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Abstract: The precipitation changes induced by climate warming have substantially increased ex-
treme precipitation and seasonal drought events. Different plant functional types (PFTs) could exert
an important role in resisting extreme climate. However, the patterns of plant water uptake in
different PFTs remain uncertain, especially under different magnitudes of rainfall events. Here, we
employed a stable hydrogen isotope (δD) to determine the water sources of different PFTs, including
Castanopsis chinensis in the canopy layer, Schima superba in the canopy sublayer, Psychotria asiatica in
the shrub layer, and Blechnum orientale on the forest floor in the monsoon evergreen broad-leaved
forest in Dinghushan Biosphere Reserve, China. We further used a two-end linear mixing model
to explore the water utilization among different PFTs. Our results revealed that precipitation and
soil water before rainfall were the water sources of different PFTs. Furthermore, the proportions of
precipitation utilized by S. superba in the canopy sublayer under light and moderate rainfalls were
6.9%–59.4% and 30.5%–66.3%, respectively, which were significantly higher than those of other species
in both the dry and wet seasons. After heavy rainfall, the proportion of precipitation utilized by
S. superba was the lowest (4.7%–26.5%), while B. orientale had the highest proportion of precipitation
utilization (31.6%–91.5%), whether in the dry or wet season. These findings imply that different
PFTs would compete with one another for water uptake. Especially under climate warming, the
uneven distribution of precipitation would intensify the water competition among species, ultimately
resulting in the plant community structure becoming much more unstable than before.

Keywords: hydrogen stable isotope; water uptake pattern; plant functional types; monsoon evergreen
broad-leaved forest; Dinghushan Biosphere Reserve; root distribution

1. Introduction

Climate warming is expected to impact plant physiology, distribution, and interspecific
interactions [1,2], thus inducing changes in plant functional types (PFTs) [3,4]. Hence, PFTs
could be predictors of the response of vegetation to climate change [5]. Different PFTs in the
same habitat highly depend on water resources [6,7]. Especially under climate warming,
changes in global precipitation increase the frequency and intensity of extreme precipitation
and seasonal drought [8,9], subsequently leading to shifts in the water niche relationship
between different PFTs [10–12]. Therefore, clarifying the water use patterns of different
PFTs could provide measures of forest management to resist climate warming.

Numerous studies have revealed the water uptake patterns of different PFTs in forest
ecosystems [13,14]. However, our knowledge on the water use strategies of different PFTs
is still restricted by the following two aspects. First, the water absorption patterns of
different PFTs remain controversial. Previous studies have illustrated that a difference
exists in the water uptake patterns among various PFTs such as woody and herbaceous
plants in a forest [15–18]. Generally, xylophyta in the canopy layer mainly absorb deep soil
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water or groundwater [19], while shrubs and herbs mainly use precipitation or shallow soil
water [20]. In contrast, a recent study reported that in a mixed-hardwood forest of central
Pennsylvania, woody plants—including Pinus spp. and Quercus spp.—relied considerably
on shallow soil water, even in the drier parts of the growing season [21]. These inconsistent
results suggest that the water uptake patterns of different PFTs in the same habitat are
obscure. Therefore, it is essential to explore the patterns of plant water uptake in such PFTs.

Second, it remains unclear whether seasonal differences affect the water use patterns of
different PFTs. It has been demonstrated that both Pinus halepensis and Robinia pseudoacacia
in the canopy layer primarily utilize deep soil water or groundwater in the dry season and
shallow soil water or rainfall in the wet season [22,23]. On the contrary, evergreen species in
the canopy layer mainly absorbed shallow soil water in a typical karst forest in both dry and
wet seasons [24]. These inconsistent observations suggest that more site-specific studies
are needed to explore the water uptake patterns of different PFTs in various seasons. More
importantly, with climate warming, the precipitation in each season will change [25,26].
However, our understanding of the impact of the various magnitudes of precipitation on
the water uptake of different PFTs remains unclear. Therefore, there is an urgent need
to explore the water use strategies of different PFTs following different magnitudes of
precipitation in the dry and wet seasons.

To explore the proportion of precipitation utilized by different PFTs, we selected a
monsoon evergreen broad-leaved forest with different PFTs, including Castanopsis chinensis
in the canopy layer, Schima superba in the canopy sublayer, Psychotria asiatica in the shrub
layer, and Blechnum orientale on the forest floor, in the Dinghushan Biosphere Reserve, China.
Then, we employed a stable hydrogen isotope to analyze the precipitation utilization of the
plants following six rainfall events in the dry and wet seasons. This study primarily tests
the following two hypotheses: (1) these PFTs will show different water uptake patterns,
i.e., C. chinensis in the canopy layer and S. superba in the canopy sublayer will have a low
proportion of rainfall utilization, while P. asiatica in the shrub layer and B. orientale on the
forest floor will have a high proportion of rainfall utilization; (2) significant differences will
exist in the water uptake patterns of the four PFTs between the dry and wet seasons. The
objective of this study is to explore the proportion of precipitation utilized by the different
PFTs after different magnitudes of precipitation in the dry and wet seasons.

2. Materials and Methods
2.1. Study Area

The study area was located in the Dinghushan Biosphere Reserve (23◦09′21” N–
23◦11′30” N, 112◦30′39” E–112◦33′41” E) in Guangdong Province, South China. The
Dinghushan Biosphere Reserve was recognized as the first National Natural Reserve
of China, with a total area of 11.56 km2 and a peak elevation of 1000 m [27]. The area is
characterized by a typical southern subtropical monsoon climate. Its mean annual tem-
perature and relative humidity are 21.0 ◦C and 77.7%, respectively, with the maximum
mean monthly temperature being 28.0 ◦C in August and the minimum being 12.6 ◦C in
January. The mean annual precipitation is 1956 mm, with distinct seasonality (Figure 1).
Approximately 80% of the rain falls in the warm–wet season (April–September) and only
20% falls in the cool–dry season (October–March) [27,28]. The monsoon evergreen broad-
leaved forest, as the late succession stage and the local climax vegetation without human
disturbance in the Dinghushan Biosphere Reserve, has been maintained for more than
400 years [29,30]. The dominant tree species include C. chinensis, S. superba, Cryptocarya
chinensis, and Aporusa yunnanensis. P. asiatica and Blastus cochinchinensis always firmly
occupy the leading status in the shrub species. The dominant species of herbaceous plants
are B. orientale and Diplazium donianum. The soil type is categorized as lateritic red soil,
with a soil profile usually ranging from 60 to 100 cm in depth [28].
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2.2. Rainfall Events Selection

According to the standard of light (0–10 mm), moderate (10–25 mm), and heavy
rainfall (>25 mm), six different rainfall events were selected, including 5.4 mm on 1 October
2013, 9.8 mm on 27 July 2014, 11.2 mm on 22 February 2014, 20.0 mm on 8 September 2013,
36.0 mm on 2 July 2013, and 45.8 mm on 18 December 2013. Specifically, the rainfall events
of 5.4, 11.2, and 45.8 mm occurred in the dry season, while the other three rainfall events
occurred in the wet season. Rainfall events of less than 5 mm were not considered. No
rainfall was observed for five consecutive days following the six rainfall events.

2.3. Field Sampling

Three 20 × 20 m plots were randomly established in the monsoon evergreen broad-
leaved forest. In each plot, four representative species, namely, C. chinensis, S. superba,
P. asiatica, and B. orientale, were collected. In each sampling plot, three replicate standard
plants for the four representative species were selected for sampling the xylem. For each
of the tree and shrub species, three healthy plants with a similar canopy size were chosen
and 3–4-centimeter segments of the middle of the plant stems facing the sunlight were
collected for extracting plant stem water. In the case of herbaceous plants, three healthy
plants with a similar cover, height, and base stem were selected as three replicates, and
2–3-centimeter-long basal stems of each plant were collected. Before each rainfall event,
plant stem samples were collected. This kind of sample was also collected daily for a period
of five days following each rainfall event.

Additionally, three soil profiles were dug to a depth of 100 cm in the plots, close to the
place where the plants were sampled. Soil samples were collected before rainfall from each
of the four soil layers (0–10, 10–40, 40–80, and 80–100 cm) to determine the δD value of the
soil water before rainfall. In addition, the soil samples were sealed in soil cylinders and the
gravimetric water content was measured later, expressed as grams of water per 100 g of
dry soil (oven-drying method) [20].

Three rain gauges were installed in each of the three forestless lands in the monsoon
evergreen broad-leaved forest to measure the daily accumulated rainfall and to collect
precipitation samples. All of the rainfall samplings were collected each day between
7:00 a.m. and 8:00 a.m. to prevent evaporation. These samples were a mix of the daily
rainwater from the three rain gauges.

Shallow groundwater samples were collected every day in two wells with a 2-meter
depth after rainfall occurred and then mixed into one sample. Of the two wells, one was
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near the study site (112◦32’17.38” E, 23◦10’33.99” N) and the other was at the foot of a
mountain (112◦32’54.70” E, 23◦9’58.62” N).

All of the collected samples were placed in glass bottles and sealed with parafilm and
then immediately stored in a freezer at −18 ◦C. The precipitation and shallow groundwater
samples were collected daily in the time window of 7:00–8:00 am, and other samples were
collected between 8:00 a.m. and 10:00 a.m.

2.4. Sample Pretreatment and Stable Isotope Analysis

The water in the soil and plant stem samples was cryogenically extracted. The hy-
drogen isotope ratios of the extracted water, groundwater, and rainwater were measured
with an isotope ratio mass spectrometer (Delta V Advantage, Thermo Fisher Scientific,
Inc., Waltham, MA, USA) coupled with an elemental analyzer (Flash 2000 HT, Thermo
Fisher Scientific, Inc., Waltham, MA, USA). The precision for the δD analysis was ±1‰.
The hydrogen isotope ratio was expressed in delta units, i.e., δD (‰):

δ =

( Rsample

Rstandard
−1

)
×1000‰ (1)

where Rsample and Rstandard refer to the D/H molar ratios of the sample and the standard
(i.e., SMOW), respectively.

2.5. Proportion of Precipitation Utilized by the Plants

By comparing the δD values of the plant stem water to those of the potential water
(precipitation, shallow groundwater, and soil water before rainfall), both precipitation and
soil water before rainfall could be determined as the water sources of the plants. Given
that the plant stem water was derived from two sources (namely precipitation and soil
water before rainfall) in our case, a single two-ended linear mixing model could be used to
determine the proportion of precipitation utilized by the plants as Equation (2) [31]:

PP =
δDPW−δDSW

δDP−δDSW
×100% (2)

where PP is the proportion of precipitation utilized by the plants and δDPW, δDSW, and
δDP are the δD values of plant xylem water, soil water before rainfall, and precipitation,
respectively.

2.6. Plant Root Collection

Three well-growing plants for each of the tree and shrub species in the plots were collected
for root biomass surveys. At a distance of 0.5–1.0 m from the main stem of each plant, plant
roots were collected from the four soil layers of 0–10, 10–40, 40–80, and 80–100 cm by digging.
From each of the four soil layers, soil of 30 cm (length) × 30 cm (width) × 20 cm (depth) along
the soil profile was gathered, and the plant roots were collected by sieving. The roots were
separated into live and dead roots (debris) according to their color and tensile strength [32]. The
live roots were sorted by root diameter and divided into coarse (>5 mm), medium (2–5 mm),
and fine (≤2 mm) roots. The three kinds of roots were dried to constant weight in an oven and
weighed to calculate the root biomass.

2.7. Statistical Analyses

We conducted a one-way ANOVA to test the differences in the proportions of pre-
cipitation utilized by the four PFTs, i.e., C. chinensis, S. superba, P. asiatica, and B. orientale.
We further used an ordinary least squares regression analysis to examine the relationships
between the proportion of precipitation utilized by S. superba and the soil moisture before
rainfall. All of the analyses were performed with SPSS (Inc., Chicago, IL, USA).
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3. Results
3.1. Changes in δD of the Plant Stem Water

Following the six rainfall events, the δD values of the stem water in these four different
PFTs were distributed between the δD values of precipitation and soil water before rainfall,
suggesting that the plant water mainly originated from both the precipitation and the soil
water before rainfall (Figure 2).
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Figure 2. δD values (mean ± SD) of soil water before rainfall, rainfall, groundwater, and plant stem
water in the dry (a–c) and wet (d–f) seasons in the monsoon evergreen broad-leaved forest.

Following the 5.4 mm rainfall event in the dry season, the δD values of the stem water
in C. chinensis, S. superba, P. asiatica, and B. orientale were−38.2 to−35.1‰,−41.2 to−39.9‰,
−40.4‰ to −38.1‰, and −40.4‰ to −38.1‰, respectively. The stem water δD value
of S. superba in the canopy sublayer was the closest to that in precipitation (Figure 2a).
Similarly, this phenomenon was also observed following the 11.2 mm rainfall event in the
dry season and the 9.8 mm and 20.0 mm rainfall events in the wet season (Figure 2b,d,e). In
contrast, the δD value in the stem water of B. orientale was the closest to that in precipitation
following the 45.8 mm rainfall event in the dry season and the 36.0 mm rainfall event in the
wet season (Figure 2c,f).

3.2. The Proportion of Precipitation Utilized by the Plants

Following light and moderate rainfall events in both the dry and wet seasons, the
proportion of precipitation utilized by the plants from highest to lowest was as follows:
S. superba > B. orientale > P. asiatica > C. chinensis (Figure 3a,b,d,e). Among them, the
proportion of precipitation utilized by S. superba under light rainfall was significantly
higher than that of the other species, regardless of the season (p < 0.05; Figure 3a,d).
Similarly, the proportion of precipitation utilized by S. superba under moderate rainfall was
the largest in the wet season (p < 0.05; Figure 3e). In addition, the utilized proportion of
precipitation of C. chinensis under light and moderate rainfall was significantly lower than
that of the other species in the wet season (p < 0.05, Figure 3d,e).
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In contrast to the light and moderate rainfall events, the order of the proportion of
heavy rainfall utilized by the plants was B. orientale > P. asiatica > C. chinensis > S. superba,
whether in the dry or wet season (Figure 3c,f). Specifically, the proportion of heavy rainfall
utilized by B. orientale was significantly higher than that of the other species in the dry
season (p < 0.05; Figure 3c), while the proportion of heavy rainfall utilized by S. superba
was the lowest in the dry season (p < 0.05; Figure 3c).

The C. chinensis, P. asiatica, and B. orientale plants had relatively lower utilization
proportions of light and moderate rainfalls (Figure 3a,b,d,e) but showed a higher utilization
proportion of heavy rainfall in both the dry and wet seasons (Figure 3c,f). On the contrary,
S. superba showed a higher consumption of light and moderate rainfalls (Figure 3a,b,d,e)
but a lower consumption of heavy rainfall (Figure 3c,f).

3.3. Root Distribution of the Plants

With respect to C. chinensis, the percentages of fine root biomass in the four soil layers
were 18.0%, 47.0%, 29.2%, and 5.6%, respectively (Figure 4a), of which the fine root biomass
within the 0–40 cm soil layer accounted for 65% of the total fine biomass. For S. superba, the
percentages of fine root biomass in the four soil layers were 20.9%, 39.4%, 35.3%, and 4.4%,
respectively (Figure 4b). Regarding P. asiatica, the fine roots were mainly distributed within
a depth of 10–80 cm, accounting for 87% of the total fine roots (Figure 4c). Moreover, most
of the fine roots of B. orientale existed in the 0–40 cm soil layer (Figure 4d).
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4. Discussion

Our results show that the proportion of precipitation utilized by C. chinensis in the
canopy layer was significantly lower than that of B. orientale on the forest floor, which sup-
ports our first hypothesis. This phenomenon may be attributed to the divergent proportion
of fine root distribution [33]. Generally, shrubs and herbs are shallow-rooted species, and
their roots are mostly distributed in the shallow soil layer, especially in subtropical forests.
Thus, they tend to absorb more rainfall rather than soil water. On the contrary, arbors with
a deeper root distribution exhibit a lower proportion of precipitation utilization [34]. In
this study, the fine roots of B. orientale were mainly distributed at a soil depth of 0–40 cm,
accounting for 99% of the total fine roots, while for C. chinensis, only 65% of the fine root
biomass was distributed in the 0–40 cm soil layer. Therefore, the proportion of precipitation
utilized by C. chinensis was significantly lower than that of B. orientale.

Although S. superba had the lowest absorbed proportion of heavy rainfall, it had the
highest utilized proportion of light and moderate rainfalls compared to the other species in
the shrub and herb layers. These results are contrary to the traditional view that trees in the
canopy and sub-canopy layers mainly absorb deep soil water or groundwater [35] while
plants in the shrub and herb layers primarily absorb precipitation or shallow soil water
in the forest ecosystem [36,37]. Our results illustrated that tree species such as S. superba
still absorbed substantial precipitation after light and moderate rainfall, even in subtropical
regions with sufficient precipitation. This observation may be attributed to the distribution
of the fine root biomass of S. superba and the soil moisture before rainfall. Specifically, at
our study site, the amount of fine root biomass of S. superba distributed in each soil layer
was higher than that of the other species (Figure 4); thus, its water absorption capacity
was stronger than that of the others [24,38,39]. More importantly, before the occurrence of
light and moderate rainfall, the soil moisture was low at the study site, with a mean value
of 16% and 20%, respectively. Under this condition, S. superba may have been in a state
of water shortage. Therefore, the proportions of light and moderate rainfall utilized by
S. superba were significantly higher than those of the other species. In contrast, before the
occurrence of heavy rainfall, the soil moisture (30%–40%) at the study site was higher than
that before light and moderate rainfall. Hence, the plant species had no water shortage
problem under this condition. Even if heavy rainfall occurred, the proportion of heavy
rainfall utilized by S. superba was still the lowest. This deduction was also supported by the
negative correlation between the water use pattern of S. superba and the soil moisture before
rainfall (Figure 5), suggesting that the low soil moisture before rainfall increased the plant’s
water demand [40]. Hence, after the occurrence of light and moderate rainfall, S. superba
showed a higher proportion of precipitation utilization. Our findings imply that not all
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PFTs follow their water niches to maintain community stability (e.g., S. superba), which may
result in water competition across the PFTs, especially after light and moderate rainfall.
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Figure 5. Relationship between the proportion of precipitation utilized by Schima superba and the soil
moisture before rainfall in the monsoon evergreen broad-leaved forest. * p < 0.05.

Previous studies have reported seasonal dynamics in plant water uptake. For instance,
Betula utilis and Bashania fangiana mainly absorb rainfall in the wet season but utilize shallow
soil water at a depth of 0–40 cm in the dry season [19]. However, in our case, the water
uptake patterns of the four PFTs showed no significant changes in either the dry or wet
season (Figure 3), which does not support our second hypothesis. The different plant water
uptake patterns in the dry and wet seasons between the current study and previous work
could be due to the distinct differences in soil moisture [41–43]. Specifically, there were no
significant differences in the soil moisture before rainfall between the dry and wet seasons
at this study site (Figure 6a). By comparison, the study site investigated by Xu et al. [19]
showed distinct differences in soil moisture between the dry and wet seasons (Figure 6b)
and consequently induced different plant water uptake patterns in the dry and wet seasons.
Collectively, different changes in soil moisture among the two seasons determine whether
seasonal dynamics exist in plant water uptake.
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Although this study provides evidence of the water uptake patterns of four PFTs in
southern subtropical China, some uncertainties still exist in our case. First, the limited
number of study sites may induce uncertainty regarding the water uptake patterns of the
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four PFTs in the subtropical forest. Despite different water uptake patterns being observed
among the four PFTs at this site, more sites are needed to confirm this phenomenon.
Second, previous studies have pointed out that water extraction techniques may influence
the analysis of water uptake patterns [44]. However, this view was negated by a recent
study [45]. Therefore, more research is needed to advance our understanding of whether
water extraction techniques influence the analysis of plant water uptake.

5. Conclusions

The primary water sources of the four different PFTs investigated here (C. chinensis,
S. superba, P. asiatica, and B. orientale) are mainly precipitation and soil water before rain-
fall in the monsoon evergreen broad-leaved forest. After light and moderate rainfall
events, the order of the proportion of precipitation utilized by the different PFTs was
S. superba > B. orientale > P. asiatica > C. chinensis, while after heavy rainfall events, the uti-
lized precipitation proportions occurred in the order of B. orientale > P. asiatica > C. chinensis
> S. superba in both the dry and wet seasons. Our findings imply that not all PFTs follow
their water niches to maintain community stability; instead, some species will compete
with other species for water absorption. Especially under climate warming, the unevenly
distributed precipitation would intensify the water competition among species, ultimately
leading to the plant community structure becoming much more unstable than before.
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