in 3 repetitions). Different lowercase letters above the bars indicate significant differences
between the means, according to Duncan’s Multiple Range Test (the data presented are
means ± standard error) [49].

3. Results
3.1. Morphological Traits of Spruce Seeds

Seed characteristics such as length, diameter, and weight were measured and are
presented as a box-plot diagram, which consists of the minimum and maximum values
of the range noted within the experiment, the upper and lower quartiles, as well as the
median, to be able to summarize the distribution of the recorded data set, as shown in
Figure 3. The minimum recorded seed length was 2.11 mm from P3 (Alunis, ) provenance,
while the maximum length recorded was 5.52 mm from P2 (Făina). The diameter of the
seeds ranged between 1.06 mm at P4 (Putnis, oara) to 2.74 mm within seeds from P1 (Măria
Mică) and P2 (Făina) provenances. The highest seed weight (12.7 mg) was recorded in P2
(Făina) seeds. It will be further investigated how the variability of seeds’ characteristics,
with regard to the influence of their origin investigated hereby, can influence germination.
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Figure 3. Chart diagrams of spruce seed length, diameter, and weight. Each box plot represents
the minimum, median, and maximum values (yellow represents the maximum values and green
represents the minimum values).

3.2. Seed Germination after EF Treatments

The results of the interaction between seeds origin (four provenances) and the different
EF treatments applied to the seeds to induce germination are presented in Table 1. It was
intended to analyze the impact of these two distinct factors so that all aspects can be
discussed and objective recommendations can be formulated. It was noted that the T4EF
(30 V-15 min) treatment gave the best results for seed germination within all provenances
investigated, closely followed by T3EF (10 V-35 min) with significant differences only for P2
seedlings, which was also the provenance with the highest seed weight.

Table 1. Seed germination percentage (%) depending on the interaction between EF treatments
and provenances.

Treatment
Provenance

Măria Mică (P1) Făina (P2) Alunis, (P3) Putnis, oara (P4)

T1EF (Control) 60.00 a–c 63.33 a–d 56.67 ab 50.00 a

T2EF (10 V-15 min) 80.00 bd 76.67 a–d 73.33 a–d 63.33 a–d

T3EF (10 V-35 min) 86.67 cd 83.33 b–d 63.33 a–d 63.33 a–d

T4EF (30 V-15 min) 86.67 cd 90.00 d 76.67 a–d 70.00 a–d

T5EF (30 V-35 min) 76.67 a–d 76.67 a–d 70.00 a–d 60.00 a–c

T6EF (50 V-15 min) 73.33 a–d 60.00 a–c 63.33 a–d 50.00 a

T7EF (50 V-35 min) 73.33 a–d 70.00 a–d 56.67 ab 56.67 ab

The means on the columns inside the table, followed by different small letters (a–d), are significantly dif-
ferent according to Duncan’s MRT test (p < 0.05) regarding the interaction between provenance (P1—Măria
Mică, P2—Făina, P3—Alunis, , P4—Putnis, oara), and EF treatments: T1EF (Control), T2EF (10 V-15 min), T3EF
(10 V-35 min), T4EF (30 V-15 min), T5EF (30 V-35 min), T6EF (50 V-15 min), and T7EF (50 V-35 min).

Regarding the origin of the seeds and the EF treatments applied, based on F calcu-
lated (F provenance(P) = 15.68, F treatment (T) = 3.71, F P x T = 0.23), our results showed that
out of the four provenances, seeds from P1 (Măria Mică) (76.67%) and P2 (Făina) (74.29%)
had significantly higher germination percentages as compared to other provenances (Fig-
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ure 4). In the context of the EF treatments applied to the seeds, it was observed that T4EF
(30 V-15 min) induced the highest germination percentage (80.83%), followed by T3EF
(10 V-35 min) (74.17%), while the lowest recorded percentage was in T1EF (Control) with
57.50% germination rate (Figure 4). These results show that both provenance and treatment,
as well as their interaction (Table 1), can influence the success of seed germination, with
significant differences among variants; the best results were recorded at the provenance P2
(Făina) seeds, along with T4EF (30 V-15 min) treatment.
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Figure 4. The percentage of seed germination for provenances and EF treatments (mean ± SE;
n = 50). The means represented with blue color reflect the influence of the provenance (P1—
Măria Mică, P2—Făina, P3—Alunis, , and P4—Putnis, oara), regardless of the treatment applied; the
means represented with green color reflect the influence of the EF treatment (T1EF (Control), T2EF

(10 V-15 min), T3EF (10 V-35 min), T4EF (30 V-15 min), T5EF (30 V-35 min), T6EF (50 V-15 min), and
T7EF (50 V-35 min)), regardless of the provenance. Different (upper case) letters at the top of the
bars indicate statistically significant differences between provenances, and respectively treatments,
according to Duncan’s MRT test (p < 0.05).

3.3. Seedlings Development after EF Treatments Applied to the Seeds

The effect of EF treatments in the interaction between provenance and different volt-
ages and duration revealed obvious differences between the mean values of seedlings’
height (Table 2). It was noted that T4EF (30 V-15 min) induced a height between 3.54 and
4.18 cm, within all four provenances analyzed, with superior and significant differences.
At the same time, it was observed that the interaction between the two factors (provenance
and treatment) weakened seedlings’ development in T6EF (50 V-15 min) and the seedlings’
height ranging between 1.66–2.17 cm (Table 2).

Seedlings obtained from seeds subjected to various EF treatments showed statistically
significant differences in terms of length (Figure 5), even though the provenance was not
directly influencing their growth. It can be noted that T4EF (30 V-15 min) induced a height
of 3.91 cm, with superior and significant differences, whereas no differences have been
recorded when the impact of EF upon seeds provenances were analyzed separately. On the
contrary, the shortest seedlings were those obtained from seeds that had undertaken T6EF
(50 V-15 min).
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Table 2. Seedlings’ height (cm) depending on the interaction between treatment and provenance after
seeds were exposed to EF treatments.

Treatment
Provenance

Măria Mică (P1) Făina (P2) Alunis, (P3) Putnis, oara (P4)

T1EF (Control) 2.89 d–f 3.08 e–g 2.59 b–e 2.79 b–e

T2EF (10 V-15 min) 3.66 gh 3.57 f–h 3.11 e–g 3.13 e–g

T3EF (10 V-35 min) 2.70 b–e 2.78 b–e 3.00 e–g 2.83 c–e

T4EF (30 V-15 min) 4.18 h 4.00 h 3.54 f–h 3.91 h

T5EF (30 V-35 min) 2.99 d–g 2.63 b–e 3.09 e–g 2.90 d–f

T6EF (50 V-15 min) 1.93 a 2.17a–c 1.66 a 1.82 a

T7EF (50 V-35 min) 2.3 a–d 2.66 b–e 2.62 b–e 2.14 ab

The means on the columns inside the table, followed by different small letters (a–h), are significantly dif-
ferent according to Duncan’s MRT test (p < 0.05) regarding the interaction between provenance (P1—Măria
Mică, P2—Făina, P3—Alunis, , P4—Putnis, oara), and EF treatments (T1EF (Control), T2EF (10 V-15 min),
T3EF (10 V-35 min), T4EF (30 V-15 min), T5EF (30 V-35 min), T6EF (50 V-15 min), T7EF (50 V-35 min)).
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Figure 5. Seedlings’ height (cm), after EF treatments, with regard to seed provenances and treatments
(mean ± SE; n = 50). The means represented with blue color reflect the influence of the provenance
(P1—Măria Mică, P2—Făina, P3—Alunis, , and P4—Putnis, oara), regardless of the treatment applied;
the means represented with green color reflect the influence of the EF treatment (T1EF (Control), T2EF

(10 V-15 min), T3EF (10 V-35 min), T4EF (30 V-15 min), T5EF (30 V-35 min), T6EF (50 V-15 min), and
T7EF (50 V-35 min)), regardless of the provenance. Different (upper case) letters at the top of the
bars indicate statistically significant differences between provenances, and respectively treatments,
according to Duncan’s MRT test (p < 0.05).

The effect of EF treatments was also analyzed, considering the interaction between
provenance and different voltages and duration (Table 2). It was noted that T4EF
(30 V-15 min) induced a height between 3.54 and 4.18 cm with all four provenances inves-
tigated, with superior and significant differences. At the same time, it was observed that
the interaction between the two factors (provenance and treatment) weakened seedlings’
development in T6EF (50 V-15 min), with seedlings’ height ranging between 1.66–2.17 cm
(Table 2).

3.4. Seed Germination after Gamma (G) Irradiation

Regarding the interaction between the two factors, provenance and gamma irradiation
of the seeds (Table 3), it was observed that T5G treatment (6 Gy-186 min) upon seeds from
P1 (Măria Mică) recorded the highest germination rate (96.67%), followed by P2 (Făina)
seeds exposed to the same treatment (93.33%). These two provenances are also the ones
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that had the largest diameter of seeds, as noted for seeds characteristics analysis, whereas
P2 had seeds with high values for length and weight also.

Table 3. Seeds’ germination (%) depending on the interaction between G treatments and provenance.

Treatment
Provenance

Măria Mică (P1) Făina (P2) Alunis, (P3) Putnis, oara (P4)

T1G (Control) 43.33 a 50.00 a,b 43.33 a 46.67 ab

T2G (1 Gy-31 min) 66.00 a–d 66.33 a–d 70.00 a–d 66.67 a–d

T3G (1,5 Gy-46 min) 63.33 a–d 63.33 a–d 53.33ab 56.67 a–c

T4G (2 Gy-62 min) 80.00 a–d 76.67 a–d 66.67a–d 63.33 a–d

T5G (6 Gy-186 min) 96.67 d 93.33 c–d 83.33 b–d 76.67 a–d

The means on the columns inside the table, followed by different small letters (a–d), are significantly differ-
ent according to Duncan’s MRT test (p < 0.05), regarding the interaction between provenance (P1—Măria
Mică, P2—Făina, P3—Alunis, , and P4—Putnis, oara) and G treatment (T1G (Control), T2G (1 Gy-31 min),
T3G (1.5 Gy-46 min), T4G (2 Gy-62 min), and T5G (6 Gy-186 min)).

Our results suggest that due to gamma irradiation, the germination rate of spruce
seeds was considerably influenced (Figure 6). Germination percentages varied from 45.83%
within T1G (Control) to 87.50% for T5G (6 Gy-186 min). Even though the provenance itself
did not differ statistically within this stage of the experiment, whereas the F calculated had
small values (F provenance (P) = 0.75, F treatment (T) = 7.61, F P x T = 0.19), the results for the G
treatments were significantly different among the specific gamma irradiation applied seeds.
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Figure 6. Percentage of seed germination for provenances and G treatments (mean ± SE; n = 50).
The means represented with blue color reflect the influence of the provenance (P1—Măria Mică, P2—
Făina, P3—Alunis, , and P4—Putnis, oara), regardless of the treatment applied; the means represented
with green color reflect the influence of the G treatment (T1G (Control), T2G (1 Gy-31 min), T3G

(1.5 Gy-46 min), T4G (2 Gy-62 min), and T5G (6 Gy-186 min)), regardless of the provenance. Differ-
ent (upper case) letters at the top of the bars indicate statistically significant differences between
provenances, and respectively treatments, according to Duncan’s MRT test (p < 0.05).

3.5. Seedlings Development after G Treatments Applied to the Seeds

Analyzing the interaction between the two factors, namely the different origin of seeds
and the G treatments, it can be seen that the T5G treatment (6 Gy) retained its positive
influence in the development of seedlings in the interaction with the four sources analyzed
(Table 4), so it turns out that P1 (Măria Mică) showed higher values (4.13 cm) compared to
the other sources analyzed. On the other hand, it can be seen that the interaction between P4
(Putnis, oara) and T3G (1.5 Gy) showed the lowest value for the seedlings’ height (1.92 cm).
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Table 4. The seedling’s height (cm) depending on the interaction between G treatment and provenance.

Treatment
Provenance

Măria Mică (P1) Făina (P2) Alunis, (P3) Putnis, oara (P4)

T1G (Control) 2.55 a–c 2.47 a–c 2.52 a–c 2.61 b–d

T2G (1 Gy-31 min) 3.63 f–h 3.21d–f 2.96 c–e 2.97 c–e

T3G (1,5 Gy-46 min) 2.10 ab 2.03 ab 2.12 ab 1.92 a

T4G (2 Gy-62 min) 2.83 c–e 2.87 c–e 2.49 a–c 2.41 a–c

T5G (6 Gy-186 min) 4.13 h 3.91gh 3.45 e–g 3.28 ef

The means on the columns inside the table, followed by different small letters (a–h), are significantly dif-
ferent according to Duncan’s MRT test (p < 0.05) regarding the interaction between provenance (P1—Măria
Mică, P2—Făina, P3—Alunis, , and P4—Putnis, oara) and G treatments (T1G (Control), T2G (1 Gy-31 min),
T3G (1.5 Gy-46 min), T4G (2 Gy-62 min), and T5G (6 Gy-186 min)).

Regarding the seedlings’ development, all gamma irradiation treatments differently
affected their growth (Figure 7). For example, seedlings obtained from seeds originating
from P1 (Măria Mică) were the only ones that exceeded 3 cm, so that the seedlings reached
a height of 3.05 cm, followed by P2 (Făina) seedlings which had 2.90 cm. Among the G
treatments applied to seeds, T5G (6 Gy-186 min) induced the obtained seedlings to the
highest value for height (3.69 cm), followed by T2G (1 Gy-31 min), whereas seedlings
reached 3.19 cm, with significant differences.
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4. Discussions

Efficient management and conservation of planting material for the production of
forest reproductive material and the genetic resources of forest species suffer from vari-
ations in their characteristics and seed germination [50,51]. The differences between the
analyzed origins were statistically assured, while the germination of seeds and seedlings’
development was certainly influenced both by the ecological parameters in the area of
origin and by the EF and G treatments applied. Seed size has been considered an important
trait affecting the reproductive outcome of several plant species [52], so that can directly



Forests 2022, 13, 1498 10 of 13

influence germination interval [53], germination percentage [54], and seedling vigor [55,56].
Seed weight and size are directly related to the amount of energetic (nutritional) reserves
that will be allocated for seedlings’ growth [56]. According to the literature, larger seeds
often have a higher germination rate because they are supposed to contain more resources
to support the intense, energy-intensive biological process [57] and also result in healthier
seedlings [50,57], as was noted in the results obtained hereby just as well, especially for
P1 and P2 provenances. Even so, although germination efficiency has been shown to
be largely correlated with seed mass, larger seeds do not always germinate faster than
smaller ones [58,59]. In our study, the provenance P1 (Măria Mică) and P2 (Făina) had the
largest seeds, whereas the two provenances had the best germination percentages for all
applied treatments.

Regarding the action of the electric field (EF) on the germination of spruce seeds, the
best germination percentage was registered in the case of the T4EF treatment (30 V-15 min)
with a value of 80.83%, compared to the variant T1EF (Control) with a value of 57.50%. In
this case, it was observed that the provenance also positively influenced the germination
of the seeds, significant differences being registered at P1 (Măria Mică) and P2 (Făina).
Further investigating, significantly higher values in the case of seedlings’ development
were recorded for seedlings obtained from seeds exposed to T4EF treatment (30 V-15 min),
with a height of 3.91 cm. The interaction between EF treatment and the provenance gave
the best results within P1 (Măria Mică). Most studies show us the positive effects of electric
fields on plants [36,42,60]; researchers show that EF significantly increased the germination
rate of sessile oak, carrot, garden radish, and beet. It has also been shown that cotton seeds
have a higher growth rate when exposed to EF [43], as well as lettuce [41]. Positive results
have also been reported for acacia and corn [61], beets and barley [43,45], and even more,
in the case of oak [62].

Gamma treatments have a positive impact on seed germination, being used nowadays
in several breeding strategies [63]. Small doses of irradiation improved vigor and plant
development [64], while 30–50 Gy led to a significant decrease in Nicotiana tabacum plants’
growth, whereas 70 Gy killed the plants [65]. Even so, the impact of γ-ray treatments
was investigated on various seeds [66], and it was observed that irradiation with doses
lower than 100 Gy stimulated the germination rate. Researchers [67] described the effects
induced by γ-rays (50–350 Gy) on the seeds of Oryza sativa and Phaseolus mungo; while
low-dose irradiation improved morphological characteristics, exposure to higher doses
had a negative impact on the same parameters. It was also observed [68] that γ-ray had
stimulant effects at low doses (2–30 Gy), while high doses (approx. 70 Gy) were found
to be harmful to plants. It can be said that the overall pattern of germination treatments
takes an approximately similar shape across the provenances but with varying degrees of
strength between the provenances (as shown by the variable results of Duncan’s test of the
provenance means down the columns in the Tables).

In our study, the most influential irradiation was the treatment T5G (6 Gy) with a
germination rate of 87.50%; it is important to mention that this treatment has presented
the same beneficial influence on the seedlings’ development. Thus, gamma rays have also
been shown to be an effective approach for improving seed germination performance and
seedlings’ stability for forest species.

5. Conclusions

It can be concluded that spruce seeds’ germination was significantly stimulated by
an electric field and gamma irradiation. Based on the results obtained in the present
investigation, it may be concluded that lower doses of radiation may facilitate better
germination, growth, and development by overcoming all the barriers, including dormancy
specific to spruce seeds. Treatment T4EF, meaning 30 V-15 min, gave the best results
among the tested EF variants (almost 81%), whereas the better result of the experiment
in regard to germination was obtained after gamma irradiation of seeds, 87.50% for T5G
(6 Gy-186 min) respectively. The same treatments further induced a proper growth, so
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that the corresponding seedlings also had the best results for height. The results of the
study illustrate that non-chemical treatments could significantly improve spruce seeds’
germination and seedlings’ characteristics. Consequently, physical methods (EF and G)
could be considered to be valuable alternatives for stimulating germination and plant
development in the first stages, while the hereby methods have even more advantages—
being both ecological and economic—offering the possibility of being used on a large scale.
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59. Kaliniewicz, Z.; Zuk, Z.; Kusińska, E. Physical properties of seeds of eleven spruce species. Forests 2018, 9, 617. [CrossRef]
60. Maffei, M.E. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 2014, 5, 445. [CrossRef]
61. Gätjens-Boniche, O.; Díaz, C.; Hernández-Vásquez, L.; Chavarría-Rodríguez, P.; Martínez-Ávila, E. Effect of Electrical Current

Applied in Soaking Conditions on Germination of Acacia and Maize Seeds. J. Agric. Vet. Sci. 2017, 10, 11–18.
62. Rezaei-Zarchi, S.; Imani, S.; Mehrjerdi, A.H.; Mohebbifar, R.M. The effect of electric field on the germination and growth of

Medicago sativa planet, as a native Iranian alfalfa seed. Acta Agric. Serbica 2012, 17, 105–115.
63. Marcu, D.; Besenyei, E.; Cristea, V. Radiosensitivity of maize to gamma radiation based on physiological responses. Muzeul

Olteniei Craiova. Oltenia. Studii sicomunicări. Stiinele Nat. 2014, 30, 1.
64. Singh, B.; Datta, P.S. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiat. Phys.

Chem. 2010, 79, 139–143. [CrossRef]
65. Cho, H.S.; Lee, H.S.; Pai, H.S. Expression Patterns of Diverse Genes in Response to Gamma Irradiation in Nicotiana tabacum. J.

Plant Biol. 2000, 43, 82–87. [CrossRef]
66. Qi, W.; Zhang, L.; Wang, L.; Xu, H.; Jin, Q.; Jiao, Z. Pretreatment with low-dose gamma irradiation enhances tolerance to the

stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicol. Environ. Saf. 2015, 115, 243–249. [CrossRef]
67. Maity, J.; Mishra, D.; Chakraborty, A.; Saha, A.; Santra, S.; Chanda, S. Modulation of some quantitative and qualitative

characteristics in rice (Oryza sativa L.) and mung (Phaseolus mungo L.) by ionizing radiation. Radiat. Phys. Chem. 2005, 74, 391–394.
[CrossRef]

68. Araújo Sde, S.; Paparella, S.; Dondi, D.; Bentivoglio, A.; Carbonera, D.; Balestrazzi, A. Physical methods for seed invigoration:
Advents and challenges in seed technology. Front. Plant Sci. 2016, 7, 646. [CrossRef] [PubMed]

http://doi.org/10.1023/A:1004150525384
http://doi.org/10.3390/d14010034
http://doi.org/10.1111/j.1744-7429.1997.tb00428.x
http://doi.org/10.3732/ajb.92.3.432
http://doi.org/10.4236/ajps.2014.517270
http://doi.org/10.21750/REFOR.5.02.48
http://doi.org/10.1155/2014/384565
http://doi.org/10.3390/f9100617
http://doi.org/10.3389/fpls.2014.00445
http://doi.org/10.1016/j.radphyschem.2009.05.025
http://doi.org/10.1007/BF03030499
http://doi.org/10.1016/j.ecoenv.2015.02.026
http://doi.org/10.1016/j.radphyschem.2004.08.005
http://doi.org/10.3389/fpls.2016.00646
http://www.ncbi.nlm.nih.gov/pubmed/27242847

	Introduction 
	Materials and Methods 
	Biological Material 
	Exposure of the Seeds to Electric field (EF) Treatments 
	Exposure of Seeds to Gamma Irradiation (G) Treatments 
	Seeds and Seedlings Characteristics Measurements 
	Experimental Design and Data Analysis 

	Results 
	Morphological Traits of Spruce Seeds 
	Seed Germination after EF Treatments 
	Seedlings Development after EF Treatments Applied to the Seeds 
	Seed Germination after Gamma (G) Irradiation 
	Seedlings Development after G Treatments Applied to the Seeds 

	Discussions 
	Conclusions 
	References

