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Abstract: Mangrove restoration is challenging within protected coastal habitats. Predicting the
dominant species distributions in mangrove communities is essential for appropriate species selection
and spatial planning for restoration. We explored the spatial distributions of six mangrove species,
including their related environmental factors, thereby identifying potentially suitable habitats for
mangrove protection and restoration. Based on six dominant mangrove species present in the Beibu
Gulf, Guangxi, China, we used a linear correlation analysis to screen environmental factors. In
addition, we used the maximum entropy model to analyze the spatial distributions of potential
mangrove afforestation areas. Based on the spatial superposition analysis, we identified mangrove
conservation and restoration hot spots. The findings indicate that topographic and bioclimatic factors
affect the distribution of suitable mangrove habitats in the Beibu Gulf, followed by land use type,
salinity, and substrate type. We identified 13,816 hm2 of prime mangrove habitat in the Beibu Gulf
that is primarily distributed in protected areas. The protection rate for existing mangroves was
42.62%. According to the predicted spatial distributions of the mangrove plants, the findings suggest
that mangrove restoration should be based on suitable species and site selection.

Keywords: maximum entropy model; Beibu Gulf; mangrove; suitable growth

1. Introduction

Mangroves are woody plant communities located in tropical and subtropical bays and
estuaries, and have important socioeconomic and environmental ecological functions [1].
Mangroves have become a focus for wetland ecology and biodiversity protection world-
wide. From 1980 to 2000, over 35% of the global mangrove area was lost, exceeding the
habitat loss rates of other ecosystems, including rainforests [2]. These losses have contin-
ued, with mangrove areas disappearing at a rate of 1% per year [3]. Therefore, mangrove
restoration has recently received considerable research attention worldwide with respect to
ecological protection [4,5].

Predicting the spatial distributions of potentially suitable mangrove habitats in the
Beibu Gulf is essential for establishing a foundation for mangrove wetland restoration. The
coastal area of the Beibu Gulf in the Guangxi Zhuang Autonomous Region is the most
important mangrove swamp region in China. At the end of 2013, the mangrove wetland
area in Guangxi covered 7243.15 hm2 [6], which is approximately one-third of the total
mangrove area in China that plays an important role in the ecological balance of the coastal
environment. The development of the Beibu Gulf Economic Zone threatens the mangrove
ecosystems in Guangxi. Seawall construction, shrimp pond enclosures, and mangrove
cutting degrade mangrove habitats, leading to mangrove damage and death [7]. Identifying
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suitable mangrove restoration sites and determining suitable habitat conditions are key
factors that affect the success of mangrove restoration [8,9]. However, few studies have
focused on predicting the potential mangrove distributions in the Beibu Gulf.

Predicting the spatial distributions of potentially suitable habitats for species is the
basis of ecological restoration [10]. Classical niche models include the genetic algorithm
for rule set production (GARP), the maximum entropy model (MaxEnt), and species
distribution models (SDMS) [11,12]. Of these, MaxEnt is the most widely used and is
highly accurate [13–16]. Based on the MaxEnt model, species records can be obtained and
combined with corresponding environmental variables to predict potential distributions.
The MaxEnt model has been applied in studies of animal and plant protection, as well as
in ecological research, and has been widely used to predict endangered animal and plant
distributions [17,18], suitable habitats for invasive organisms [19], and determine the effects
of global climate change on species distributions [20]. The MaxEnt model has recently been
applied to studies of potential restoration areas for coastal and intertidal organisms, such
as seagrass beds, Tachypleus tridentatus, Carcinoscorpius rotundicauda, and coral reefs [21–23].

Predicting potential mangrove distributions has also garnered considerable research
attention [24–26]. Mangroves lie at the ocean–land interface; therefore, the contrasting
ecological and environmental characteristics of the ocean and land must be considered
when identifying suitability factors. Consequently, predicting mangrove distributions is
more complex than predicting the distributions of terrestrial or marine organisms. Previous
studies have incorporated mangrove communities while analyzing suitable mangrove
restoration areas in China [27–30]. However, existing studies of mangrove distribution
prediction have not differentiated between mangrove species during sampling. Owing to
the diversity of mangrove species, previous studies have been unable to achieve the goal of
selecting suitable trees that will adapt to the site. Factors that influence existing mangrove
distribution predictions primarily include sea surface temperature (SST), terrain factors,
bioclimatic factors, sea surface salinity, and substrate type. Mangrove patches are primarily
distributed in wetlands, woodlands, and water bodies [31]; therefore, we included land use
type in this study to appropriately limit the mangrove distributions, thereby increasing the
accuracy of the predicted distributions.

In this study, we analyzed six dominant mangrove species to obtain their habitat
condition thresholds, which are of practical significance for selecting appropriate species
and building a community structure in mangrove restoration. We used the MaxEnt model
to determine the potential distributions, areas, and response intervals of six mangrove
species: Avicennia marina, Aegiceras corniculatum, Kandelia obovata, Bruguiera gymnorrhiza,
Rhizophora stylosa, and Acanthus ilicifolius. In addition, all mangrove species were grouped
to estimate the kernel density, which was used to analyze mangrove restoration hot spots
and unprotected mangrove areas. This study provides a scientific basis for mangrove
restoration and protection in the Beibu Gulf.

2. Methodology
2.1. The Study Area

The Beibu Gulf is located in southern China (20◦54′–21◦24′ N, 107◦56′–109◦47′ E;
Figure 1). The coastline extends westward from the Ximi Estuary (at Yingluo Port) at the
junction of the Hepu and Lianjiang counties (Guangdong Province), to the Beilun Estuary at
the junction of Dongxing City and Vietnam. The total length of the coastline is 1628.59 km.
The coastline is tortuous and has many natural bays, including the Tieshan, Lianzhou,
Qinzhou, and Fangcheng bays, as well as Pearl Harbor [1]. This region is characterized by a
marginal tropical marine climate, with an annual rainfall of 1500–2000 mm and an average
annual temperature of 22.0–23.4 ◦C. The Beibu Gulf has a relatively extensive mangrove
distribution, with rich mangrove wetland resources, and contains the Shankou, Beilun
Estuary, and Maoweihai mangrove nature reserves. The Beibu Gulf also contains a National
Wetland Park. The dominant mangrove species include A. marina, Aegiceras corniculatum,
K. obovata, B. gymnorrhiza, R. stylosa, and A. ilicifolius, with the top five mangrove commu-
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nities (based on area) comprising A. marina, A. corniculatum, A. marina + A. corniculatum,
B. gymnorrhiza + A. marina, and R. stylosa. The A. marina and A. corniculatum communities
account for 41.74% and 32.91% of the total mangrove area, respectively [6].
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2.2. Mangrove Distributions

To predict suitable mangrove species distributions using the MaxEnt model, species
distributions and environmental data are required. Mangrove distribution data for the
Beibu Gulf were visually interpreted according to the 2020 Google Earth images (0.61–2.4 m
resolution). The appearances of the various mangrove plants in the 2020 Google Earth
images differed (Table 1). The crowns of R. stylosa were nearly round or round, the
leaves were dark green, and the heights of the trees were greater than those of A. marina
and K. obovata, resulting in dark shadows around the trees. R. stylosa was observed as
independent patches on the map [32]. B. gymnorrhiza was distributed as a single plant with
a nearly round or round blue-green crown. When an uncertain mangrove species was
observed, we performed field surveys to verify the species. Additional data were obtained
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from previous studies, and 908 data points from a mangrove forest survey were provided
by the Guangxi Mangrove Research Center. In the study area, re-adoption work was
conducted using the fishing net tool in the ArcGIS 10.4 software package (Environmental
Systems Research Institute, Redlands, CA, USA), supplemented by manual marking, from
which a 300 m × 300 m grid was established. A total of 2270 sampling and coordinate
data points were obtained in the study area. Among them, the 1076, 999, 98, 34, 28,
and 35 sampling points were for A. corniculatum, A. marina, K. obovata, B. gymnorrhiza,
R. stylosa, and A. ilicifolius, respectively. The sampling sizes had no obvious influence on
MaxEnt [33]. Longitude and latitude data for the species distributions were extracted using
the “Calculate Geometry” tool in ArcGIS 10.4 and data were stored as comma-separated
value files to form a mangrove sample dataset. We used an analytical framework to predict
the potential mangrove species distributions (Figure 2).

Table 1. Feature descriptions of mangrove plants in Google Earth images.

Mangrove Species Image Diagram RGB Characteristic
Description

A. marina
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2.3. Environmental Data

Environmental data can be used to determine differences in growth factors between
mangrove species. Environmental factors, including temperature, salinity, and distance
from the coastline, are important indicators of potential mangrove growth and distribu-
tion [34]. We determined the influences of individual environmental characteristics on
the individual tree species populations according to their natural regeneration abilities.
Since mangroves grow in the ocean–land ecotone, their fitness factors are affected by both
continental and marine environmental factors. Thus, in this study, we combined marine
and terrestrial environmental data. To estimate the mangrove distributions in the Beibu
Gulf, the boundary of the study area was fixed with the coastline as the reference. The
estimated study area enclosed a 10-km buffer zone inland along the coastline, and outward
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to the 6-m isobath in the ocean. The Weizhou and Xieyang islands were not included in
this study. ArcGIS resampling was used to extract environmental data for the existing
mangrove sampling points, and Kriging interpolation was performed to expand the data
seaward or landward and to integrate the marine and terrestrial data.
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The bioclimatic factors were obtained from the World Climate Database archive
(https://www.worldclim.org/data/worldclim21.html, accessed on 25 June 2022). We
used WorldClim Version 2, which contains standard (19) WorldClim bioclimatic variables
(30 s precision). The data are the 1970–2000 averages.

The terrain data were extracted from the ETOP01 terrain elevation and ocean seafloor
terrain data released by the United States Geophysical Center archive (https://www.ngdc.
noaa.gov/mgg/global/global.html, accessed on 14 July 2022). The data were obtained from
the National Oceanic and Atmospheric Administration’s (NOAA) National Environmental
Information Center archive (1981–2020 SST data; ftp://ftp.emc.ncep.noaa.gov/cmb/sst/
oisst_v2/, accessed on 2 February 2022). The salinity data were obtained from the marine
salinity products of the Institute of Atmospheric Physics, Chinese Academy of Sciences
archive (http://159.226.119.60/cheng/, accessed on 2 February 2022). Auxiliary data, in-
cluding seawater salinity [35,36] for the references in the study area were also obtained. The
substrate data were obtained from the National Marine Science Data Center (nmdis.org.cn,
accessed on 5 June 2022), as well as auxiliary data regarding substrate classification in the
study area [37]. The land use data were obtained from the ESRI 10 m Cover (2020) dataset
in the Google Earth Engine (GEE) archive (https://livingatlas.arcgis.com/landcover/,
accessed on 24 June 2022). The resolutions of the datasets were normalized to 30” using a
geographic information system (GIS), and the graph was saved in ASCII format.

Correlation analyses can screen environmental variables to analyze their closeness.
The mangrove distributions and environmental data were sampled using GIS. The environ-
mental data included nineteen environmental parameters, two terrain parameters, three
SST data points, three salinity data points, one substrate type data point, and one land-use
data point. Pearson’s correlation analysis was used to identify the environmental variables
and was performed for all 29 variables to calculate the correlation coefficient matrix. A
correlation coefficient > 0.8 indicates a strong correlation. We eliminated the environmental
variables that had less impact on species [38], with a total of 16 environmental variables
used to establish the model (Table 2, Figures 3 and 4). We calculated the wetland index
(WTI), which represents the spatial distribution of the runoff source area and groundwater
level in the basin, using the following equation:

WTI = ln
(

α

tanβ

)
(1)

where α is equal to (flow accumulation + 1) × pixel area (in m2) and β represents the slope
angle in radians.

Table 2. Environmental variables used to predict the mangrove distributions in the Beibu Gulf,
Guangxi, China.

Data Type Variable Description Unit

Bioclimatic

Bio2 Mean diurnal range [mean of monthly (max. temp–min. temp)] ◦C × 10
Bio3 Isothermality (BIO2/BIO7) (×100) %
Bio5 Maximum temperature of warmest month ◦C × 10
Bio6 Minimum temperature of the coldest month ◦C × 10
Bio10 Mean temperature of the warmest quarter ◦C × 10
Bio15 Precipitation seasonality (coefficient of variation) %
Bio18 Precipitation in the warmest quarter mm
Bio19 Precipitation in the coldest quarter mm

Terrain
Elevation Topographic elevation m

WTI Wetland index –

Ocean salinity C_sss Mean sea surface salinity in the coldest season ‰
W_sss Mean sea surface salinity in the warmest season ‰

Sea surface temperature C_sst Mean sea surface temperature in the coldest season ◦C
W_sst Mean SST in the warmest season ◦C

Substrate type Substrate Substrate type –
Land-use data Land-use Land use type –

https://www.worldclim.org/data/worldclim21.html
https://www.ngdc.noaa.gov/mgg/global/global.html
https://www.ngdc.noaa.gov/mgg/global/global.html
ftp://ftp.emc.ncep.noaa.gov/cmb/sst/oisst_v2/
ftp://ftp.emc.ncep.noaa.gov/cmb/sst/oisst_v2/
http://159.226.119.60/cheng/
https://livingatlas.arcgis.com/landcover/
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2.4. Model Parameters

In this study, we used the MaxEnt version 3.4.1 (Steven J. Phillips, Columbia Univer-
sity) for the predictive analyses. To establish the model, 75% of the mangrove distribution
data from the Beibu Gulf was used as training data, while the remaining 25% was used
as test data [28]. To construct the MaxEnt model, the default feature combination was
selected and sample data were randomly selected. To improve the accuracy, the number
of repeated model calculations was set to 10. Default values were used for other settings.
The grid output results obtained after the operation were visually converted and analyzed
using ArcGIS 10.4. The pixel value of each grid represented the distribution probability
of mangroves in the grid, with a value ranging from 0 to 1. Larger pixel values indicated
higher potential mangrove distributions and higher habitat suitability. In this study, we
used the natural breakpoint method to grade the fitness results as follows: 0–0.2, no fitness;
0.2–0.5, low fitness; 0.5–0.7, medium fitness; and >0.7, optimal fitness [27].
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2.5. Model Testing

The MaxEnt model was applied to calculate the receiver operating characteristic
(ROC) curve. The value of the diagnostic test was represented by the area under the
curve (AUC) of the ROC curve, with AUC values ranging from 0 to 1. Values closer to
1 indicate a more accurate prediction [38]. The range of AUC values was interpreted as
follows: 1–0.9, excellent prediction; 0.8–0.9, good prediction; 0.7–0.8, average prediction;
0.6–0.7, poor prediction; and 0.5–0.6, prediction failure [28].

2.6. Vacancy Analysis of Mangrove Protection and Restoration

Based on the mangrove habitat suitability results, priority areas for mangrove pro-
tection and restoration (potential mangrove hot spots) were calculated using the kernel
density estimation (KDE), which is a hot spot spatial analysis method [39]. The distribution
of discrete values in continuous space can be obtained by calculating the densities of the
elements in their surrounding neighborhood. In this study, after the KDE analysis was per-
formed in the ArcGIS software, we used a spatial superposition analysis of the mangrove
distribution status, priority area spatial distributions, and nature reserve distributions to
further analyze the protection status of the mangrove ecosystem in the Beibu Gulf. The
protected area information, including the protection rate and the protection and repair of
vacant areas, was also obtained from the spatial superposition analysis.

3. Results
3.1. The AUC Values

The AUC values of the training and test sets of the predictive model for the six
mangrove species in the Beibu Gulf ranged from 0.912 to 1 (Figure 5), whereas those for all
mangrove species combined were 0.882 and 0.869 for the training and test sets, respectively
(Figure 6). Based on the AUC values of the test set, the MaxEnt model simulation of the
mangroves was deemed accurate. Thus, the model was highly reliable and could predict
the distribution of the dominant mangrove species in the Beibu Gulf.

3.2. Analysis of Dominant Environmental Factors

Factors affecting the mangrove habitats included bioclimate, topography, salinity, SST,
substrate type, and land use type. The contributions of the variables were based on the
interactions between the different environmental variables [15]. We investigated the test
results of different factors affecting mangrove distributions to determine the dominant
factors that affected the distributions of specific species. In the Beibu Gulf, elevation, WTI,
mean temperature of the warmest quarter, and substrate type were the dominant factors
that affected the overall mangrove distribution (Figure 7).

We investigated the importance of the environmental factors on the distribution
probability of each of the six selected mangrove species. The three environmental factors
crucial to the geographic distribution of A. marina were elevation, mean sea surface salinity
in the coldest season, and maximum temperature of the warmest month (Figure 8a), with a
cumulative contribution rate that accounted for 50.7% of its distribution, while the other
13 environmental factors accounted for 49.3% (Figure 9). Among the remaining factors, the
contributions of bioclimatic factors, topography, sea surface salinity, SST, substrate type,
and land use type accounted for 39.1%, 34.0%, 16.6%, 1.2%, 6.1%, and 2.9% of the total,
respectively. Based on the contributions and importance of the various environmental
factors for predicting A. marina distribution, elevation limited the optimal planting areas,
while the mean sea surface salinity in the coldest season reflected the salt preference of this
species. The contributions of land use type and SST to the distribution of A. marina were
relatively low.
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represent independent test results of each variable, light green entries represent test results excluding
the variable, and red entries represent test results including all variables [40]. The length of each
entry represents the size of its score (i.e., longer entries indicate more important variables).

For A. corniculatum, the three environmental factors that were critical to its geographic
distribution were elevation, WTI, and substrate type (Figure 8b), with a cumulative contri-
bution that accounted for 41.7% of its distribution, while the remaining 13 environmental
factors accounted for 58.3%. Among the remaining factors, the contributions of topography,
sea surface salinity, bioclimate, SST, substrate type, and land use type accounted for 36.3%,
39.6%, 18.9%, 0.1%, 2.1%, and 3.1% of the total, respectively (Figure 9). The contribution
of marine salinity for predicting the A. corniculatum distribution was greater than that for
A. marina, indicating that A. corniculatum is more sensitive to salinity than A. marina. The
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contributions of SST, substrate type, and land use type to the distribution of A. corniculatum
were relatively low.
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Figure 9. The contributions of the six environmental variables to predicting the mangrove species
distributions (A. marina: AM, A. corniculatum: AC, K. obovata: KO, B. gymnorrhiza: BG, R. stylosa: RS,
and A. ilicifolius: AI).

For K. obovata, elevation, substrate type, and WTI were the most important to its
geographic distribution (Figure 8c), with a cumulative contribution of 42.3%. Among these
influencing factors, elevation reflected the restrictions on K. obovata planting locations. In
addition, it is possible that this species is relatively sensitive to the substrate type.

For B. gymnorrhiza, the maximum temperature of the warmest month, precipitation in
the warmest quarter, and substrate type had the largest effects on its geographic distribution
(Figure 8d), accounting for a cumulative contribution of 79.1%. Among the other factors, the
contribution rates of bioclimate, topography, sea surface salinity, SST, substrate type, and
land use type accounted for 76.9%, 4.1%, 0.7%, 0.4%, 15.8%, and 1.2%, respectively. These
results indicate that B. gymnorrhiza is sensitive to bioclimatic factors and the substrate type.

For R. stylosa, precipitation in the warmest quarter, substrate type, and mean tem-
perature of the warmest quarter most affected its geographic distribution (Figure 8c),
accounting for a cumulative contribution of 82.9%. Among the factors influencing the
distribution of this species, the contribution rates of bioclimate, topography, sea surface
salinity, SST, substrate type, and land use type accounted for 78.3%, 6.6%, 2.9%, 0.4%, 11.9%,
and 0%, respectively. These results indicate that the distribution of R. stylosa is sensitive to
bioclimatic factors.

For A. ilicifolius, the substrate type, mean sea surface salinity in the warmest season,
and WTI had the greatest importance for its geographic distribution (Figure 8f), with
a cumulative contribution of 72.5%. The significance of the substrate type reflects the
substrate preferences of A. ilicifolius, while the significance of the WTI reflects the limitations
of topography on A. ilicifolius. Furthermore, the importance of mean sea surface salinity in
the warmest season reflects the sensitivity of A. ilicifolius to salinity, as high salinity levels
may affect its growth.
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3.3. Ranges of Environmental Factors That Affect Mangrove Habitat Suitability

The variables representing the mangrove suitability factors in the Beibu Gulf were
selected based on the logistic mode of the MaxEnt model. Correlations between habitat
suitability and the environmental variables were analyzed using a probability distribution
logic output value of 0.5 as the boundary. Using the main environmental variables (i.e.,
elevation, maximum temperature of the warmest month, precision in the warmest quarter,
and substrate) and their corresponding species probabilities, the response curves of the
most important environmental variables affecting mangrove distributions in the study area
were obtained (Figure 10). This allowed us to investigate the optimal thresholds for the
main environmental variables affecting the six mangrove species (Table 3).
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Table 3. Thresholds of the dominant environmental factors that affected the six mangrove species distributions.

Order Mangrove Species Dominant Environmental Factors Limitation

1 A. marina
Elevation −0.84–1.27 m

Mean sea surface salinity in the coldest season 16.41–25.31‰
Maximum temperature of the warmest month 32.1–32.3 ◦C

2 A. corniculatum
Elevation −0.68–2.02 m

Wetland index 4.11–9.81
Substrate type Mixed mud flat

3 K. obovata
Elevation −0.50–1.88 m

Substrate type Mixed mud flat
Wetland index 4.49–8.33

4 B. gymnorrhiza
Maximum temperature of the warmest month 32.3–32.4 ◦C

Precipitation in the warmest quarter 638–753 mm
Substrate type Mixed mudflat

5 R. stylosa
Precipitation in the warmest quarter 637–746 mm

Substrate type Mixed mudflat
Mean temperature of the warmest quarter 28.7–28.9 ◦C

6 A. ilicifolius
Substrate type Mixed mudflat

Mean sea surface salinity in the warmest season 3.39–7.37‰
Wetland index >5.28

The minimum suitable elevations of the mangrove species were (from lowest to high-
est): A. marina < A. corniculatum < R. stylosa < K. obovata < B. gymnorrhiza < A. ilicifolius. The
lowest elevation suitable for A. marina growth was −0.84 m, whereas that for A. ilicifolius
was relatively high (Figure 11).
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B. gymnorrhiza (BG), R. stylosa (RS), and A. ilicifolius (AI).

For the average sea surface salinity in the coldest season, K. obovata had a relatively
wide range (5.91‰–17.92‰; Figure 12). According to the highest suitable mean sea surface
salinity value in the coldest season, the six species were in order (from highest to lowest) as
follows: R. stylosa > B. gymnorrhiza > A. marina > A. corniculatum > K. obovata > A. ilicifolius.
For the most suitable mean sea surface salinity in the warmest season, the species were in
order (from highest to lowest) as follows: A. marina > R. stylosa > K. obovata > B. gymnorrhiza
> A. corniculatum > A. ilicifolius. The most suitable mean sea surface salinity range in
the coldest season for A. marina was 16.41‰–25.31‰, while the most suitable value was
24.27‰. The suitable average sea surface salinity range for A. ilicifolius in the warmest
season was 3.39‰–7.37‰, and the most suitable value was 4.07‰.
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3.4. Suitable Mangrove Areas in the Beibu Gulf

According to the findings of Hu et al. [28], we divided the potential mangrove areas
based on their suitability as follows: best (>0.7), medium (0.7–0.5), low (0.2–0.5), and
unsuitable (0–0.2). Using the six mangrove species as the overall inputs for the model
(Figure 12g), we obtained an optimal suitable area of 13,816 hm2. The best fitness areas
were located primarily in the Dandou Sea on the western side of the Shatian Peninsula in
southeastern Hepu County, Guangxi; Tieshan Harbor in Qinzhou Bay and the Dafeng River
in the center of the Guangxi coastline; Fangcheng Bay on the western Guangxi coastline;
and the Shankou Mangrove National Nature Reserve (Figure 13g).

The size of the best suitable area for A. marina was 10,341 hm2 (Figure 13a, Table 4),
with high fitness areas primarily located in Tie Shan Gang, Beihai Golden Bay mangrove
reserve, and along the open coastline in the southern Beihai National Wetland Park and
Beilun Estuary Mangrove National Nature Reserve. The size of the best suitable area
for A. corniculatum was 13,154 hm2 (Figure 13b), with highly suitable areas distributed
primarily in estuaries, including Lianzhou Bay, the Maoweihai Mangrove Autonomous
Region Nature Reserve, and the Dafeng River. The best suitable area for K. obovata was
10,672 hm2 (Figure 13c), with highly suitable areas distributed along Qinzhou Bay, the
Dafeng River, and the Beilun Estuary Mangrove National Nature Reserve. The size of the
best area for B. gymnorrhiza was 2565 hm2 (Figure 13d), with the highest fitness areas located
primarily in the Dandou Sea region of the Shankou Mangrove Reserve, Yingluo Port, and
the Beilun Estuary Mangrove National Nature Reserve. The size of the best suitable area
for R. stylosa was 1158 hm2 (Figure 13e), with optimal areas distributed primarily in the
Dandou Sea region and Yingluo Port of the Shankou Mangrove Reserve; however, very few
suitable areas were located in other parts of the study area. The size of the best suitable area
for A. ilicifolius was 4054 hm2 (Figure 13f), with highest fitness areas located primarily in
regions with low estuarine salinities in Lianzhou Bay and the Shankou Mangrove Reserve.
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Table 4. Suitable mangrove areas for species of interest.

Mangrove Species Best Suitable Area (hm2) Medium Suitable Area (hm2)

A. marina 10,341 39,875
A. corniculatum 13,154 37,063

K. obovata 10,672 20,682
B. gymnorrhiza 2565 4385

R. stylosa 1158 3226
A. ilicifolius 4054 6949

The Beibu Gulf contains three mangrove nature reserves and a national wetland
park, with a total area of 15,794 hm2 and mangrove coverage of 3977 hm2. The mangrove
protection rate in this region is 42.62%. Based on the analysis of the superposition of the
distributions of protected areas and potentially suitable mangrove areas, 49.10% of the best
suitable areas were located within protected areas (Figure 14). Eight areas were identified
as priority areas for mangrove protection and restoration. The unprotected mangrove
areas in the Beibu Gulf are primarily located in Lianzhou Bay, along the Dafeng River, East
Fangchenggang Bay, and Tieshan Harbor.
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4. Discussion

The species distribution studies based on the MaxEnt model presented herein can
be used for mangrove restoration. Based on 908 mangrove survey data points and the
visual interpretations of the remote sensing images, the AUC values of the training and test
datasets of the mangrove species suitability distribution model ranged from 0.912 to 1. The
values of all six species were “extremely accurate,” indicating good model performance
based on the survey data and remote sensing images.

4.1. Dominant Environmental Factors Affecting Mangrove Suitability

Overall, the dominant factors that affected suitable mangrove habitat distribution
in the Beibu Gulf were topography, bioclimate, land use type, sea surface salinity, and
substrate type. The effect of SST on the distribution of suitable habitats was relatively weak.

In terms of topography, elevation was the dominant factor that affected the distribu-
tions of A. marina, A. corniculatum, and K. obovata. These findings are similar to those of Hu
et al. [28], who showed that mangrove distribution was limited by topography at a small
regional scale, while elevation exerted a considerable influence on species distribution
and affected the habitat preferences of mangrove species [41]. In the present study, the
minimum critical elevation for mangrove growth was negative or zero, indicating that
mangrove plants could grow on the beach below the average sea level, which is comparable
to the findings of Liu et al. [42], who reported that large communities of A. corniculatum
and K. obovata can survive on beaches below the average sea level.

Avicennia marina had the lowest suitable elevation, indicating that this species is a
pioneer tree species for mangrove afforestation. This is consistent with the results from
a previous study [43], primarily because A. marina has respiratory roots, is resistant to
flooding and hypoxia stress, and has a relatively high salt tolerance [44].

Bioclimatic factors were also critical for potential mangrove habitat distributions.
These factors were also important for mangroves located in Guangdong and Fujian,
China [27,28]. The R. stylosa and B. gymnorrhiza distributions were more sensitive to
bioclimatic factors. Previous studies have shown that R. stylosa and B. gymnorrhiza are
widespread thermophilic species [45], which is consistent with the temperature preferences
of these two species observed in this study.

Sea surface salinity also affects mangrove distributions [46–48]. Although mangroves
grow in an environment with a salinity of ~30‰ [49], they can adapt to a wide salinity
range. Under different salinity gradients, the physiological parameters of mangrove plants
can change [50]. In this study, the maximum sea surface salinity favored by all six mangrove
species was <30‰, which is in accordance with the findings of previous research [48]. The
model used in this study indicates that sea surface salinity was a dominant factor that
affected the predicted distributions of A. marina and A. ilicifolius. The salinity tolerance
intervals of different mangrove species can differ [51]. Based on the most appropriate
average sea surface salinities in the coldest and warmest seasons, the three mangrove
species investigated by Ye et al. [52], had salt tolerances as follows (from highest to low-
est): A. marina > A. corniculatum > A. ilicifolius, which is consistent with the findings of
this research.

For A. ilicifolius, the average sea surface salinity threshold in the warmest season ranged
from 3.39‰–7.37‰. The suitable values for A. corniculatum ranged from 3.78‰–11.81‰,
while those of A. marina ranged from 17.95‰–24.00‰. Therefore, within the threshold
range, low-salinity beaches are more suitable for A. ilicifolius, whereas medium-salinity
beaches are more suitable for A. corniculatum [52]. A. marina can be planted on beaches
with relatively high salinity levels. However, during the dry cold season, the salinities of
Dandou, Yingluo, and Tieshan Harbors in the Shankou Mangrove Reserve, which host
high mangroves and B. gymnorrhiza, range from 26.8‰–28.0‰ [35]. Therefore, the average
sea surface salinity in the coldest season and the optimal salinity values for R. stylosa and
B. gymnorrhiza were higher than those for A. marina.
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The substrate type was a main factor that affected the growth of A. corniculatum,
K. obovata, B. gymnorrhiza, R. stylosa, and A. ilicifolius. Previous research has shown that
a mixed beach substrate is more suitable for mangrove growth than single-component
beach or mudflat substrates [53]. Therefore, mixed beaches can be an index used for beach
selection in the afforestation of these mangrove species.

4.2. Mangrove Restoration Recommendations

As of 2013, the mangrove area in the Beibu Gulf was 7243.15 hm2 [6]. In 2020, this
area had increased to 9331.53 hm2 and continues to increase, indicating that there is still
space for ecological restoration and confirming that the Guangxi coast has the potential
for mangrove restoration. Areas suitable for forests (located in Lianzhou Bay and the
Dafeng River in Qinzhou) and vacant areas in the Beibu Gulf can be used for mangrove
restoration and protection. The most suitable habitats in this region should be included in
ecological mangrove restoration projects that are based on establishing protected areas and
wetland parks.

This study focused specifically on predicting the distributions of dominant mangrove
species and their suitable growth thresholds. Focusing on individual mangrove species
provides more targeted results that are conducive to selecting appropriate species for
mangrove restoration.

Bioclimatic and topographic factors, as well as the sea surface salinity, substrate type,
SST, and land use type were selected as environmental variables that affected mangrove
distributions in this study. In addition to the factors used in previous mangrove distribution
prediction studies, we added land use type here. Although land use type was not the most
dominant factor affecting the distributions, it also had a certain impact on the mangrove
distributions. The contributions of land use type to the predicted distributions of K. obovata
and A. ilicifolius were 10.9% and 7.5%, respectively. We suggest that future studies should
add biological invasion factors, substrate and seawater chemistries, and human interfer-
ence factors (e.g., ports, waterways, and aquaculture) to expand the screening range of
environmental variables in the model.

5. Conclusions

Predicting the distributions of important mangrove plants is crucial for the selection of
tree species for mangrove restoration and their locations. We used remote sensing images
combined with field survey data, SST data, land use data, and other environmental data
to predict and analyze the potential distributions of six mangrove species in the Beibu
Gulf based on the MaxEnt model. Specifically, we analyzed the dominant environmental
factors that affected the predicted distributions of six mangrove species and the ranges of
the main environmental factors that affected mangrove growth. In addition, we explored
the potential locations for restoring the six selected mangrove species, as well as mangrove
growth and protection hotspots.

The most important factor that affected the overall distribution of mangroves in the
Beibu Gulf was topography, followed by bioclimatic factors, land use type, sea surface
salinity, and substrate type. The SST had relatively weak effects on the overall distribu-
tion. Among the mangrove species, R. stylosa and B. gymnorrhiza were more sensitive to
bioclimatic factors than the other four species.

The regions with potential for mangrove growth in the Beibu Gulf are located primarily
in the Dandou Sea, Tieshan Harbor, Qinzhou Bay, Dafeng River, and Fangcheng Harbor,
offering a combined optimal mangrove habitat of 13,816 hm2. Vacant mangrove protection
areas in the Beibu Gulf are primarily located in Lianzhou Bay and along the Dafeng River in
Quinzou. Areas with low estuarine salinity in Lianzhou Bay and the Maoweihai Mangrove
Autonomous Region Nature Reserve are suitable for the A. corniculatum and A. ilicifolius
habitats. In addition, the Dandou and Yingluo ports in the Shankou Mangrove Reserve
offer suitable R. stylosa and B. gymnorrhiza habitats. The Beilun Estuary National Nature
Reserve is suitable for A. marina, K. obovata, and B. gymnorrhiza. In addition, Tieshan
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Harbor offers suitable A. marina, R. stylosa, and B. gymnorrhiza habitats. In estuarine
areas, A. corniculatum and A. ilicifolius are suitable species for mangrove restoration and
afforestation. The mangrove species distribution map produced in this study can be used
as a basis for mangrove afforestation and restoration in the Beibu Gulf. For mangrove
restoration, optimal growth areas should be selected, and land and trees should be adapted
according to the suitable environmental threshold ranges for the specific mangrove species.
Thus, this study provides an important reference for predicting the distributions of six
dominant mangrove species, as well as for the selection of appropriate species and their
locations for successful mangrove restoration.
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