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Abstract: Kulangsu is a famous scenic area in China and a World Heritage Site. It is important
to obtain knowledge with regard to the status of soundscape and landscape resources and their
interrelationships in Kulangsu before it became a World Heritage. The objective of this study was
to explore the spatial dependency of the soundscapes in Kulangsu, based on the spatiotemporal
dynamics of soundscape and landscape perceptions, including perceived sound sources, soundscape
quality, and landscape satisfaction degree, and the spatial landscape characteristics, including the
distance to green spaces, normalized difference vegetation index, and landscape spatial patterns.
The results showed that perception of soundscape and landscape were observed in significant
spatiotemporal dynamics, and the dominance of biological sounds in all sampling periods and
human sounds in the evening indicated that Kulangsu scenic area had a good natural environment
and a developed night-time economy, respectively. The green spaces and commercial lands may
contribute to both the soundscape pleasantness and eventfulness. Moreover, the soundscape quality
was dependent on the sound dominant degree and landscape satisfaction degree but not on the
landscape characteristics. The GWR model had better goodness of fit than the OLS model, and
possible non-linear relationships were found between the soundscape pleasantness and the variables
of perceived sound sources and landscape satisfaction degree. The GWR models with spatial
stationarity were found to be more effective in understanding the spatial dependence of soundscapes.
In particular, the data applied should ideally include a complete temporal dimension to obtain a
relatively high fitting accuracy of the model. These findings can provide useful data support and
references for future planning and design practices, and management strategies for the soundscape
resources in scenic areas and World Heritage Sites.

Keywords: soundscape mapping; soundscape quality; spatiotemporal dynamics; landscape satisfac-
tion; landscape pattern; scenic area

1. Introduction

Rapid urbanization has led to an increasing proportion of the population settling in
cities worldwide [1]. Living in high-density built-up areas limits urban residents’ access to
nature and may expose them to certain environmental hazards, such as noise pollution [2].
Scenic areas possess abundant natural and cultural landscapes as well as infrastructure
and facilities for human activities [3], which is a critical vehicle for people to interact
with natural environment. The scenic areas located in urban areas are an important and
special urban green space (UGS), providing a variety of important ecosystem services to
urban residents, such as air purification [4], biodiversity conservation [5], nature-based
recreation [6], and noise and quiet reduction [7]. Furthermore, they can improve the quality
of urban environments, promote sustainable lifestyles, contribute to human health and
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well-being [8], and even reduce mortality [9]. However, with the development of tourist
industry, the conflicting interests e.g., between noise of tourist activities and experiencing
the sounds of nature have become one of the focal issues in the management of scenic
areas [10,11], because auditory perception is as important as visual perception in people’s
visiting experience [12,13].

Currently, scholars no longer equate the good acoustic environment with simply re-
ducing noise levels [14,15], but rather emphasize the importance of people’s subjective per-
ception of the acoustic environment following the soundscape concept of ISO 12913-1 [16].
Against this backdrop, more and more studies have explored and focused on the human
perceived acoustic environment [17,18]. However, exploring soundscapes needs a multi-
faceted perspective because soundscape perception is associated with not only acoustic
components but also non-acoustic factors [19]. Sound sources are the most basic and
important acoustic components in creating soundscapes in urban areas [20], because the
sound dominance in a soundscape is able to affect the spatiotemporal dynamics and the
outcome of people’s perception of the soundscape [21,22]. Regarding non-acoustic factors,
landscape compositions account for a high proportion of the influence on soundscape
perception, with can be summarized as subjective and objective aspects [18]. The former is
mainly due to people’s perception varied from landscape elements, such as naturalness [23],
visual quality [24], urban contexts [25], features of landscape and architecture [17], audio-
visual coherence [26], and infrastructure services [27]. The latter is related to the landscape
characteristics, for example, accessibility [28], vegetation coverage [29], landscape spatial
pattern [7], and biodiversity [30].

These relationships indicate that a soundscape may possess spatial dependencies
on such factors. The spatial dependence is seen as a normal extension of the first law
in geography [31]—“everything is related to everything else, but near things are more
related than distant things”. It may occur due to the spatial dimensions with regard to
social-cultural contexts and economic factors [32]. Previous studies found that the temporal
dimension is also a critical aspect for exploring the spatial dependence, and neglecting the
temporal characteristics could lead to a misunderstanding of the “real” measure of spatial
dependence over time [33,34]. However, to date only a few studies have investigated
spatial dependence of soundscape quality but with some deficiencies. For instance, Hong
and Jeon [35] explored the spatial dependence of urban soundscapes, nonetheless, solely
on the perceived sound sources. Rice et al. [36] explored the spatial dependence of noise
abatement on the features of protected areas, but they did not consider people’s perception
of the acoustic environment. In general, current studies have neither explored the spatial
dependency of soundscape quality with the principal components, i.e., pleasantness and
eventfulness [37], nor included variables in terms of landscape perception and green space
features. Besides, the temporal characteristics of the spatial dependence of soundscape have
not been effectively explored either. Exploring the spatial dependence of soundscape can
clarify the interrelationship between soundscape perception and impact factors, which may
help planners and managers identify the main disturbances to the acoustic environment in
scenic areas and therefore find solutions and protection measures [35].

In 2016, Kulangsu was suggested as a cultural heritage by United Nations Educational,
Scientific, and Cultural Organization (UNESCO), and subsequently was successfully listed
as a World Heritage at the 41st World Heritage Congress in Krakow, Poland, in July 2017 [38].
Therefore, 2016 was a “landmark year” that represents a turning point for Kulangsu from
China to the world. Kulangsu is a unique and historic international settlement, an important
UGS, and a famous tourist attraction [39], the natural and cultural resources of which
constitutes the unique soundscapes of outstanding universal value [40]. Unfortunately, such
soundscapes are suffering from excessive disturbance and destruction by human activities,
whether present, past, or even future. Accordingly, exploring the spatiotemporal dynamics
of soundscapes and landscapes as well as the spatial dependence of soundscape quality in
Kulangsu Island has significant implications for soundscape planning and management,
and soundscape resources conservation, not only in UGS but also in the scenic area and
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even other similar World Heritage Sites. Given this importance, the objective of this study
is (1) to visualize and analyze the spatiotemporal dynamics with regard to soundscape and
landscape perception, as well as the spatial landscape features in Kulangsu Island; and
(2) to examine the spatial dependence of soundscape quality on these compositions. To this
end, both global and local spatial regression methods were employed.

2. Materials and Methods
2.1. Study Area

The study area is located on Kulangsu Island (Figure 1a), a World Heritage and one
of the National 5A level tourist attractions in China. The area of it is about 1.92 km2, with
a length of 2.3 km from north to south and 1.6 km from east to west. The green spaces
occupied more than one-third of the island (Figure 1b), which was the highest percentage
(32.36%) of land use type (according to 2017 land use vector data of Kulangsu Island
obtained from Xiamen Municipal Natural Resources and Planning Bureau). The types of
green space include parks, squares, and woodlands [41].
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Figure 1. Case study area: (a) location of Kulangsu Island in Fujian Province, China; (b) land use
type with sampling points.

The present study was conducted from 17 July 2016, to 21 July 2016, in the application
process of World Heritage. In July 2017, Kulangsu Island was officially inscribed on the
World Heritage List. Based on the pilot study and relevant literature [7,12,42], 4 main-
categories and 19 sub-categories sound sources were identified in the area (Table 1).

Table 1. Classification of sound sources in the study area.

Main Category (Abbreviation) Sub-Category

Human activity sound (HS) Talking, footstep, playing children, hawking, folk activity, live performance

Mechanical sound (MS) Music radio, broadcast notification, construction, traffic noise, alarm

Biological sound (BS) Birdsong, insect, cat

Geophysical sound (GS) Sea wave, wind, tree, water, raining

We selected 52 observation points according to the land use type, function, and
accessibility, and interviewed random passersby by questionnaire surveys on site in the
morning (8:00–11:00), afternoon (13:00–16:00), and evening (17:00–20:00) of the days. A
team of 12 college students from landscape architecture faculty of Fuzhou University got
involved to help conduct the field survey and distribute the questionnaire to random
people in the study area. They were professionally trained before executing the field
survey in order to ensure the quality of study. The data includes personal information and
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subjective perception ratings for the soundscape and landscape of the interviewees. A total
of 703 valid questionnaires were returned, with 10 to 15 questionnaires on each sample
site, indicating that enough and accurate results can be achieved [43,44]. The interviewees’
information is shown in Figure S1 (Supplementary Material). Analysis of the questionnaire
data in SPSS 25.0 showed that the alpha coefficient was 0.86, indicating that the reliability
of the questionnaire data was good and suitable for further analysis.

2.2. Data Collection
2.2.1. Soundscape and Landscape Perception

Participants were asked to evaluate the sound source, soundscape quality, and land-
scape satisfaction degree of the environment, based on perceived indicators using a Likert
5-point scale (Table 2).

Table 2. Detailed information for each perceived indicator.

Category Indicators (Abbreviation) Survey Question Rating Scale or Formula Reference

Sound source

Perceived occurrences of sound (POS)
To what frequency do you

presently hear the following four
types of sounds?

1-never, 2-occasionally,
3-normal, 4-frequently,

5-too frequently
[12,17,24]

Perceived loudness of sound (PLS)
To what intensity do you presently

hear the following four types
of sounds?

1-too weak, 2-weak, 3-neither
weak nor strong, 4-strong,

5-too strong
Sound dominant degree (SDD) / SDDij = POSij × PLSij

Soundscape quality

Pleasant
To what extent do you agree or

disagree that the present
surrounding sound environment

is . . . ?

1-strongly disagree,
2-disagree, 3-general, 4-agree,

5-strongly agree
[37]

Comfort
Harmonious

Vivid
Richness
Eventful

Landscape satisfaction
degree

Satisfaction of natural landscapes (SNL) To what extent do you satisfy or
dissatisfy that the present

surrounding landscape with
regard to . . . ?

1-very dissatisfied, 2-not
satisfied, 3-general,

4-satisfied, 5-very satisfied
[12,27]

Satisfaction of landscape design (SLD)
Satisfaction of historical building (SHB)

Satisfaction of visual-audio experience (SVA)
Satisfaction of service facilities (SSF)

Notes: j is the jth sample, i is the ith source, and n is the sample size.

2.2.2. Analysis of Landscape Characteristics

This study objectively quantifies the landscape features within Kulangsu in two
aspects: (1) features of green spaces, including Distance to green spaces (DtGS) and Nor-
malized difference vegetation index (NDVI), and (2) landscape spatial patterns, including
patterns of the green space class and overall landscape. DtGS was calculated based on the
“Euclidean distance” spatial analysis tool in GIS, which is measured in the projection unit
of the raster and calculated from one cell center to the other cell center, and can objectively
measure the spatial distance of the global scale [45], with the Equation (1) shows:

D =

√
(x2 − x1)

2 + (y2 − y1)
2 (1)

where (x1, y1) are the coordinates of one point, (x2, y2) are the coordinates of the other point;
D is the Euclidean distance between (x1, y1) and (x2, y2).

We imported the collected Sentinel-2 level 2A images as an ensemble into the Google
Earth Engine (GEE) JavaScript-based code editor environment [46], to calculate the value
of NDVI for each time series image. Only images with less than 10% cloudiness in the
study area were extracted, to ensure data integrity, and the calculated images were between
March 2017 (the first Sentinel-2 available image in GEE) and January 2019. All data were
top-of-atmosphere (TOA) images and had been atmospherically corrected [47]. The FMask
algorithm [48] was used in multispectral instrument (MSI) data processed to identify cloud,
cloud shadow, cirrus, and snow/ice observations. The NDVI values were calculated for
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each image element and a time series NDVI image collection with a spatial resolution of 10
m is generated. The calculation formula is shown in Equation (2):

NDVI =
NIR − RED
NIR + RED

(2)

where RED is the TOA values of the red band (630–680 nm); NIR is the TOA values of the
near infrared band (845–885 nm). The NDVI takes values in the range of −1 to 1 [49].

To examine the landscape patterns, we considered landscape features in terms of area,
density, shape, diversity, and aggregation on class and landscape levels [7,50]. Details of
the calculated landscape spatial indices are shown in Supplementary Material (Table S1).

2.3. Mapping Process

Based on the questionnaire data, the mean values of ratings for soundscape and
landscape perception were calculated for each observation point at each sampling time
period, and the data were subsequently visualized in ArcGIS 10.7. By comparing the
different interpolation methods provided in spatial analyst tools, the Inverse Distance
Weighted (IDW) method was chosen to produce the soundscape and landscape perception
maps to analyze their spatiotemporal dynamic characteristics. The IDW method is based
on the spatial distance of the data points for weighted interpolation, and the closer the
point is to the value, the greater the effect is. Conversely, the smaller the effect is [7,20,21].

The landscape index visualization is based on the moving window technique in
Fragstats 4.2. The size and shape of the window can be defined by the user. The window is
moved over each cell with positive value in the raster data, and the selected landscape index
within the window is calculated. These values are then returned to the focal point (mid-
point) of the cell, while a new continuous type of grid data is generated for each selected
landscape index, where the cell values represent the “local neighborhood structure” [51].
According to the previous study [7], we set 175 m radius as the window size. In addition,
we considered that Fragstats software gives negative values for cells near the edges and
cells that are not fully included in the input grid window in the calculating process, which
may lead to incomplete spatial data. Therefore, we created a buffer of the same size as
the moving window (175 m) before inputting the grid data, thus minimizing the effect of
boundary effects [52].

2.4. Statistical Analysis

(1) Principal Component Analysis (PCA). Based on the semantic attributes of the
soundscape, the PCA method was applied to extract the principal components so as to
obtain the determinants of overall soundscape quality. The eigenvalues of the extracted
principal components were all greater than 1. The analysis was performed in SPSS 25.0.

(2) Multicollinearity Analysis. Before constructing a spatial regression model, it should
be ensured that there is no multicollinearity problem among the independent variables
included in the model [53]. The tolerance (TOL) and variance inflation factor (VIF) were
used to perform the diagnosis of multicollinearity problems. TOL > 0.1 or VIF < 5 indicates
that there is no multicollinearity problem between the analyzed [54]. Equations (3) and (4)
were used to calculate TOL and VIF, respectively:

TOL =
1

VIF
(3)

VIF =
1

1 − R2
j

(4)

where R2
j is the coefficient of determination for the regression analysis on all other variables.

(3) Spatial Regression Model. Spatial regression models capturing spatial dependence
were used to examine the effects of perceived sound sources, landscape satisfaction degree,
and landscape characteristics on perceived soundscape quality within Kulangsu Island.
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Both the global spatial regression model—ordinary least squares (OLS) estimation model,
and the local spatial regression model—geographically weighted regression (GWR) model
were used (see Supplementary Material for details) [55], and the formulae of them are
shown in Equations (5) and (6), respectively [56,57]. The explanatory ability and goodness
of fit of these models were examined by the coefficient of determination (R2) and the Akaike
Information Criterion (AIC) [58,59]. All operations were performed in ArcGIS 10.7.

Yi = β0 + β1x1 + β2x2 + · · ·+ βnxn + εi
1
2

(5)

where Yi is the dependent variable being explained; x1, x2. . . xn are the independent variable;
β0 is constant; β1, β2. . . βn are variable coefficients; εi is the bias in estimating the coefficients.

Yi = β0(µi, vi) +
p

∑
k=1

βk(µi, vi)xik + εi(i = 1, 2, . . . , n) (6)

where Yi is the explained dependent variable, xik is the independent variable at kth sample
of I, (µi, vi) denotes the coordinates of the ith sample, β0 (µi, vi) denotes the intercept of the
ith sample, βk (µi, vi) denotes the regression parameters of the ith sample, and εi denotes
the residuals of the model at the ith sample in estimating the coefficients. All data were
normalized to 0 to 1 prior to analysis.

3. Results
3.1. Spatiotemporal Dynamics of Soundscape and Landscape Perceptions
3.1.1. Soundscape Mapping

Figure 2 shows significant spatial and temporal variability in SDD for all four major
sound sources. The SDD-GS is higher in the eastern and western parts, and relatively lower
in the central part of the study area. The spatial distribution of SDD for BS, GS, and HS
all changed significantly over time. The SDD-HS changed most significantly, and its high
values covered almost entire area in the evening. However, the whole area was mainly
dominated by BS in the morning. Compared with the SDD of the BS, GS, and HS, SDD-MS
only changed slightly over time, and the overall distribution pattern was relatively stable.
For the temporal variation of the mean values across land use types, the maximum mean
values of SDD-BS in all periods were in the logistics and warehouse land. The mean values
of SDD-GS were the always highest in development land, and the lowest in municipal land
and logistics and warehouse land. The highest mean values of SDD-HS were found in
logistics and warehouse land in P1 and P3, respectively, but in municipal utility land in P2.
For SDD-MS, the highest mean values occurred in different land types in each period. The
general trend of it was more diverse than the other three sounds.

PCA was used to extract the principal components of the six semantic attributes based
on the varimax rotation method, for representing the soundscape quality. The Kaiser-
Mayer-Olkin (KMO) test was 0.839 (KMO > 0.60), and the Bartlett’s test of sphericity was
0.000 indicating highly significant (p < 0.001), which means that the dataset was suitable
for PCA. A total of two principal components were extracted: Component 1 (Pleasantness)
and Component 2 (Eventfulness), which explained 41.8% and 38.8% of the variance in the
semantic attribute dataset, respectively (Table 3). The results of this analysis are in good
agreement with the two-dimensional model of perceived affective quality of soundscape
(Pleasantness-Eventfulness) proposed in the previous study [37]. This model can provide
comprehensive information on soundscape perception.
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dominance of the four main category sound sources.

Table 3. Rotated component matrices of the PCA based on semantic attributes (numbers in parenthe-
ses represent explained variance).

Semantic Attribute Component 1:
Pleasantness (41.8%)

Component 2:
Eventfulness (38.8%)

Pleasant 0.880 0.250
Comfort 0.906 0.236

Harmony 0.739 0.441
Vivid 0.491 0.703

Richness 0.295 0.867
Eventful 0.195 0.877

The values of pleasantness and eventfulness for each observing point were calculated
in SPSS 25.0, and then visualized via ArcGIS 10.7 (Figure 3). Both components had signifi-
cant spatiotemporal characteristics, and appeared to be similar in their distribution patterns.
In general, the values of pleasantness and eventfulness in the study area showed low and
high values in the north and south, respectively, in all periods. Regarding mean values
of the components in different periods for each land use type, the trends of pleasantness
and eventfulness were similar. The maximum and minimum values occurred in the same
land use type in all periods. The maximum values were found in development land all
the time. The minimum values were found in municipal utility land in P1, and in logistics
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and warehouse land in P2 and P3. The mean value of pleasantness first reduced and then
improved in logistics and warehouse land, nonetheless, it had opposite trends in each of
the rest land use types. The trend of eventfulness was different from that of pleasantness
only in commercial and business facility land, which continued to decline over time.
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and eventfulness.

3.1.2. Landscape Satisfaction Degree

Figure 4 indicates the spatiotemporal distribution of each landscape satisfaction degree
indicator. Values of SNL, SLD, and SHB were relatively high, while that of SSF was
significantly lower. The mapping results show that the spatial differences were pronounced
for SLD and SHB, respectively, but that for SSF was relatively small. However, the spatial
distribution patterns of them changed significantly with time. In P2, high values of SNL,
SLD, and SHB covered almost the whole area. Nonetheless in P3, the high values of the first
two weakened in the central and northern areas, but the high values of SHB still covered
almost the whole area. The landscape satisfaction degree indicators showed presented the
same trend of mean values in some land use types. The mean values of SNL and SLD in
all types of land use, except for development land, showed the same trends. The trends of
mean values of SHB and SSF were the same in all land use types. Both of their maximum
mean values were found in logistics and warehouse land and development land in P2 and
P3, respectively. The mean value of SVA increased and then decrease in all land use types,
except for commercial and business facility land.
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3.2. Spatial Landscape Characteristics

The DtGS and NDVI of the study area are shown in Figure 5. The result shows that
the vast majority of the study area was close to green spaces (Figure 5a). The NDVI values
showed low values in the central area (Figure 5b). The low NDVI values were also found
in a few marginal areas of the study area. However, the NDVI values were generally at a
high level, with more than 50% of the areas having the values over 0.5 [60], indicating a
high vegetation coverage in Kulangsu Island.
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Figure 6 shows the spatial distribution of the landscape indices at class level and
landscape level. Except for SPLIT at the class level, all other landscape indices had signifi-
cant spatial differences. For the landscape pattern of greenspaces, high values occurred at
similar locations for CA and ED, but the latter covered a wider area. The high values of PD
occurred only in a few areas near the northern and southern edges. The high values of IJI
covered almost the entire area, while MESH and SPLIT showed lower levels within the area.
For the landscape pattern of whole area, the high values of PD concentrated in the central
and northern areas, and the high values of LSI were mainly found in the central-eastern
area. The high values of SHDI were distributed similarly to those of IJI, which mainly
gathered in the periphery of the study area, while the middle area showed a band of low
values. SPLIT had a large area of low values in the area, and the high values of COHESION
were found mainly in the central and southwestern areas.
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3.3. Spatial Regression Models of Soundscape Quality

Spatial regression models, including OLS and GWR models, were built to examine
the spatial dependence of soundscape quality (dependent variables) in Kulangsu Island.
The explanatory (independent) variables include SDD of 4 main sound sources, landscape
satisfaction degree, DtGS, NDVI, and landscape pattern indices.
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3.3.1. Multicollinearity Diagnostic Results

To avoid possible covariance problems among the independent variables, we per-
formed covariance diagnosis in the independent variables at the three periods and the
whole day (Total), respectively, and selected the variables without multicollinearity in each
period for the OLS regression. The results of multicollinearity diagnosis are shown in Table
S2, Supplementary Material. Most variables passed the multicollinearity test, indicating
rationality of the indicator selection. This analysis was performed in SPSS 25.0.

3.3.2. Global Spatial Regression Model

The OLS model used the data on each grid to build relationships between the inde-
pendent and dependent variables (Table 4). None of the landscape indices significantly
influenced the soundscape quality at all periods. Only the variables related to SDD and
landscape satisfaction degree were significant for the soundscape quality. Pleasantness was
only influenced by SLD in P3, and eventfulness was only significantly influenced by SLD in
both P2 and P3. The included independent variables had better performances in explaining
the pleasantness (R2 was 0.653 and 0.649, respectively) and eventfulness (R2 was 0.591 for
both) in P1 and Total, compared with those in P2 and P3. Similarly, the results of the AIC
demonstrate that the OLS models in P1 and Total had better fitting accuracy than those in
P2 and P3.

Table 4. Results of the OLS model (* p < 0.05, ** p < 0.01).

Sampling Period Indicator Pleasantness Eventfulness

P1 Independent variable SDD-MS −0.505 ** SDD-BS 0.170 *
SHB 0.330 * SDD-MS −0.345 *
SVA 0.312 ** SVA 0.407 **

R2 0.653 0.591
AIC −59.061 −56.234

P2 Independent variable SDD-GS 0.433 * SLD 0.295 **
SLD 0.362 **

R2 0.302 0.328
AIC −5.066 −19.834

P3 Independent variable SLD 0.401 * SLD 0.497 **
R2 0.379 0.418

AIC −17.154 −31.585

Total Independent variable SDD-BS 0.196 ** SDD-BS 0.238 **
SDD-GS 0.299 ** SDD-GS 0.234 *

SLD 0.510 ** SLD 0.504 **
SSF 0.351 *

R2 0.649 0.591
AIC −62.988 −50.111

3.3.3. Local Spatial Regression Model

The GWR model was to explore the spatial relationships between soundscape quality
and the significant variables derived from the OLS model (Table 4). Before executing the
GWR model, a kernel function needs to be selected for performing the geo-weighting
algorithm, which is to estimate the local coefficients and their bandwidth sizes. There are
two commonly used functions in GIS, namely the Gaussian fixed and adaptive kernel type.
Based on the finding of previous study [35], we selected the Gaussian fixed kernel type to
perform the GWR model.

The values of AIC of the GWR models in all period were significantly smaller than
those of the OLS models (Table 5), indicating that the GWR model had better fitting results
than the OLS model. The mean values of R2 of the GWR models were higher than those
of the OLS models for the all periods, nonetheless, except for the pleasantness models in
P1 and Total. As shown in Figure 7, the R2 spatial distributions of pleasantness model
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in P1, and both pleasantness and eventfulness models in Total were relatively stationary
compared with those in P2 and P3. Also, Table 5 indicates that the results of R2 and AIC
in P1 and Total were better than those in P2 and P3. These findings indicate that such
spatial stationarity may achieve a better performance of the statistical model in terms of
explanation of variance and goodness-of-fit.

Table 5. R2 and AIC of the GWR model.

Sampling Period Indicator Pleasantness Eventfulness

P1 R2 Mean 0.596 0.674
Minimum 0.588 0.577
Maximum 0.645 0.81

AIC −69.975 −84.445

P2 R2 Mean 0.507 0.380
Minimum 0.343 0.001
Maximum 0.58 0.453

AIC −46.329 −46.172

P3 R2 Mean 0.468 0.601
Minimum 0.212 0.258
Maximum 0.558 0.773

AIC −51.287 −75.251

Total R2 Mean 0.598 0.615
Minimum 0.62156 0.64534
Maximum 0.62183 0.64564

AIC −84.948 −80.86

Note: To account for differences, the maximum and minimum values of the R2 of the GWR models for the total
dataset were retained to five decimal places.

Forests 2022, 13, x FOR PEER REVIEW 13 of 21 
 

 

Table 5. R2 and AIC of the GWR model. 

Sampling Period Indicator  Pleasantness Eventfulness 

P1 R2 Mean 0.596 0.674 

  Minimum 0.588 0.577 

  Maximum 0.645 0.81 

 AIC  −69.975 −84.445 

P2 R2 Mean 0.507 0.380 

  Minimum 0.343 0.001 

  Maximum 0.58 0.453 

 AIC  −46.329 −46.172 

P3 R2 Mean 0.468 0.601 

  Minimum 0.212 0.258 

  Maximum 0.558 0.773 

 AIC  −51.287 −75.251 

Total R2 Mean 0.598 0.615 

  Minimum 0.62156 0.64534 

  Maximum 0.62183 0.64564 

 AIC  −84.948 −80.86 

Note: To account for differences, the maximum and minimum values of the R2 of the GWR models 

for the total dataset were retained to five decimal places. 

 

Figure 7. Spatial distribution of local R2 for pleasantness and eventfulness in the three and total 

sampling periods. 

The spatial distribution of the coefficients of each independent variable are shown in 

Figure 8, the spatial stationarity also presented in pleasantness model in P1, and both 

pleasantness and eventfulness models in Total. In P1, SDD-MS and SVA exhibited the 

strongest negative and positive effects, respectively, on both pleasantness and eventful-

ness. In P2, SLD was positively related to both pleasantness and eventfulness in most ar-

eas, but their negative relationships appeared in few areas in the northwest. In addition, 

pleasantness was also positively influenced by SDD-GS, and the spatial differences were 

significant with the coefficients decreasing from northwest to southeast (from 0.808 to 

0.139). In P3, both pleasantness and eventfulness were positively related to SLD only, with 

the coefficients increasing from southwest to northeast. In the model of Total, all included 

variables had positive relationships with pleasantness and eventfulness, respectively. SLD 

was the variable with strongest effects on pleasantness and eventfulness, respectively. 

Figure 7. Spatial distribution of local R2 for pleasantness and eventfulness in the three and total
sampling periods.

The spatial distribution of the coefficients of each independent variable are shown
in Figure 8, the spatial stationarity also presented in pleasantness model in P1, and both
pleasantness and eventfulness models in Total. In P1, SDD-MS and SVA exhibited the
strongest negative and positive effects, respectively, on both pleasantness and eventfulness.
In P2, SLD was positively related to both pleasantness and eventfulness in most areas,
but their negative relationships appeared in few areas in the northwest. In addition,
pleasantness was also positively influenced by SDD-GS, and the spatial differences were
significant with the coefficients decreasing from northwest to southeast (from 0.808 to
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0.139). In P3, both pleasantness and eventfulness were positively related to SLD only, with
the coefficients increasing from southwest to northeast. In the model of Total, all included
variables had positive relationships with pleasantness and eventfulness, respectively. SLD
was the variable with strongest effects on pleasantness and eventfulness, respectively.
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4. Discussion
4.1. Spatiotemporal Dynamics of Soundscape and Landscape in Kulangsu

The results of the present study showed that both soundscape and landscape percep-
tion in Kulangsu Island were characterized by significant spatiotemporal dynamics. In
terms of perceived sound sources, we calculated and visualized the SDD for each main
sound source, to present the dominance of them in different temporal and spatial dimen-
sions in Kulangsu (Figure 2). The results demonstrated that BS and HS were the dominant
sounds during the three sampling periods. The dominance of BS may imply the good
quality of ecological environment within Kulangsu, which can attract various vocal organ-
isms such as birds and insects to congregate and communicate here [61]. This was also
reflected the high level of biodiversity in the island. Such abundance of natural resources
also provides a good opportunity for tourism development, with many urban residents
and tourists choosing to visit the area for e.g., nature-based recreation [62]. We speculate
that this maybe one of the reasons why HS was another dominant sound.

We found that the HS-dominated area gradually expanded over time, and covered
almost the entire area in the evening (Figure 2), indicating that this period was the most
intensive period for people’s activities. This survey was conducted during the summer
of July, which is generally the hottest period of the year in Xiamen [63]. Accordingly, we
speculate that one reason for this phenomenon may be due to the higher thermal comfort
in the evening, compared to the built-up area. This is probably due to the good vegetation
condition in Kulangsu, which has a significant effect on reducing temperature thus creating
a comfortable microclimate. Generally, such cooling effects were most pronounced in the
evening [64]. Another reason may be the development of the night-time economy in China
in recent years, which has led to a new urban living pattern dominated by night-time
entertainment activities [65].
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In the analysis of SDD mean values of the sound sources for different land use types
(Figure 2), high SDD of BS and HS unexpectedly appeared several times in logistics and
warehouse land. We suspect that this may be because this type of land use was generally
small in size and surrounded by large areas of green spaces. This also potentially reflects
that both animals and visitors were more willing to get close to the natural landscapes.
The high GS-SDD mean values were mainly found in development land. This may be due
to the harbors and waterfront spaces that were close to the sea in such land use type and
therefore the GS especially water and wave sounds were more dominant. Such results are
similar to the findings of previous studies located in coastal areas [66].

A similarity was found in the spatiotemporal distribution patterns of pleasantness
and eventfulness of the soundscape (Figure 3), which implies they may be potentially
interrelated. This finding is the same as previous soundscape studies located in urban
built-up areas and urban forests [20,22]. For mean values of pleasantness and eventfulness
across land use types (Figure 3), the maximum values of them were always found in
development land, and mainly concentrated in the south according to the mapping result.
This is possibly because the development land to the south were close to large areas of
green spaces and commercial lands, and therefore subject to the “radiation effect” from
such land types. The development land, on the other hand, were relatively smaller and thus
may receive higher aggregated values of pleasantness and eventfulness. Another possible
reason was that the development land encompassed many waterfront spaces where people
prefer to stay, to experience nature and response higher values of pleasantness. Moreover,
the consequent increase in foot traffic may also lead to high values of eventfulness [67].

As for landscape satisfaction degree, we found that the spatiotemporal distribution
patterns of SNL, SLD, SHB, and SVA were similar to those of pleasantness and eventfulness
in P1, but they were relatively different in P2 and P3 (Figures 3 and 4). This finding
suggests that the harmony or congruency between the soundscapes and landscapes in
Kulangsu was still deficient especially in the afternoon and evening, and therefore it
has room to improve in future landscape planning and design. We speculate that this
audio-visual inconsistency may be due to the increasing spatial dominance of HS in these
periods (Figure 2), which negatively affected the audio-visual perception [68]. Regarding
the spatiotemporal distribution of SSF, it was significantly lower compared to the other
landscape perception indicators. However, the distribution pattern of SSF was also similar
to those of pleasantness and eventfulness in the morning and afternoon (Figures 3 and 4).
This similarity indicates that people may prefer to use these service facilities especially
in these two periods. We suppose that this is because the temperatures in daytime are
generally high in Kulangsu. This finding is also in line with the results of the previous
study, which found infrastructure and facilities were an important factor contributing to
the soundscape quality in scenic areas [27].

The analysis of “objective” landscape characteristics also illustrates the superior nat-
ural environmental characteristics of Kulangsu (Figures 5 and 6), which was consistent
with the finding derived from the spatiotemporal distribution of SDD-BS (Figure 2). These
results indicated that Kulangsu had good green space accessibility and a high proportion
of vegetation cover, which allows visitors to easily approach and experience nature and
contributes to the comfortable microclimate here [60]. We found that although the high
values of SDD-BS appeared in different areas over time, they almost always fell in the areas
with low DtGS or high NDVI, indicating the interrelationship between biological sounds
and green space features. Regarding the landscape pattern, the results of class metrics
indicate that the green space patches were large and morphologically intact, with a high
degree of connectivity, and did not have significant fragmentation. In addition to SPLIT,
the spatial distributions of CA, PD, ED, IJI, and MESH were more or less similar to those of
pleasantness and eventfulness in the three periods, suggesting that diverse and coherent
structure of green space patches may contribute to soundscape quality [69]. Based on the
results of the landscape metrics, we found that the structure of the patches in the center of
Kulangsu was more complex and homogeneous, and the connectivity between patches was
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good. This may be due to the high density of historical architectures in the central area [70],
but such buildings still maintain a good continuity. The edge of the study area, on the other
hand, had a richer patch composition and different types of patches may be interspersed
between similar patches. We found that this complexity tends to accompany areas where
commercial land occurred. Based on such, we suggest that the remediation planning of
scenic areas could focus on preventing the fragmentation effects on the landscape especially
from dispersed commercial activities [71].

4.2. Spatial Dependencies of Soundscape Quality

Most indicators with regard to perceived sound sources, landscape satisfaction degree,
the features of green spaces, and landscape patterns passed the test of multicollinearity
on explaining the soundscape quality (Table S2), and then included in the OLS and GWR
models. Interestingly, the results of OLS models (Table 4) show that the soundscape quality
had no spatial dependence on all objective landscape characteristics, namely DtGS, NDVI,
and landscape metrics on class and landscape levels. Both pleasantness and eventfulness
of the soundscape were significantly dependent on the perceptual indicators of soundscape
and landscape, i.e., SDD-BS, SDD-GS, SDD-MS, SLD, SHB, and SSF, in different periods.
This finding was not exactly the same as previous studies on the relationship between
soundscape elements and landscape patterns [7,72]. We speculate that this discrepancy
may arise from two aspects. On the one hand, the research objectives and methods were
different. The present study aimed to explore the spatial dependence of soundscape
quality on many types of variables rather than the correlations between two variables. The
spatial dependence can indicate the propensity for nearby locations to interact and share
similar properties, which is also an essential part of modeling soundscape [35]. Therefore,
the regression model accounting for the spatial dependence can explain more about the
relationships between the dependent and independent variables, and predict the dependent
variable based on such, while the correlation does not necessarily imply causation [73].
On the other hand, the study area was different. Our study was devoted to exploring the
soundscape and landscape resources of the Kulangsu scenic area, whereas the previous
studies were in a multifunctional urban area [7,20,72]. Kulangsu Scenic Area is rich in
natural and cultural resources and locally distinctive sound sources, which is basically
different from the urban area.

The result of soundscape spatial dependency on SDD-BS, SDD-GS, and SDD-MS sug-
gests that introducing more birdsongs and vegetation sounds, through enriching the vege-
tation types and density, may contribute to the biodiversity and reduction of mechanical
noise [74], therefore improving the pleasure and structure diversity of the soundscape [37].
Besides, according to the dependence on SLD and SHD, the soundscape quality can also
be enhanced by optimizing the spatiotemporal features of landscape design, with regard
to the lightscape (especially in the evening) and cultural innovation [24,75]. For instance,
adding interesting lightscapes designed according to the natural and cultural environment
characteristics of Kulangsu. The type and application of the light sources should be able
to integrate into but not affect the natural environment [76]. Furthermore, the historical
culture of Kulangsu can be combined with modern elements to revitalize old buildings
by injecting new functions, such as cultural and creative business or exhibitions [77]. Also,
the “Piano Island”, one of the famous titles of Kulangsu, can be used to create e.g., a
theme-specific “musical environment” in different public open spaces by combining classi-
cal and contemporary featured piano music. The significant dependency of soundscape
quality on the landscape perception indicators implies that only considering the effects
of sound features on soundscape quality was insufficient in the past study [35]. This
result also proves that the landscape compositions are indispensable factors in creating
a soundscape [17,43]. The temporal differences of spatial dependence of the soundscape
in Kulangsu can contribute specific information to the soundscape planning and design
strategies for scenic areas and Heritage Site.
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The GWR model was found to have a better goodness-of-fit than the OLS model
for all periods according to the results of AIC, which was consistent with the previous
study [35]. However, the R2 results of GWR model performing pleasantness in P1 and
Total were lower than those of OLS model (Tables 4 and 5). Interestingly, the spatially
stationary relationships were found in the results of R2 and coefficients of the variables
in pleasantness model in the morning and both pleasantness and eventfulness models in
total dataset, respectively (Figures 7 and 8). This finding suggests that the pleasantness
models had better fitting accuracy if they were spatially stationary, but the explanatory
power of the regression line for the dependent variable became weaker, which implies
that the nonlinear relationship may be able to better explain the spatial dependence of
soundscape pleasantness. This is also a good proof that the spatial stationarity helps to
verify and select the suitable statistical methods in predicting variables [78,79]. As shown
in Figures 7 and 8, the total dataset models of pleasantness and eventfulness exhibited
the best spatial stationarity, indicating the data used should ideally be of a time-varying
nature that may contain as complete a temporal dimension as possible. For instance, the
collected data should ideally cover morning, afternoon, evening, and even in the night or
early morning.

4.3. Limitations and Future Studies

The limitations of the present study may mainly stem from the data collected and
the model employed. Although vegetation coverage was considered in this study, the
classification of green spaces was not in sufficient detail in terms of the vegetation type.
The outcomes may therefore vary due to more detailed classification of vegetation cover.
However, a high spatial resolution vegetation type data in China is difficult to obtain in
general. Future studies are suggested to utilize data regarding vegetation cover types,
such as coniferous forests, deciduous forests, shrubs, and grasslands, to explore the spatial
relationship between their features and soundscape quality.

Moreover, the questionnaire data collected in 2016 was not up-to-date, nonetheless
such data was still of research interest and significance, because this investigation can
provide valuable historical research data for further exploring the environmental changes
and soundscape planning and management. Given this importance, we suggest that
future research could explore the spatiotemporal evolution of soundscape quality in Ku-
langsu in conjunction with the results of the present study. Based on e.g., the concept
of DPSIR model [80], it is possible to predict the future state of soundscape resources in
landscape planning.

The spatial model used in this study was based on a linear regression algorithm. There-
fore, although the results indicated that landscape characteristics did not have significant
effects on soundscape quality, this does not account for the possible non-linear relationships
between these variables [81]. It has been proposed that the non-linear models may be able
to explain soundscape perception better than the linear models [82]. However, the non-
linear prediction models related to soundscape are still in their infancy, and most of them
are only able to predict the values of output variables without spatiotemporal dynamic
features [22,83,84]. Based on such, we recommend future studies could use the non-linear
models to explore the soundscape spatiotemporal properties and to predict soundscape
perception based on such. The models, such as the cellular automata, artificial neural
networks, and Fuzzy-logic models [85,86]. Although the linear model is not perfect, the
spatial regression model used in this study still presented a relatively better performance
in spatially explaining the soundscape quality than the conventional regression model [20].

5. Conclusions

This study provided indispensable data with regard to the spatiotemporal dynamics
of soundscape and landscape perception as well as the spatial landscape characteristics in
Kulangsu. Furthermore, the spatial dependence of soundscape quality was examined. We
found that sound dominant degree, soundscape quality, and landscape satisfaction degree
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all showed high spatiotemporal dynamics, and the distance to greenspaces, NDVI, and
landscape patterns presented obviously spatial variations. Moreover, soundscape quality
had spatial dependence on the sound dominant degree and landscape satisfaction degree,
but not on the objective landscape characteristics. Such spatial dependence of soundscape
quality provides useful suggestions for the design of soundscape and landscape. The
GWR model had better goodness-of-fit than the OLS model, and the results with spatial
stationarity of the GWR models suggest that applied data should consider as complete
a time dimension as possible in exploring the spatial dependence of soundscape quality,
which also guidance for soundscape modeling. The findings of this study will allow
landscape planners to determine what factors the quality of a soundscape depends on,
which gives a relatively comprehensive consideration of selected indicators for modeling
soundscapes. They are also meaningful for the bringing soundscape evaluation into
planning and design practices, especially for the development of specific planning goals
and design strategies, which aim to protect, restore, and optimize the soundscape resources
in the scenic areas and World Heritage Sites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13091526/s1, Figure S1: Social/demographical/behavioral in-
formation of the interviewees; Table S1: Calculated landscape spatial indices at class and landscape
levels; Table S2: Results of multicollinearity diagnosis for pleasantness and eventfulness at each
sampling period; detailed concepts and definition in the statistical analysis. Reference [87] is cited in
the supplementary materials.

Author Contributions: Conceptualization, Z.C., T.-Y.Z. and J.L.; methodology, Z.C. and J.L.; Software,
Z.C. and T.-Y.Z.; validation, Z.C., T.-Y.Z., J.L. and X.-C.H.; formal analysis, Z.C. and T.-Y.Z.; investiga-
tion, Z.C. and T.-Y.Z.; resources, Z.C., T.-Y.Z. and J.L.; data curation, Z.C. and T.-Y.Z.; writing—original
draft preparation, Z.C.; writing—review and editing, Z.C. and J.L.; visualization, Z.C. and T.-Y.Z.;
supervision, J.L.; project administration, Z.C., J.L. and X.-C.H.; funding acquisition, J.L. and X.-C.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51508101
and 52208052), Fujian Provincial Department of Science & Technology (2017J01694), and the Program
of Humanities and Social Science Research Program of Ministry of Education of China (21YJCZH038).

Data Availability Statement: Data available on request due to restrictions, e.g., privacy or ethical.

Acknowledgments: The first author, Zhu Chen, would like to thank the China Scholarship Council
for the support of a doctoral scholarship (grant number: 202108080105). All the authors would like
to thank the anonymous reviewers for their valuable comments, which have greatly improved the
quality of this paper. We thank Christina von Haaren and Johannes Hermes for their very helpful
suggestions in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zlotnik, H. World urbanization: Trends and prospects. In New Forms of Urbanization; Routledge: London, UK, 2017; pp. 43–64.

ISBN 1315248077.
2. Margaritis, E.; Kang, J. Relationship between urban green spaces and other features of urban morphology with traffic noise

distribution. Urban For. Urban Green. 2016, 15, 174–185. [CrossRef]
3. Zhang, Y.; Han, M.; Chen, W. The strategy of digital scenic area planning from the perspective of intangible cultural heritage

protection. EURASIP J. Image Video Process. 2018, 2018, 130. [CrossRef]
4. Liu, H.-L.; Shen, Y.-S. The impact of green space changes on air pollution and microclimates: A case study of the Taipei

metropolitan area. Sustainability 2014, 6, 8827–8855. [CrossRef]
5. Gao, T.; Liu, F.; Wang, Y.; Mu, S.; Qiu, L. Reduction of atmospheric suspended particulate matter concentration and influencing

factors of green space in urban forest park. Forests 2020, 11, 950. [CrossRef]
6. Wen, C.; Albert, C.; von Haaren, C. The elderly in green spaces: Exploring requirements and preferences concerning nature-based

recreation. Sustain. Cities Soc. 2018, 38, 582–593. [CrossRef]
7. Liu, J.; Kang, J.; Behm, H.; Luo, T. Landscape spatial pattern indices and soundscape perception in a multi-functional urban area,

Germany. J. Environ. Eng. Landsc. Manag. 2014, 22, 208–218. [CrossRef]

https://www.mdpi.com/article/10.3390/f13091526/s1
https://www.mdpi.com/article/10.3390/f13091526/s1
http://doi.org/10.1016/j.ufug.2015.12.009
http://doi.org/10.1186/s13640-018-0366-7
http://doi.org/10.3390/su6128827
http://doi.org/10.3390/f11090950
http://doi.org/10.1016/j.scs.2018.01.023
http://doi.org/10.3846/16486897.2014.911181


Forests 2022, 13, 1526 18 of 20

8. WHO. Urban Green Spaces: A Brief for Action; World Health Organization: Geneva, Switzerland, 2017.
9. Vienneau, D.; de Hoogh, K.; Faeh, D.; Kaufmann, M.; Wunderli, J.M.; Röösli, M.; SNC Study Group. More than clean air and

tranquillity: Residential green is independently associated with decreasing mortality. Environ. Int. 2017, 108, 176–184. [CrossRef]
10. Herrera-Montes, M.I. Protected area zoning as a strategy to preserve natural soundscapes, reduce anthropogenic noise intrusion,

and conserve biodiversity. Trop. Conserv. Sci. 2018, 11, 1940082918804344. [CrossRef]
11. Miller, N.P. US National Parks and management of park soundscapes: A review. Appl. Acoust. 2008, 69, 77–92. [CrossRef]
12. Liu, J.; Xiong, Y.; Wang, Y.; Luo, T. Soundscape effects on visiting experience in city park: A case study in Fuzhou, China. Urban

For. Urban Green. 2018, 31, 38–47. [CrossRef]
13. Li, H.; Lau, S.-K. A review of audio-visual interaction on soundscape assessment in urban built environments. Appl. Acoust. 2020,

166, 107372. [CrossRef]
14. Aletta, F.; Kang, J.; Axelsson, Ö. Soundscape descriptors and a conceptual framework for developing predictive soundscape

models. Landsc. Urban Plan. 2016, 149, 65–74. [CrossRef]
15. Hong, J.Y.; Ong, Z.-T.; Lam, B.; Ooi, K.; Gan, W.-S.; Kang, J.; Feng, J.; Tan, S.-T. Effects of adding natural sounds to urban noises on

the perceived loudness of noise and soundscape quality. Sci. Total Environ. 2020, 711, 134571. [CrossRef]
16. ISO 12913-1:2014; Acoustics-Soundscape-Part 1: Definition and Conceptual Framework. ISO Genebra: Vernier, Switzerland, 2014.
17. Liu, J.; Yang, L.; Xiong, Y.; Yang, Y. Effects of soundscape perception on visiting experience in a renovated historical block. Build.

Environ. 2019, 165, 106375. [CrossRef]
18. Chen, Z.; Hermes, J.; Liu, J.; von Haaren, C. How to integrate the soundscape resource into landscape planning? A perspective

from ecosystem services. Ecol. Indic. 2022, 141, 109156. [CrossRef]
19. Hong, J.Y.; Lam, B.; Ong, Z.-T.; Ooi, K.; Gan, W.-S.; Kang, J.; Yeong, S.; Lee, I.; Tan, S.-T. Effects of contexts in urban residential

areas on the pleasantness and appropriateness of natural sounds. Sustain. Cities Soc. 2020, 63, 102475. [CrossRef]
20. Hong, J.Y.; Jeon, J.Y. Relationship between spatiotemporal variability of soundscape and urban morphology in a multifunctional

urban area: A case study in Seoul, Korea. Build. Environ. 2017, 126, 382–395. [CrossRef]
21. Liu, J.; Kang, J.; Luo, T.; Behm, H.; Coppack, T. Spatiotemporal variability of soundscapes in a multiple functional urban area.

Landsc. Urban Plan. 2013, 115, 1–9. [CrossRef]
22. Hong, X.-C.; Wang, G.-Y.; Liu, J.; Song, L.; Wu, E.T.Y. Modeling the impact of soundscape drivers on perceived birdsongs in urban

forests. J. Clean. Prod. 2021, 292, 125315. [CrossRef]
23. Watts, G.; Marafa, L. Validation of the tranquillity rating prediction tool (TRAPT): Comparative studies in UK and Hong Kong.

Noise Mapp. 2017, 4, 67–74. [CrossRef]
24. Hong, X.-C.; Wang, G.-Y.; Liu, J.; Dang, E. Perceived Loudness Sensitivity Influenced by Brightness in Urban Forests: A Compari-

son When Eyes Were Opened and Closed. Forests 2020, 11, 1242. [CrossRef]
25. Hong, J.Y.; Jeon, J.Y. Influence of urban contexts on soundscape perceptions: A structural equation modeling approach. Landsc.

Urban Plan. 2015, 141, 78–87. [CrossRef]
26. Kogan, P.; Gale, T.; Arenas, J.P.; Arias, C. Development and application of practical criteria for the recognition of potential Health

Restoration Soundscapes (HeReS) in urban greenspaces. Sci. Total Environ. 2021, 793, 148541. [CrossRef]
27. Xiong, Y.; Yang, L.; Wang, X.; Liu, J. Mediating effect on landscape experience in scenic area: A case study in Gulangyu Island,

Xiamen City. Int. J. Sustain. Dev. World Ecol. 2020, 27, 276–283. [CrossRef]
28. Votsi, N.-E.P.; Drakou, E.G.; Mazaris, A.D.; Kallimanis, A.S.; Pantis, J.D. Distance-based assessment of open country Quiet Areas

in Greece. Landsc. Urban Plan. 2012, 104, 279–288. [CrossRef]
29. Dzhambov, A.M.; Markevych, I.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Lower noise annoyance

associated with GIS-derived greenspace: Pathways through perceived greenspace and residential noise. Int. J. Environ. Res. Public
Health 2018, 15, 1533. [CrossRef]

30. Gunnarsson, B.; Knez, I.; Hedblom, M.; Sang, Å. Effects of biodiversity and environment-related attitude on perception of urban
green space. Urban Ecosyst. 2017, 20, 37–49. [CrossRef]

31. Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [CrossRef]
32. Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: New York, NY, USA, 1988;

ISBN 9024737354.
33. Dubé, J.; Legros, D. A spatio-temporal measure of spatial dependence: An example using real estate data. Pap. Reg. Sci. 2013, 92,

19–30. [CrossRef]
34. Li, L.; Li, Y.; Li, Z. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res.

Part C Emerg. Technol. 2013, 34, 108–120. [CrossRef]
35. Hong, J.Y.; Jeon, J.Y. Exploring spatial relationships among soundscape variables in urban areas: A spatial statistical modelling

approach. Landsc. Urban Plan. 2017, 157, 352–364. [CrossRef]
36. Rice, W.L.; Newman, P.; Miller, Z.D.; Taff, B.D. Protected areas and noise abatement: A spatial approach. Landsc. Urban Plan. 2020,

194, 103701. [CrossRef]
37. Axelsson, Ö.; Nilsson, M.E.; Berglund, B. A principal components model of soundscape perception. J. Acoust. Soc. Am. 2010, 128,

2836–2846. [CrossRef] [PubMed]
38. Fourrier, J. Protecting World Heritage. Beijing Rev. 2017, 30, 32–33.

http://doi.org/10.1016/j.envint.2017.08.012
http://doi.org/10.1177/1940082918804344
http://doi.org/10.1016/j.apacoust.2007.04.008
http://doi.org/10.1016/j.ufug.2018.01.022
http://doi.org/10.1016/j.apacoust.2020.107372
http://doi.org/10.1016/j.landurbplan.2016.02.001
http://doi.org/10.1016/j.scitotenv.2019.134571
http://doi.org/10.1016/j.buildenv.2019.106375
http://doi.org/10.1016/j.ecolind.2022.109156
http://doi.org/10.1016/j.scs.2020.102475
http://doi.org/10.1016/j.buildenv.2017.10.021
http://doi.org/10.1016/j.landurbplan.2013.03.008
http://doi.org/10.1016/j.jclepro.2020.125315
http://doi.org/10.1515/noise-2017-0005
http://doi.org/10.3390/f11121242
http://doi.org/10.1016/j.landurbplan.2015.05.004
http://doi.org/10.1016/j.scitotenv.2021.148541
http://doi.org/10.1080/13504509.2020.1725919
http://doi.org/10.1016/j.landurbplan.2011.11.004
http://doi.org/10.3390/ijerph15071533
http://doi.org/10.1007/s11252-016-0581-x
http://doi.org/10.2307/143141
http://doi.org/10.1111/j.1435-5957.2011.00402.x
http://doi.org/10.1016/j.trc.2013.05.008
http://doi.org/10.1016/j.landurbplan.2016.08.006
http://doi.org/10.1016/j.landurbplan.2019.103701
http://doi.org/10.1121/1.3493436
http://www.ncbi.nlm.nih.gov/pubmed/21110579


Forests 2022, 13, 1526 19 of 20

39. Liang, X.; Coscia, C.; Dellapiana, E.; Martin, J.; Zhang, Y. Complex Social Value-Based Approach for Decision-Making and
Valorization Process in Chinese World Cultural Heritage Site: The Case of Kulangsu (China). Land 2022, 11, 614. [CrossRef]

40. Fengze, L.; Fengming, C.; Mingjian, Z. (Eds.) User Experience Centered Application Design of Multivariate Landscape in
Kulangsu, Xiamen. In Proceedings of the 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 43–59.

41. GB50137; Code for Classification of Urban Land Use and Planning Standards of Development Land. Ministry of Housing and
Urban-Rural Development of the People’s Republic of China: Beijing, China, 2011.

42. Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan.
2014, 123, 30–40. [CrossRef]

43. Hong, X.; Liu, J.; Wang, G.; Jiang, Y.; Wu, S.; Lan, S. Factors influencing the harmonious degree of soundscapes in urban forests:
A comparison of broad-leaved and coniferous forests. Urban For. Urban Green. 2019, 39, 18–25. [CrossRef]

44. Liu, J.; Kang, J. Soundscape design in city parks: Exploring the relationships between soundscape composition parameters and
physical and psychoacoustic parameters. J. Environ. Eng. Landsc. Manag. 2015, 23, 102–112. [CrossRef]

45. Balaji, R.; Bapat, R.B. On Euclidean distance matrices. Linear Algebra Appl. 2007, 424, 108–117. [CrossRef]
46. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
47. Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine learning classification of mediterranean forest habitats in google earth

engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sens. 2021, 13, 586. [CrossRef]
48. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley Jr, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud

detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390.
[CrossRef]

49. Coppin, P.; Lambin, E.; Jonckheere, I.; Muys, B. Digital change detection methods in natural ecosystem monitoring: A review.
In Series in Remote Sensing: Analysis of Multi-Temporal Remote Sensing Images, Proceedings of the First International Workshop on
Multitemp, Trento, Italy, 13–14 September 2001; World Scientific: Singapore, 2002; pp. 3–36.

50. Ren, Y.; Wei, X.; Wang, D.; Luo, Y.; Song, X.; Wang, Y.; Yang, Y.; Hua, L. Linking landscape patterns with ecological functions:
A case study examining the interaction between landscape heterogeneity and carbon stock of urban forests in Xiamen, China. For.
Ecol. Manag. 2013, 293, 122–131. [CrossRef]

51. McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous
Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012, Volume 15.
Available online: http://www.researchgate.net/publication/259011515_FRAGSTATS_Spatial_pattern_analysis_program_for_
categorical_and_maps (accessed on 20 July 2021).

52. Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban–rural gradient
structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279.
[CrossRef]

53. Pourtaghi, Z.S.; Pourghasemi, H.R. GIS-based groundwater spring potential assessment and mapping in the Birjand Township,
southern Khorasan Province, Iran. Hydrogeol. J. 2014, 22, 643–662. [CrossRef]

54. Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-based groundwater potential
analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018,
634, 853–867. [CrossRef]

55. McMillen, D.P. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; JSTOR: New York, NY, USA, 2004.
56. Nazeer, M.; Bilal, M. Evaluation of ordinary least square (OLS) and geographically weighted regression (GWR) for water quality

monitoring: A case study for the estimation of salinity. J. Ocean Univ. China 2018, 17, 305–310. [CrossRef]
57. Mennis, J. Mapping the results of geographically weighted regression. Cartogr. J. 2006, 43, 171–179. [CrossRef]
58. Srivastava, A.K.; Srivastava, V.K.; Ullah, A. The coefficient of determination and its adjusted version in linear regression models.

Econom. Rev. 1995, 14, 229–240. [CrossRef]
59. Hu, S. Akaike information criterion. Cent. Res. Sci. Comput. 2007, 93. Available online: https://www.researchgate.net/profile/

Shuhua-Hu/publication/267201163_Akaike_Information_Criterion/links/599f662aa6fdccf5941f894b/Akaike-Information-
Criterion.pdf (accessed on 20 July 2021).

60. Hashim, H.; Abd Latif, Z.; Adnan, N.A. Urban vegetation classification with NDVI threshold value method with very high
resolution (VHR) Pleiades imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 237–240. [CrossRef]

61. Shaw, T.; Hedes, R.; Sandstrom, A.; Ruete, A.; Hiron, M.; Hedblom, M.; Eggers, S.; Mikusiński, G. Hybrid bioacoustic and
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