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Abstract: Karst rocky desertification is a common phenomenon in terrestrial ecosystems, and the
deterioration of soil quality has a serious side effect on the aboveground vegetation and underground
environmental factors. To clarify the variety of soil quality in different rocky desertification grades
in typical karst areas of southwest China, the soil quality of four rocky desertification grades was
calculated by a single model (SQI: soil quality index), two screening processes (TDS: total dataset
and MDS: minimum dataset) and three scoring methods (SSF: standard scoring function, SL: linear
scoring function and SNL: nonlinear scoring function). The key results are as follows: Significant
differences were found in the soil environment factors in non-rocky desertification (NRD), light
rocky desertification (LRD) and moderate rocky desertification (MRD) as compared to intense rocky
desertification (IRD) (p < 0.01). Except for total potassium (TK), manganese (Mn) and amylase,
the other soil environmental factors showed U-shaped changes. In contrast, TK, Mn and amylase
increased first and then decreased. Additionally, the SQI based on MDS in SSF, SL and SNL was IRD
(0.58) > NRD (0.48) > LRD (0.45) > MRD (0.43), IRD (0.53) > NRD (0.42) > LRD (0.39) > MRD (0.36)
and IRD (0.57) > NRD (0.47) > MRD (0.42) > LRD (0.40), respectively. However, the SQI was always
in the trend of IRD > NRD > MRD > LRD based on the TDS. Overall, although the soil area is scarce,
the edaphic properties, enzyme activities and soil quality are not poor in the IRD. Furthermore, we
found that SNL was more suitable for the evaluation of soil quality in the karst rocky desertification
area (R2 = 0.63, p < 0.001 and the coefficient of variation = 30.69%). This research helps to clarify the
variation in soil properties and quality during the succession of rocky desertification and provides
guidelines for the sustainable management of soil quality in areas of southwest China.

Keywords: karst rocky desertification; soil quality and properties; karst shallow fissure; intense
rocky desertification

1. Introduction

Karst rocky desertification (KRD), which is caused by soil erosion and irrational,
intensive land use in fragile karst geoecological environments has become a severe envi-
ronmental and social issue throughout the world [1]. Generally, areas with severe rocky
desertification have high bedrock exposure rates, serious shortages of effective cultivated
areas and thin soil layers [2]. In contrast, areas with light rocky desertification have high
vegetation coverage and a wider effective cultivated area of soil [3]. Thus, ecological degra-
dation is usually characterized by the loss of cultivated soil, water shortages, soil erosion,
decreased biodiversity and phytocommunity degradation in KRD areas [4,5]; this results in
uneven land resources and soil quality under different rocky desertification grades. This is
the main reason for the aggravation of the problem in the KRD area of southwest China
over many years [6].
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The global karst landform covers approximately 22 million square kilometers and
represents approximately 12% of the Earth’s surface [7,8]. In China, karst ecosystems
cover more than 900 thousand square kilometers and represent nearly 1/10 of the total
land area [9]. Southwest China is one of the three major continuous KRD areas in the
world, and the KRD areas are mainly distributed in eight provincial areas (Guizhou,
Yunnan, Sichuan, Guangxi, Hunan, Hubei, Chongqing and Guangzhou) [10,11]. Guizhou
Province has the largest distribution area and is the most seriously affected by rocky
desertification, which creates substantial obstacles and threats to economic development
and the ecological environment [12]. Due to the interaction of natural environmental factors
(such as precipitation, temperature and the differences in land use types) with man-made
activities, the habitats suffer from further soil erosion, large-area bedrock exposure and
degradation of land productivity [13]. Therefore, the composition of the plant community
is becoming increasingly singular, the vegetation coverage is becoming lower and the
exposure rate of bedrock is increasing, which further leads to more serious water and soil
loss and leakage [14,15].

The complete definition of soil quality has been described by Karlen et al. [16] and
the committee for the Soil Science Society of America as ‘the capacity of soil to function to
sustain plant and animal productivity, to maintain or enhance water and air quality and
to support human health and habitation’. Many evaluation methods have been used to
assess soil quality. The most common methods to calculate soil quality are soil quality
index methods (SQI) [17,18] and geostatistical methods [19,20] because they are easy to
use and quantitatively flexible [20]. Additionally, they can be used as valid support in the
assessment of the soil ecosystem and its management by combining temporal and spatial
information [21]. Thus, when we use these methods to calculate the SQI of the KRD area,
the selection of soil environmental factors is particularly important. Soil quality indicators
are the comprehensive performance of physical, chemical and biological properties, which
can clearly respond to the variety of soil conditions in terrestrial ecosystems [18]. At present,
in the process of SQI calculation, the total dataset (TDS) and minimum dataset (MDS) have
been widely used for the selection of soil quality factors [17]. However, few people use
different methods to calculate soil quality in different KRD areas. Hence, it is necessary to
evaluate soil quality under different rocky desertification grades by reasonable methods in
southwest China, and we hypothesized that the increase in rocky desertification has a side
effect on soil quality in the karst ecosystem and is expected to provide a scientific basis for
soil quality management in the KRD area.

Due to the different evolution processes of rocky desertification with large variations
in the soil area, soil erosion, vegetation coverage and soil properties of different rocky
desertification grades, soil management is difficult in the KRD area of southwest China [22].
For these reasons, the goals of this research were (i) to evaluate soil quality under different
rocky desertification grades in southwest China by using a single soil quality model (SQI),
two screening processes (TDS and MDS) and three scoring methods (SSF, SL and SNL);
(ii) to determine which method is most suitable for soil quality evaluation in the KRD area;
and (iii) to quantify the relationship between rocky desertification grade and soil quality.

2. Materials and Methods
2.1. Study Region

We carried out this study in Puding County, Anshun City, Guizhou Province, south-
west China (26◦17′12′′~26◦22′09′′ N, 105◦44′53′′~105◦45′19′′ E) (Figure 1). The study site
is located in the watershed between the Yangtze River system and the Pearl River system
on the Guizhou Plateau. This is a typical karst area in the warm and humid climate area
of the mid-subtropical monsoon, with an annual average temperature of 15 ◦C and an
annual temperature range of about −3.4–34.8 ◦C. The mean annual rainfall is 1300 mm,
and 83%–88% of the total annual rainfall (891–1390 mm) is concentrated from May to
October [23]. In addition, the average altitude is 1387 m, the altitude range is 1100–1600 m
and the mean slope is 24◦ [23,24]. The main crops and other economic crops include rice,
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corn, sorghum, wheat, loquat, plum, flue-cured tobacco and peanuts. Additionally, the
soil types with the broadest distributions are yellow, lime and paddy soil, accounting for
37.18%, 33.24% and 27.02% of the total cultivated land area, respectively [25].
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Figure 1. Location of the study area and sampling sites in Puding county, Guizhou province and the
pictures of different rocky desertification grades in the study: (a) non rocky desertification (NRD),
(b) light rocky desertification (LRD), (c) moderate rocky desertification (MRD) and (d) intense rocky
desertification (IRD).

2.2. Soil Sampling Measurements

In March 2021, soil sample plots of four different rocky desertification grades (NRD:
non rocky desertification, LRD: light rocky desertification, MRD: moderate rocky desertifi-
cation and IRD: intense rocky desertification) were selected based on the industry standard
of the State Forestry Administration (LY/T 1840-2009) and the classification standard of
rocky desertification (Table 1) [26,27]. Additionally, we recorded the basic information
of each rocky desertification sample (Table 2). Then, three small quadrats of 50 × 50 m
were selected for the four different rocky desertification grades. The distance between each
small quadrat was at least 200 m. Finally, soil samples were collected from the 0–10, 10–20,
and 20–30 cm depths at each plot and every sample was a mixture of five subsamples
collected in an ‘S’ shape. The total number of soil samples collected was 4 treatments × 3
soil depths × 3 replicate sites × 5 subsamples = 180. In the laboratory, except for the soil
enzyme activity which was sieved by 2 mm and placed in a 4 ◦C refrigerator, the other
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samples were air-dried and sieved to 0.149 mm for physicochemical analyses, respectively.
Soil physicochemical properties are indicators that reflect the basic properties of soil but
are also the key indicators that reflect soil fertility. Thus, in this study, we referred to
the indicators selected by previous researchers to calculate soil quality combined with
a correlation analysis of soil environmental factors under different rocky desertification
grades and selected a total of ten indicators as the TDS. These soil parameters included
sucrase, amylase, β-glucosidase, total nitrogen (TN) [28], total phosphorus (TP) [29], total
potassium (TK) [30], pH, soil organic matter (SOM) [31], heavy metal manganese (Mn) [30]
and soil moisture content (SMC).

Table 1. Classification standard of different rocky desertification grades in the study: non rocky
desertification (NRD), light rocky desertification (LRD), moderate rocky desertification (MRD) and
intense rocky desertification (IRD).

Rocky
Desertification

Grade

0.2 km2 Bare
Rock Rate (%)

0.2 km2

Vegetation + Soil
Coverage

Degree of Soil
Erosion Vegetation Characteristics Average Soil

Depth

NRD 20–30 70–80 not obvious dominated by rocky and
xerophytic shrubs shallow

LRD 31–50 50–69 relatively
obvious sparse shrub and grass shallow

MRD 51–70 30–49 obvious low structure, coverage and
biomass are relatively stable shallow

IRD 71–90 10–29 strong mainly shrub grass of low
structure shallow

Table 2. Basic information of four rocky desertification grade samples in the study: non rocky
desertification (NRD), light rocky desertification (LRD), moderate rocky desertification (MRD) and
intense rocky desertification (IRD). Slope direction (SD), rocky exposure rate (RER) and vegetation
coverage (VC).

Plot Type SD Slope/◦ Altitude/m RER/% VC/% Interference
Conditions

NRD Northeast 23 1300–1305 26 92 Wasteland, without
interference

LRD Northeast 20 1202–1225 42 79 Wasteland, without
interference

MRD Northeast 20 1162–1289 66 58 Light human
disturbance

IRD Northeast 16 1158–1160 85 20 Intense human
disturbance

2.3. Soil Quality Evaluation

All selected soil environmental indicators, which are called the TDS, had a significant
impact on the results of the soil quality evaluation [32]. The following steps were used to
calculate soil quality. First, representative indicators were identified. Second, through the
dimension reduction analysis method in principal component analysis (PCA), multiple
indices were transformed into several irrelevant comprehensive indices, and eigenvalues
≥ 1 were retained as the principal components. Third, we rotated the maximum com-
munalities and selected the high load indicators in the rotated load matrix to confirm the
MDS. Finally, MDS was determined. The determination of the MDS mainly includes the
following steps: (1) the TDS are divided into groups, taking the characteristic value ≥ 1 as
the extraction principle, several principal components are obtained through PCA; (2) the
indicators with load values > 0.5 are divided into a group, and if there are indicators with
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load values > 0.5 in different principal components, they are divided into groups with low
correlations according to the correlation analysis between the indicators; (3) the indicators
with norm values > 90% in each group are selected. The calculation of the norm value
(5) [33] can avoid the redundancy of soil data as much as possible and retain its soil index
information to the greatest extent. Provided that there was no correlation, they all can be
selected for the MDS. In contrast, the largest norm value is selected to enter the MDS.

After the MDS was determined, the SQI was evaluated (4) [32,34] according to the
standard scoring function (SSF) (1) [32,35], linear regression equation (SL) (3) and nonlinear
regression (SNL) (2) [33]. Finally, the SQI was calculated as follows:

SSF =

1− 0.9
x− L
U − L

1 x < L
L ≤ x ≤ U
0.1 x > U

(1)

where x is the actual measured indicator value, and L and U are the lower and upper
threshold values, respectively [32,35].

SNL =
a

1 +
(

x
x0

)b (2)

SL =
x− L
U − L

...(i) SL = 1− x− L
U − L

...(ii) (3)

where x0 is the average value of the indicator value, a is the maximum score (a = 1) reached
by the function and b is the equation’s slope value. When b is −2.5 and 2.5, the curve was
set for ‘more is better’ (i) and ‘less is better’ (ii), respectively [34].

SQI =
n

∑
i=1

(SiWi) (4)

where Si is the score of each indicator and is obtained by the product of weight and
communality, Wi is the ratio of the communality of the principal component molecule to
the total communalities and n is the total number of the MDS [35].

Njk =

√√√√ k

∑
1

(
u2

jkλk

)
(5)

where Njk is the norm value, k is the number of eigenvalues ≥ 1 in the principal component,
λk is the eigenvalue of the kth principal component and ujk is the single factor load of the j
index [33].

2.4. Data Analysis

All analyses were conducted in SPSS 22 (SPSS Inc., Chicago, IL, USA). Excel 2010 was
used to analyze all data and fitted linear regression equations, respectively. All figures were
analyzed in Origin 2021 pro and GraphPad Prism 8.

3. Results
3.1. Eco-Environmental Factors

We comprehensively selected ten soil environmental factors as the TDS, including
SMC, TN, TP, TK, SOM, Mn, pH, sucrase, amylase and β-glucosidase. As shown in Figure 2,
the edaphic properties (TN, SOM, TP) from the NRD to the IRD showed ‘U-shaped’ changes.
Under the same KRD grade, they all decrease with increasing soil depth. There was a
significant difference (p < 0.01) between the different rocky desertification grades, and there
was no difference between the different soil layers of the same grade (p > 0.05). However,
the concentrations of Mn were the highest in MRD (1.33 ± 0.12 g kg−1), the pH values were
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the highest in NRD and TK first increased and then decreased. There was no significant
difference in SMC among the three grades of NRD, LRD and MRD, but the content of IRD
(0–10 cm:25.85 ± 1.47, 10–20 cm: 26.02 ± 4.12 and 20–30 cm: 27.59 ± 3.69%) was much
higher than that in the first three rocky desertification areas. As shown in Figure 3, the
three soil enzyme activities decreased with the increase in the soil layer, sucrase increased
with the increase in rocky desertification degrees, amylase from NRD to IRD showed
LRD > MRD > IRD > NRD, while β-glucosidase first decreased and then increased, with
significant differences among different rocky desertification grades (p < 0.01).
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Figure 2. Concentrations of environmental factors in different rocky desertification grades in the
study: non rocky desertification (NRD), light rocky desertification (LRD) and moderate rocky deserti-
fication (MRD) to intense rocky desertification (IRD). Different capital letters represent different rocky
desertification grades of the same soil layer have significant differences, and different small letters
represent significant differences between different soil layers of the same rocky desertification grade
(p < 0.05). S1: 0–10 cm, S2: 10–20 cm and S3: 20–30 cm. (a) Total nitrogen, (b) Soil organic matter,
(c) Manganese, (d) pH, (e) Total phosphorus, (f) Total potassium and (g) Soil moisture content.

Soil enzyme activity is greatly affected by pH, SMC, Mn and TK (Figure 4). Sucrase
was negatively correlated with pH and TK, and the correlation coefficients were −0.24
and −0.043, respectively. β-glucosidase was greatly affected by pH and the correlation
coefficient was −0.025. From all of the soil environmental factors, pH had a strong negative
correlation with SMC, TN, TP and SOM, while TN, TP, SMC and SOM were positively
correlated. In addition, TK and Mn had a strong response to soil environmental factors in
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TDS. Overall, soil enzymes are obviously affected by soil physical and chemical factors in
rocky desertification areas.
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Figure 3. Soil enzyme activities in different (karst rocky desertification) KRD grades. Different
capital letters represent different rocky desertification grades of the same soil layer have significant
differences, and different small letters represent significant differences between different soil layers
of the same rocky desertification grade (p < 0.05). (a) Sucrase, (b) Amylase and (c) β-glucosidase.
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3.2. Soil Quality Based on Total Dataset Method

The dimension reduction analysis of PCA was used to analyze the TDS indicators
(Table 3). Three main components were obtained, namely SOM, sucrase and amylase,
which represented 94.14% of the ten eco-environmental factors. Among the three principal
components, the loading factors were 0.987, 0.941 and 0.715. In the first principal component
(PC1), the load factors of pH (0.940), TN (0.961) and TP (0.949) were within 10% of the
maximum load factor, but it can be clearly seen in Figure 4 that these indicators had a
strong correlation with SOM (p < 0.01). Thus, only SOM was selected in PC1 for the MDS.
Similarly, the second (PC2) and third principal components (PC3) were sucrase and amylase
in the MDS, respectively.
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Table 3. Principal component analysis (PCA) load matrix of soil environmental factors.

TDS PC 1 PC 2 PC 3

Sucrase 0.125 0.941 −0.248
Amylase −0.463 0.502 −0.715

β-glucosidase 0.897 0.149 −0.315
pH 0.940 −0.315 −0.033

SMC 0.600 0.330 0.650
TN 0.961 0.246 0.065
TP 0.949 0.276 0.084
TK −0.851 0.277 0.193

SOM 0.987 0.084 −0.092
Mn −0.463 0.575 0.572

The communalities of TDS and MDS were obtained from the PCA, and the weight of
each indicator was calculated as shown in Table 4. Then, the three scoring functions (SSF,
SL and SNL) were used to obtain the scores of TDS under the four rocky desertification
grades (Figure 5a). The SQI scores calculated by the three scoring functions showed the
same trend: IRD > NRD > MRD > LRD, and using the SSF, SL and SNL scores from NRD to
IRD were 0.56, 0.36, 0.41, 0.63, 0.51, 0.29, 0.35, 0.59, 0.55, 0.37, 0.39 and 0.58.

Table 4. Communalities, weight and norm value of environmental factors based on minimum dataset
(MDS) and total dataset (TDS), respectively. COM: communalities.

Indicator
TDS MDS

COM Weight COM Weight Norm Value

Sucrase 0.963 0.102 0.923 0.331 1.37
Amylase 0.977 0.104 0.911 0.327 1.59

β-glucosidase 0.926 0.098 2.24
pH 0.983 0.104 2.36

SMC 0.892 0.095 1.73
TN 0.988 0.105 2.38
TP 0.985 0.105 2.36
TK 0.839 0.089 2.14

SOM 0.989 0.105 0.955 0.342 2.43
Mn 0.871 0.093 1.55
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Figure 5. Score of soil quality index based on MDS and TDS in the study: soil quality index (SQI), total
data set (TDS), minimum data set (MDS), standard scoring function (SSF), linear scoring function (SL)
and nonlinear scoring function (SNL). Different small letters represent significant differences between
different soil layers of the same rocky desertification grade (p < 0.05), ns: not significant. (a) Soil
quality index according to the total data set and (b) Soil quality index according to the minimum
data set.
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3.3. Soil Quality Based on Minimum Dataset Method

We obtained communalities of 0.955, 0.923 and 0.911 for SOM, sucrase and amylase
respectively, from the dimension reduction analysis of PCA (Table 4). Additionally, the
weight values for SOM, sucrase and amylase were 0.331, 0.327 and 0.342, respectively. In
the MDS, the three communalities indicated that the interpretation of SOM for the original
environmental factors was the highest and the overall representation was the best, followed
by sucrase and amylase.

As shown in Figure 5b, the scoring trend of soil quality obtained by the three scoring
functions was different from that of TDS. The trend under SF and SL was IRD > NRD >
LRD > MRD, and in SNL it was IRD > NRD > MRD > LRD. Additionally, the soil quality
scores in SSF for NRD, LRD and IRD were 0.48, 0.45, 0.43 and 0.58, respectively; the SL
values were 0.42, 0.39, 0.36 and 0.53, respectively; and the SNL values were 0.47, 0.40, 0.42
and 0.57, respectively. This result indicated that the more serious the rocky desertification
grade is, the better the soil quality is. In contrast, the lighter the rocky desertification grade
is, the worse the soil quality is.

3.4. Soil Quality Index Validation

According to the criteria for dividing the score range of the SQI [36,37], as shown in
Table 5 based on the SNL, the excellent proportion of soil quality was 0, the good proportion
was 27.78%, the medium proportion was 30.56% and the poor proportion was 41.67%.
Furthermore, the excellent, good, medium and poor proportions of soil quality were 2.78%,
22.22%, 22.22% and 52.78%, respectively, in SL. Similarly, the excellent, good, medium and
poor values were 5.56%, 30.56%, 25% and 38.89%, respectively, in SSF. Additionally, the
proportion of the three scoring functions was different, but the overall trend is the same
based on the MDS, which showed that the ecological landscape area of poor soil quality
in the KRD area was widespread. As shown in Table 5, the ranges of change of the SQI
under the SNL, SL and SSF score functions were 0.214–0.709, 0.124–0.782 and 0.211–0.823,
respectively. The mean values of the SQI from SNL to SSF were 0.466, 0.425 and 0.483,
respectively. In addition, the coefficient of variation from SNL to SSF showed a trend SL
(44.94%) > SSF (35.61%) > SNL (30.69%). This result indicated that SNL is more suitable for
soil quality evaluation in the KRD area.

Table 5. Soil quality statistics in the minimum dataset (MDS).

Soil Quality
Index

Change
Range Mean

Standard
Deviation

Coefficient
of Variation/%

Proportion of Sample Plots/%

Excellent
(0.8–1.0)

Good
(0.6–0.8)

Medium
(0.4–0.6)

Poor
(0–0.4)

SQI-NL 0.214–0.709 0.466 0.143 30.69 0 27.78 30.56 41.67
SQI-L 0.124–0.782 0.425 0.191 44.94 2.78 22.22 22.22 52.78

SQI-SSF 0.211–0.823 0.483 0.172 35.61 5.56 30.56 25.00 38.89

Finally, the linear regression equation was used to fit the soil quality scores of the MDS
and the TDS, and we found that the linear regression equation based on the SSF (R2 = 0.52)
was not different from the SL (Figure 6). However, the R2 of the linear regression equation
was 0.63 in the SNL. This further indicated that the SNL is more suitable for the KRD area
than the SSF and SL when we calculated the SQI based on three scoring functions under
the MDS. Meanwhile, the proportions of excellent, good, medium and poor soil quality for
MDS were 2.8%, 26.9%, 25.9%, and 44.4%, respectively, and for TDS were 0%, 19.4%, 45.4%
and 35.2%, respectively (Figure 7).
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4. Discussion
4.1. Soil Quality and Eco-Environmental Factors

Soil provides the nutrients and habitat necessary for plant diversity and soil microbial
diversity in the KRD area [38]; a favorable soil environment is essential to supporting root
growth and may have a positive impact on physicochemical properties [39,40]. Soil physical,
chemical and biological indicators can reflect the state of the soil microenvironment and
provide a theoretical basis for the restoration of rocky desertified ecosystems [41]. Many
studies have measured the concentration and distribution characteristics of the soil pH
value, TN, TP, TK, SOM, some heavy metals and many soil enzymes in karst areas [34,42].
Some reports showed that except for soil pH values and Ca, which increased with rocky
desertification grade, the soil component contents were MRD > LRD > IRD [3,43]. However,
the trend was IRD > NRD > LRD > MRD in our research. The main causes for this may be
the differences in climate types, soil texture types and terrain conditions. We found that
the areas with severe rocky desertification were the most seriously disturbed by human
beings [34,44], which led to better performance of soil nutrients (pH, TN, TP, TK, SOM)
and soil quality in IRD habitats [45,46]. Thus, there is an interesting phenomenon in the
IRD area. Rocky desertification is very serious, but the soil properties are good. Of course,
different karst types, topographic conditions, regional rainfall and temperature in rocky
desertification areas are also important factors affecting soil nutrients [47].
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In the soil ecosystem, enzyme activity is closely related to microbial community char-
acteristics (such as soil bacteria and fungi) and linked to soil organic carbon (β-glucosidase
and sucrase), TN (urease and nitrate reductase), and TP (alkaline/acid phosphatase) cy-
cling [12,15]. In KRD areas, the decline in soil enzyme activities is significantly related to
the rocky desertification grade [12,48]. In our study, the variation in soil enzyme activity
was obvious with different rocky desertification grades. Partial experiments have revealed
that the microbial characteristics and soil enzyme activity decline with an increase in the
proportion of bedrock exposure rate under different rocky desertification conditions [24,38].
This is inconsistent with our research results, which may be because our IRD area has
been seriously disturbed by human beings, which affects the microbial activity and plant
diversity distribution and makes the soil enzyme activity higher in IRD. In addition, Bates
et al. (2010) and Steven et al. (2015) [49,50] reported that KRD does not erode ectomycor-
rhizal fungal species richness but rather alters the microbial community. Although KRD
reduced soil fertility and altered microbial community structures, microbial diversity did
not diminish [51,52]. These studies further confirmed that the change in microbial activity
in severe rocky desertification areas is an important factor affecting soil enzyme activity.

However, in our study soil enzyme activities and many environmental factors were
highest in the IRD area, which is consistent with previous research results for karst shallow
fissures in KRD ecosystems [38]; the soil properties in karst shallow fissures with severe
rocky desertification are higher than those in areas with light rocky desertification [12,15].
We found that the content of soil nutrients in the IRD area is close to that in karst shallow
fissures, and the large area of bedrock exposure in the IRD area is the basis for the formation
of karst shallow fissures. Coupled with natural nitrogen deposition, rainfall flow conver-
gence, etc. [53,54]. Therefore, we hypothesize whether the severe rocky desertification area
of karst ecosystems in southwest China will develop into a large area of karst shallow
fissures in the future (Figure 8). However, this needs to be confirmed by further research
and observation. Overall, there are some differences in the study of different rocky deserti-
fication soil nutrients and enzyme activities in different regions that may be mainly due
to the comprehensive influence of various factors, such as terrain slope, land use change,
climate type, plant diversity, bedrock exposure rate, rain erosion and soil erosion [5,43].
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4.2. Soil Quality Evaluation Methods

Soil quality evaluation is of great importance to the comprehensive evaluation of soil
ecosystems [34] and the method is broadly used because of its convenient operation, and
reliable and accurate results [55]. In the calculation of SQI, TDS is an important method to
select soil indicators, because it can obtain more comprehensive results, but too many soil
indicators will make the data redundant [32]. Compared to TDS, using the MDS method to
assess the SQI can significantly shorten the time and reduce data redundancy [55,56]. Thus,
this study uses MDS and TDS to evaluate the SQIs of different rocky desertification grades.
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The SSF is a common method for calculating the SQI, which can score in combination
with the selected soil indicators to more intuitively reflect soil quality status [32]. However,
in order to compare and screen more suitable methods for soil quality scoring in rocky
desertification areas, we cite SL and SNL, which can dimensionless soil index and convert
it into a score of 0–1 for evaluation [33,57]. Through the dimension reduction analysis in
PCA, screening the MDS can effectively reduce data redundancy. SOM can increase the
content of soil nutrients and affect the structure and activity of the microbial community,
which is a significant effect on soil fertility and plant community composition [58]. In
addition, soil enzyme activity is the main indicator of indirect reactions of microbial activity
characteristics and soil nutrient cycles, such as amylase, sucrase and β-glucosidase which
are closely related to the cycle of soil organic carbon [17,59]. In our study, amylase and
sucrase had higher percentage contributions, which indicated that soil organic carbon, SOM
and microorganisms in rocky desertification areas are important soil quality indicators.
SMC also has direct effects on soil properties and microbial communities and seriously
affects the degradation of organic matter [60,61]. As an important factor limiting plant
growth and development in the ecosystem, the effectiveness of TN, TP and TK is also
particularly important to the ecosystem function and soil quality [62].

Scoring methods SL (R2 = 0.52), SNL (R2 = 0.63) and SSF (R2 = 0.52) have significant
positive correlations under the MDS and the TDS, and there is no significant difference be-
tween SL and SSF. Therefore, we believe that using SNL under the MDS can evaluate the soil
quality of rocky desertification areas more directly. However, soil quality in the karst ecosys-
tem is affected by many factors, including natural factors (climate, rainfall, temperature),
regional factors (topography, rock characteristics) and human activities [63,64]. Further-
more, plant community compositions and bedrock exposed rate are two dominating factors
effects on soil quality in rocky desertification areas [34,38]; they indirectly affect SOM and
enzyme activity to improve and affect soil quality during rocky desertification processes.

4.3. Relationship between Intense Rocky Desertification and Karst Shallow Fissures

There are two peculiar phenomena in our study area of rocky desertification. One
phenomenon is that a large amount of bedrock is exposed, the surface soil layer is very thin
and most of the soil is found in the karst shallow fissure; the other phenomenon is that
arbores are mainly found above karst shallow fissure areas filled with soil, while only some
low-biomass or short shrub vegetation can be grown around fissures [38,65] (Figure 8).
According to the industry standard of the State Forestry Administration (LY/T 1840-2009)
and the classification standard of rocky desertification [26,27], the two peculiar phenomena
belong to the IRD area. However, TN, TP and SMC show a U-shaped variety in our IRD
area and are consistent with the research of Chen et al. (2018) [66], which further shows
that serious rocky desertification is not directly limiting soil quality [66,67]. These studies
and our research show that the IRD area is not the area with the worst soil quality, and
the characteristics of a high bedrock exposure rate, low vegetation coverage and narrow
soil area may be the main influencing factors for the SQI. With the intensification of rocky
desertification, the bedrock exposed rate increases, and the soil available area decreases. It is
this high bedrock exposed rate that makes the soil exist in the low-lying groove, and the soil
nutrients on the high terrain and bedrock were converged into the groove soil by rainwater
scouring [2,68]. In addition, the nutrients brought by atmospheric nitrogen deposition were
also collected in the soil. On the contrary, in areas with light rocky desertification grades,
although the bedrock exposure rate is not obvious, there are more small-sized rocks in a
large area of soil, which will be washed away by rain [68]. Therefore, the soil quality in
areas with serious rocky desertification is better.

In rocky desertification areas, the soil quality and nutrients of karst shallow fissures
(soil layer > 30 cm) are lower than those of surface soil (soil layer ≤ 30 cm) (Figure 8b),
but they are more suitable for the growth of deep-rooted plants and can provide favorable
habitats for these plants [2,38,69,70], which has great significance for karst ecological
restoration. During the sample plot investigation, we found that the plant diversity is
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not rich in the IRD area, and deep-rooted plants can be seen in the stone fissure soil. Our
physicochemical properties were the highest in IRD, which is consistent with Lu et al. (2014)
and Zheng et al., (2022) [68,71]. Therefore, we propose the question of whether the IRD
area will develop into a large area of karst shallow fissure soil in the future (Figure 8).

5. Conclusions

We evaluated soil quality in different rocky desertification grades of southwest China
using one model (SQI), two selection methods (MDS and TDS) and three scoring functions
(SSF, SL and SNL). Significantly different (p < 0.05) eco-environmental factors were found
among the NRD, LRD, MRD and IRD. Except for TK, Mn and amylase, they all showed a
U-shaped variety. The SQIs based on MDS showed IRD > NRD > LRD > MRD (SSF and SL)
and IRD > NRD> MRD > LRD (SNL). However, based on the TDS, the trend of soil quality is
always IRD > NRD > MRD > LRD. Furthermore, we found that SNL (R2 = 0.63, p < 0.001 and
CV = 30.69%) was more suitable for the evaluation of soil quality in the KRD area. Overall,
the IRD soil area is narrow, and the soil nutrients, enzyme activities and soil quality are not
poor. We concluded that the limited soil area can provide an appropriate habitat for deep
plant growth and that there is a tendency to develop into large-area karst shallow fissures
in the IRD area of southwest China. In conclusion, the deepening of rocky desertification
does not directly affect the soil quality in karst ecosystems, human disturbance, soil texture
and topographic features may be the main factors. In particular, the increase in bedrock
exposure rate is also a key factor affecting soil quality in rocky desertification areas. Our
research is helpful for adopting a more appropriate strategy and practices for the restoration
of different rocky desertification grade in the fragile karst areas of southwest China and
provide scientific basis for soil quality management of degraded ecosystems.
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