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Abstract: Whether the tree growth–climate relationship is consistent in subtropical China has not
yet been reported. To fill this gap, we chose Pinus taiwanensis which grow on Lushan Mountain
in a subtropical region of China as the target tree species, established a standard tree-ring width
chronology, and conducted a moving correlation analysis with climatic factors. The results showed
that the relationship between radial growth of P. taiwanensis and climate changed significantly
during 1980–1990. From 1955 to 1985, tree rings were negatively affected mainly by precipitation
in September of the current growing season. From 1990 to 2014, however, a significant negative
correlation appeared between tree rings and sunshine duration from March to April in the growing
season. Our results suggest the need to pay attention to this growth–climate inconsistency when
conducting dendroclimatology studies in subtropical China. However, the causes of the inconsistency
still require further confirmation.

Keywords: dendroclimatology; growth–climate relationship; subtropical; moving correlation; tree ring

1. Introduction

Tree rings have been widely used as a proxy of paleo-climate reconstruction because
of their high resolution and accurate cross-dating. Tree ring–based paleo-climate recon-
structions have been extensively conducted globally, providing important evidence for
our understanding of climate change [1–5]. However, the basic principle of homogeneity,
which is the most important precondition for paleo-climate reconstruction [6], has been
challenged with regard to tree rings due to the unstable relationships between tree rings
and climate.

On the one hand, with climate change, the limiting factors of tree growth have changed,
leading to an inconsistent growth–climate relationship, which is called the “divergence
problem” [7]. For example, Briffa et al. [8] studied the relationship between the tree-ring
width and late-wood density of several tree species and the climates in the high latitudes
of the Northern Hemisphere and found that the sensitivity of tree growth to climate is
decreasing. Recently, similar discoveries have been made in some mid-latitudes, such as in
the European region [9–11] and Asia [12,13].

On the other hand, studies have shown that tree age also significantly affects growth–
climate relationships. For example, Carrer and Urbinati [14] studied the corresponding relation-
ships among four age classes of two tree species (Larix decidua Mill. and Pinus cembra L.) and the
climate near the tree line of the Italian Alps and found that older trees had a stronger response
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to climate. Similar findings have been reported in European [15–17] and Asian [18–20] regions.
These findings remind dendrochronologists to carry out stability tests first when performing
reconstruction in order to verify that the growth–climate relationships are consistent.

Recently, with the vigorous development of dendrochronology, people have started
paying attention to the warm and humid subtropical monsoon region. The climate pat-
tern of the subtropical monsoon region in China is affected mainly by the uplift of the
Qinghai–Tibet Plateau [21]. Compared to other regions at the same latitude, it is warm and
humid. In the past, there were relatively few paleo-climate reconstructions using tree rings.
However, with the recent increase in field work, tree species and regions that are highly
sensitive to climate have been found. For example, Duan et al. [22] reconstructed the winter
(January to April) temperature variation in subtropical China using the tree-ring width of
Pinus massoniana Lamb. and found that the Ural High ridge might be the cause of extreme
cold in winter in subtropical China. Shi et al. [23] reconstructed precipitation from February
to April in a subtropical region by using P. massoniana tree-ring width. Cai et al. [24]
reconstructed the surface temperature during the growing season in the subtropical re-
gion by using the ring width of P. taiwanensis. Apart from these climate reconstructions,
other tree-ring studies have been conducted. Liang et al. [25] reported that the growth of
P. massoniana in subtropical China was affected mainly by competition, which was followed
by the climate factor. They also found that with an increase in latitude, the effect of climate
increased and the effect of competition decreased. Huang et al. [26] conducted a meta-
analysis to study the tree ring–climate relationship of P. massoniana in 113 sample sites
in subtropical China. They found that the growth of P. massoniana was affected by both
temperature and precipitation. Su et al. [27] studied the tree rings of 10 tree species on the
Yunnan-Guizhou Plateau and found that drought was the climatic factor that extensively
restricted tree growth in this region. Yang et al. [28] collected tree-ring samples from two
conifer species (Pinus yunnanensis Franch and Pinus kesiya Royle ex Gord) in Yunnan and
determined that the tree ring–climate relationship changed with dry-to-humid gradients.
Zuidema et al. [29] analyzed tree-ring samples throughout the tropics and found that dry
season climate had the greatest impact on tree growth.

Although considerable results have been achieved in tropical and subtropical regions
in recent years, whether the tree ring–climate relationship in this subtropical region is
consistent has not yet been verified. To fill this gap, we collected tree-ring samples of
P. taiwanensis in the Lushan area in subtropical China to verify the stability of the tree
ring–climate relationship.

2. Materials and Methods
2.1. Study Area

The study area is located in the Lushan National Nature Reserve, Jiangxi Province,
China. The area is influenced by the subtropical monsoon climate and has vertical zonal
vegetation types. The low altitude comprises evergreen coniferous forest. The dominant
tree species are Lithocarpus glaber (Thunb.) Nakai, Castanopsis sclerophylla (Lindl.) Schott,
and Cinnamomum camphora (Linn.) Presl. High altitude contains deciduous broadleaved
forest, with the dominant species being Castanea henryi (Skam) Rehd. et Wils., and a
scattered distribution of coniferous forests, mainly P. massoniana, Cunninghamia lanceolata
(Lamb.) Hook., and P. taiwanensis.

2.2. Meteorological Data

The meteorological data were downloaded from the National Meteorological Informa-
tion Center of the China Meteorological Administration (http://data.cma.cn/, accessed
on 9 July 2018). The nearest meteorological station to the sampling site was Lushan Me-
teorological Station, which was 5 km from the sampling site, and the altitude difference
was within 100 m. The climatic data that were downloaded included six factors: monthly
maximum temperature (Tmax), monthly minimum temperature (Tmin), monthly mean
temperature (Tmean), monthly precipitation (Pre), monthly sunshine duration (SunD), and
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monthly relative humidity (RH). According to the Lushan station records (1955–2014), the
annual mean temperature, annual cumulated rainfall, and annual cumulated sunshine du-
ration recorded were 11.7 ◦C, 1943.2 mm, and 1758.7 h, respectively (Figure 1). Precipitation
was concentrated in the summer. The trends of mean annual temperature (MAT), annual
precipitation (MAP), annual sunshine hours (MAS), and mean annual relative humidity
(MARH) from 1955 to 2014 are shown in Figure 2. It can be seen that from 1955 to 2014,
the MAT increased significantly, and the MAS decreased significantly, while precipitation
and relative humidity did not change significantly. The trends of monthly sunshine du-
ration, monthly temperature, monthly precipitation and monthly relative humidity from
1955–2014 are shown in Appendix A, Figures A1–A4.
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2.3. Tree-Ring Data

P. taiwanensis, which is widely distributed in the subtropical center of China, was
selected as the target tree species. It is endemic to China, living mainly in the subtropical
region of China, and it is an important afforestation tree in the middle and lower reaches of
the Yangtze River. Previous studies have also shown that the tree rings of this species are
clear and accurately cross-dated and thus, they can be used in traditional dendroclimatology
studies [24,30]. The fieldwork was carried out in 2015. The coordinates of the sampling
sites were 29.55◦ N, 115.96◦ E, and 1055 m above sea level, and the slope was southward
and less than 15◦ (Figure 1). According to the records of the Lushan Mountain Management
Committee, the P. taiwanensis forest was planted artificially in the 1930s and then left in the
natural state, without artificial care and destruction. Thus, it can be regarded as almost a
natural forest without having experienced any human interference. Tree-ring increment
cores (1–2 cores per tree) were drilled using an increment borer with an inner diameter of
5.12 cm at the height of 1.3 m of each tree trunk. Each sample core was as close to the pith of
the tree as possible. In all, 36 cores were collected from 22 trees. The samples were brought
back to the laboratory and carefully polished with 80–600 mesh sandpaper until the xylem
cells were clearly visible. Then, the tree-ring widths of each core were measured using
Lintab 6 with TSAP software (Version 4.81c, Frank Rinnthch, Germany). Finally, COFECHA
was used to verify the cross-dating results to ensure that all data were accurate [31]. A
cubic smoothing spline with a 50% frequency response cutoff that is equal to 32 years
was used to remove the tree’s own growth trend. Then, a bi-weight robust mean method
was employed to build the final standard tree-ring width chronology (TRW). Common
period analysis was conducted for the period of 1950–2014, and three statistical indices
of correlation coefficients among all the series (rbar), expressed population signal (EPS),
and signal–noise ratio (SNR) were calculated to quantify the quality of the chronology. All
methods mentioned above were carried out using the “dplR” package of R software [32].

2.4. Statistical Analysis

The stability of the growth–climate relationship was verified by conducting a moving
correlation analysis between TRW and climate factors during 1956–2014, with a 25-year
window from October of the previous year to December of the current year. Bootstrap
(1000 times) was used to ensure the production of stable results. A heat map was employed
to show the final results. This analysis was carried out using the “treeclim” package of R
software [33].

The results showed that the growth–climate relationship changed significantly during
1980–1990. Therefore, to further determine the specific transition year, we used climate data
of different intervals to linearly fit the tree-ring width to identify the linear model with the
best effect and to determine the exact year in which the response difference appeared. The
period 1980–1990 was considered the boundary. Precipitation in September was considered
the independent variable to fit TRW in the first half, while the mean sunshine duration
from March to April was used to fit TRW in the second half. A linear regression was carried
out with the “stats” package of R software [34].

To further confirm the growth–climate relationship inconsistency, correlation coeffi-
cients between TRW and climate factors during 1955–1985, 1986–2014, and 1955–2014 were
calculated, respectively.

3. Results
3.1. Statistics of Chronology

The chronology covers a period of 86 years, from 1930 to 2015 (Figure 3, Appendix A,
Table A1). The results of the common interval analysis showed that rbar, EPS, and SNR had
values of 0.361, 0.941, and 15.99, respectively. Since 1939, the SSS value of chronology has been
greater than 0.85, which indicates that the chronology during 1939–2014 is reliable [35,36].
Therefore, the results of subsequent analysis during 1956–2014 in this study are reliable.
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3.2. Correlation Analysis Results

The results of the moving correlation analysis between the tree-ring and climate factors
showed that the relationship between TRW and climate changed significantly during 1980–1990.
The relationships between TRW and precipitation and sunshine duration were the most
significant (Figures 4 and 5). Meanwhile, the relationship between tree ring and relative
humidity also changed significantly, but the correlation coefficients were lower than those
for precipitation and sunshine duration were (Figure 6). However, the mean maximum
temperature, mean temperature, and mean minimum temperature had no meaningful
influence on tree growth (not shown).
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From 1956 to the 1980s, the tree rings were negatively affected by precipitation in
the September of the current growing season. After that, the correlation between tree
ring and precipitation in September disappeared, and a significant negative correlation
appeared between tree ring and sunshine duration from March to April in the growing
season (Figures 4 and 5). The results for relative humidity were similar to those for sunshine
duration, with significantly positive effects on tree growth in March since the end of the
1980s (Figure 6). In addition, there has been a significant positive correlation between
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precipitation in May of the current growing season and tree rings since the end of the 1980s
(Figure 4).

The growth–climate relationship from 1955 to 1985 showed that only the maximum
temperature in the previous November had a significant limiting effect on tree growth
(Appendix A, Figure A5). From 1986 to 2014, however, sunshine duration in March and
April significantly inhibited tree growth, while precipitation in May and relative humidity
in the previous November significantly promoted tree growth (Appendix A, Figure A6).
Thus, the growth–climate relationships are completely different in the two time periods.
While the growth–climate relationships during 1955–2014 were relatively complex and the
tree rings exhibited a significant correlation with several climate factors, the coefficients
were not high (Appendix A, Figure A7). The different relationships between TRW and
climate factors that are shown in Appendix A, Figures A5–A7 confirm the inconsistent
relationship between growth and climate over 1955–2014.

3.3. Linear Regression between TRW and Climate Factors

As the correlation coefficients between relative humidity and tree rings are lower than
those for sunshine duration, relative humidity was not considered in the regression. The
final results showed that the relationship between TRW and precipitation in September
between 1956 and 1985 was the best fitted, with a correlation coefficient of −0.417 and
explained variance of 0.174. The relationship between tree ring width and mean sunshine
duration of March and April has increased significantly since 1990, and the variance that
is explained has reached more than 0.4; indeed, the variance interpretation has reached
0.484 since 1995, indicating its suitability for paleo-climate reconstruction (Table 1). The
two best-fitted models are shown in Figure 7.

Table 1. Linear regressions between tree-ring chronology and climate factors (precipitation of
September and mean sunshine duration from March to April).

September Precipitation Mean Sunshine Duration from
March to April

Time Span r R-Square Time Span r R-Square

1956–1976 −0.379 0.144 1976–2014 −0.535 0.286
1956–1977 −0.380 0.144 1977–2014 −0.491 0.241
1956–1978 −0.390 0.152 1978–2014 −0.491 0.241
1956–1979 −0.398 0.159 1979–2014 −0.516 0.267
1956–1980 −0.400 0.160 1980–2014 −0.545 0.297
1956–1981 −0.354 0.125 1981–2014 −0.545 0.297
1956–1982 −0.362 0.131 1982–2014 −0.588 0.346
1956–1983 −0.359 0.129 1983–2014 −0.606 0.368
1956–1984 −0.416 0.173 1984–2014 −0.624 0.390
1956–1985 −0.417 0.174 1985–2014 −0.624 0.389
1956–1986 −0.413 0.170 1986–2014 −0.630 0.396
1956–1987 −0.389 0.151 1987–2014 −0.630 0.396
1956–1988 −0.410 0.168 1988–2014 −0.626 0.392
1956–1989 −0.412 0.169 1989–2014 −0.622 0.387
1956–1990 −0.414 0.172 1990–2014 −0.641 0.411
1956–1991 −0.407 0.166 1991–2014 −0.641 0.411
1956–1992 −0.407 0.166 1992–2014 −0.633 0.401
1956–1993 −0.392 0.153 1993–2014 −0.645 0.416
1956–1994 −0.376 0.141 1994–2014 −0.646 0.418
1956–1995 −0.413 0.170 1995–2014 −0.696 0.484
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4. Discussion

Our results showed that the tree growth–climate relationship changed significantly
during 1985–1990. Many studies have shown the “divergence problem” in tree growth–
climate relationships that are due to the abrupt climatic changes during the 1980–1990
period [7,37]. However, no significant change trends of the limiting climatic factors (precip-
itation in September and mean sunshine duration from March to April) were observed for
1985–1990 (Appendix A, Figures A1 and A3). Therefore, we think that the change in the
relationship between P. taiwanensis and climate factors in subtropical China is not related to
climate change.

Another possibility is that stand age had an effect on the growth–climate relationship.
According to the forestry industry standard of the People’s Republic of China—Regulations
for age-class and age-group divisions of main tree species (LY/T 2908-2017)—the mature
forest age of P. taiwanensis is between 41 and 60 years. Since the samples that were collected
in this study were planted in around 1930, the age of the samples from 1985 to 1990 was
approximately 50 years, which was the stage of transition from a near-mature forest to a
mature forest. With the increase in tree age, the physiological and ecological processes of
trees will change, resulting in the growth of trees in response to different environmental
signals [14]. Therefore, we hypothesized that stand age might be the main factor leading to
the change in the relationship between the growth of P. taiwanensis and climate. Similar
results for age-altered growth–climate relationships have been found in many places for
numerous tree species [15,16,18,20,38].

The results indicate that precipitation in September had a negative effect on tree
growth during the young stage (1956–1985), which has also supported the previous findings
that conifer trees in the subtropical region still have a growth peak from September to
October [25,39,40]. The negative effects of precipitation play the following two roles. One
is that precipitation leads to lower temperatures and reduced tree root activity, which
affects the peak growth from September to October [3,17,41]. Another reason may be
that more September precipitation means that a strong East Asian monsoon and a lot of
low-level rainwater could cover the trees, which will reduce the photosynthetic active
radiation, and thus narrowing the tree rings [25,28,42]. The latter can also be confirmed
by the nonsignificant but stable positive correlation between sunshine and tree rings from
1956 to the 1980s. A similar finding was reported regarding the relationship between
P. massoniana and September precipitation in a large region of subtropical China [25].

After P. taiwanensis has matured (i.e., after 1990 here), sunshine duration in March–
April became the main limiting factor. This is possibly because, at the beginning of the
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growing season, water conditions are very important. When sunshine duration is longer,
evaporation may increase. At this time, the East Asian monsoon has not started, and it
is difficult to replenish moisture, resulting in a water shortage affecting the subsequent
growth of trees. This can be well-proved by the correlation between relative humidity and
tree rings (Figure 5). Similar findings have been found in the monsoon regions [23,43,44].

In addition, there is a closer relationship between climate and the mature forests of P.
taiwanensis. The conclusion that older trees are more sensitive to climate has been reported
previously [14,45–47]. A possible cause of this is due to the competition condition. In
subtropical regions, the climate is suitable, and the growth rate of young stands is faster;
thus, the competition might be relatively strong [25]. After maturity, with the closure of the
forest, the competition pattern remains stable. As individual trees are larger, their demand
for climate resources (i.e., light and water) increases, which leads to a greater sensitivity to
climate change [48].

5. Conclusions

Our results show that the correlation between P. taiwanensis and climate factors in
subtropical China changed significantly during 1985–1990. This change suggests the need
to pay attention to this growth–climate inconsistency when conducting dendroclimatology
studies in subtropical China. While the causes of the inconsistency still require further
confirmation. In addition, the negative effect of spring sunshine duration on tree growth
suggested that humidity may be the main driver of mature forest growth. Given the lack
of humidity data, soil moisture monitoring in both mature and young stands is a feasible
research topic in the future.
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Appendix A

Table A1. Values of standard tree ring width chronology.

Year TRW Sample
Depth Year TRW Sample

Depth

1930 0.998957 1 1972 0.977521 35
1931 1.192125 2 1973 0.945807 35
1932 1.123558 2 1974 1.16978 35
1933 1.175056 2 1975 1.048711 35
1934 1.05426 3 1976 1.398248 35
1935 0.505486 4 1977 0.963854 35
1936 0.488438 4 1978 1.056816 35
1937 0.91265 5 1979 1.061208 35
1938 1.255427 7 1980 1.022838 35
1939 1.267796 9 1981 0.770513 35
1940 1.018137 13 1982 1.11466 36
1941 0.93703 15 1983 0.986659 36
1942 0.926429 19 1984 0.790929 36
1943 0.949574 21 1985 0.954859 36
1944 1.010751 24 1986 0.965173 36
1945 0.929943 25 1987 1.160598 36
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Table A1. Cont.

Year TRW Sample
Depth Year TRW Sample

Depth

1946 0.909081 26 1988 0.857617 36
1947 0.962927 28 1989 0.932668 36
1948 0.947237 32 1990 0.832178 36
1949 1.23344 33 1991 1.106878 36
1950 1.121501 34 1992 0.977515 36
1951 1.015939 34 1993 0.893167 36
1952 1.035711 34 1994 0.894887 36
1953 0.758882 34 1995 1.19978 36
1954 0.743368 35 1996 0.978716 36
1955 0.937655 35 1997 1.352266 36
1956 1.036171 35 1998 1.063549 36
1957 0.986152 35 1999 1.160516 36
1958 0.950814 35 2000 1.162281 36
1959 1.049728 35 2001 0.867065 36
1960 1.124773 35 2002 1.129707 36
1961 0.872579 35 2003 0.987388 36
1962 1.051172 35 2004 0.841395 36
1963 1.146505 35 2005 0.7391 36
1964 0.939582 35 2006 0.869069 36
1965 1.100443 35 2007 0.77514 36
1966 1.058614 35 2008 0.619257 36
1967 0.835391 35 2009 0.895106 36
1968 0.908211 35 2010 0.836877 36
1969 0.741137 35 2011 0.719122 36
1970 0.692645 35 2012 1.203209 36
1971 0.878336 35 2013 1.440285 36
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