
Citation: Zheng, Y.; Zhang, L.; Li, P.;

Ren, X.; He, H.; Lv, Y.; Ma, Y.

Evaluation of the Community Land

Model-Simulated Specific Leaf Area

with Observations over China:

Impacts on Modeled Gross Primary

Productivity. Forests 2023, 14, 164.

https://doi.org/10.3390/f14010164

Academic Editors: Yueh-Hsin Lo and

Ester González-de-Andrés

Received: 22 December 2022

Revised: 9 January 2023

Accepted: 10 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Evaluation of the Community Land Model-Simulated Specific
Leaf Area with Observations over China: Impacts on Modeled
Gross Primary Productivity
Yuanhao Zheng 1,2,3, Li Zhang 1,2,4,* , Pan Li 5, Xiaoli Ren 1,2, Honglin He 1,2,4, Yan Lv 1,2,3 and Yuping Ma 6

1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2 National Ecosystem Science Data Center, Beijing 100101, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
5 School of Earth System Science, Tianjin University, Tianjin 300072, China
6 Chinese Academy of Meteorological Sciences, Beijing 100081, China
* Correspondence: li.zhang@igsnrr.ac.cn; Tel.: +86-10-64888182

Abstract: Specific leaf area (SLA) is a key leaf functional trait associated with the ability to acquire
light. Substantial variations in SLA have not been well described in the community land model
(CLM) and similar terrestrial biosphere models. How these SLA variations influence the simulation
of gross primary productivity (GPP) remains unclear. Here, we evaluated the mismatch in SLA
between the CLM4.5 and observed data collected from China and quantified the impacts of SLA
variation calculated from both observations and the default values across seven terrestrial biosphere
models on modeled GPP using CLM4.5. The results showed that CLM4.5 tended to overestimate
SLA values at the top and gradient of the canopy. The higher default SLA values could cause an
underestimation of the modeled GPP by 5–161 g C m−2 yr−1 (1%–7%) for temperate needleleaf
evergreen tree (NET), temperate broadleaf deciduous tree (BDT), and C3 grass and an overestimation
by 50 g C m−2 yr−1 (2%) for temperate broadleaf evergreen tree (BET). Moreover, the observed
SLA variation among species ranged from 21% to 59% for 14 plant functional types (PFTs), which
was similar to the variation in default SLA values across models (9%–60%). These SLA variations
would lead to greater changes in modeled GPP by 7%–19% for temperate NET and temperate BET
than temperate BDT and C3 grass (2%–9%). Our study suggested that the interspecific variation in
SLA and its responses to environmental factors should be involved in terrestrial biosphere models;
otherwise, it would cause substantial bias in the prediction of ecosystem productivity.

Keywords: specific leaf area; interspecific variation; gross primary productivity; the CLM4.5 model

1. Introduction

Plant functional traits are core attributes that reflect important ecological strategies
in plants [1,2]. As a leaf functional trait, specific leaf area (SLA) is an important indica-
tor of resource trade-off strategies under environmental changes, which determines the
ability of a plant to capture light [3–5]. Specific leaf area refers to the leaf area per unit of
leaf biomass, which is of great significance for vegetation photosynthesis and ecosystem
productivity [6,7].

Substantial variation in SLA exists among plant functional types (PFTs) (e.g., needleleaf
evergreen tree and broadleaf deciduous tree) and species for a given PFT. Numerous
surveys have shown that SLA varies with different plant functional types (PFTs), following
a general pattern of herb > shrub > tree, broadleaved > coniferous, and deciduous >
evergreen [8–10]. Moreover, plant SLA among different species also shows significant
variability. Based on the TRY Global Plant Traits Database, the variation coefficients (CV)
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of SLA data within the same PFT reach up to 23%–78% [9]. Such a large interspecific
variation in SLA for a given PFT has also been reported in China and other regions [11].
For example, Liu et al. investigated plant SLA for 76 natural communities in China, the
CV of different forest types ranged from 40% to 60%, and those of herb and shrub were
66% and 57%, respectively [12]. In the study by Reich et al., the CV of SLA was 34.3% for
the broadleaf deciduous tree and 44.7% for the needleleaf evergreen tree based on field
data across sites in the USA [13]. However, such a leaf trait diversity has not been well
described in state-of-the-art terrestrial biosphere models.

In most terrestrial biosphere models, vegetation is grouped into different plant func-
tional types with specific plant functional traits. This simple scheme is an effective way to
characterize the functional diversity of ecosystems on the regional and global scales [14,15].
As for the expression of SLA, each plant functional type has a corresponding mean SLA
value that can be calculated from observations. Few models consider the vertical variability
of SLA within the canopy as in the community land model (CLM) [16,17]. Nevertheless, the
default trait value settings for each PFT in different terrestrial biosphere models vary with
each other and are different from the observations made at multiple spatial scales [9,18].
The uncertainties in plant trait parameters would considerably impact the prediction of
vegetation productivity [19,20]. For example, the uncertainties in leaf longevity resulted in
a greater than 30% change in vegetation biomass for temperate broadleaf evergreen tree in
the Lund–Potsdam–Jena model [21]. However, how the SLA variation within each plant
functional type influences the terrestrial gross primary productivity (GPP) simulation still
remains unclear.

The objectives of this study were to investigate (1) the mismatch between simulated
SLA in the CLM (version 4.5) and observed data for 1056 species in China and the dif-
ferences in default SLA values across seven terrestrial biosphere models and (2) how the
variation in SLA values influences GPP modeling for different ecosystems. Here, we first
compared the default SLA values in the CLM4.5 model with published plant SLA observa-
tion data collected in China from 2005 to 2022. The variation in observed SLA data for each
PFT and the difference in default parameter values of SLA in seven terrestrial biosphere
models (i.e., BEPS, JULES, Hybrid, BIOME-BGC, SiBCASA, CLM4.5, and IBIS) were then
quantified. Taking three forest ecosystems and one grassland ecosystem as an example,
we finally quantified the uncertainties in modeled GPP caused by the mismatch in SLA
between the mean observed values and original default values in CLM4.5, and the SLA
variations among species and across different models for a given PFT.

2. Materials and Methods
2.1. Data

We collected 2632 records of observed specific leaf area (SLA) data for 1056 species from
published papers during 2005–2020 by searching for keywords (i.e., leaf traits, specific leaf
area, leaf mass per area, China) in the Web of Science and the China National Knowledge
Infrastructure. SLA values estimated from models were excluded. These SLA data were
distributed in different climates zones (Figure 1).

According to the plant functional types setting in the CLM4.5 model and observations
in China, we statistically analyzed the SLA data for 15 plant functional types (PFTs), in-
cluding temperate and boreal needleleaf evergreen tree (temperate and boreal NET), boreal
needleleaf deciduous tree (boreal NDT), tropical and temperate broadleaf evergreen tree
(tropical and temperate BET), tropical and temperate and boreal broadleaf deciduous tree
(tropical and temperate and boreal BDT), temperate broadleaf evergreen shrub (temperate
BES), temperate and boreal broadleaf deciduous shrub (temperate and boreal BDS), C3
grass, C4 grass, and rainfed crop (Table S1). Here, we combined C3 arctic grass and C3
grass with the same default SLA value in the CLM4.5 model into one plant functional type.
We used the coefficient of variation (CV) to quantify the variation in SLA among species
within the same plant functional type.
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Figure 1. Distribution of observed specific leaf area (SLA) data in China.

The default SLA parameter values for plant functional types were collected from seven
state-of-the-art terrestrial biosphere models, including Boreal Ecosystems Productivity Sim-
ulator (BEPS), the Joint UK Land Environment Simulator (JULES), Hybrid model, Biome
Biogeochemical model (BIOME-BGC), Simple Biospher and Carnegie-Ames-Stanford Ap-
proach model (SiBCASA), Community Land Model (CLM4.5), and Integrated Biosphere
Simulator (IBIS) [18,22–26]. Considering the differences in PFT assignment among the
seven models, we just compared the differences in default SLA values among the models
for eight plant functional types, i.e., NET, NDT, BDT, BET, BES, BDS, grass, and crop). For
the models with subgroups for each of the eight PFTs, we used the average default SLA
values of all subgroups.

Half-hourly climate data (i.e., downwelling short-wave radiation (W m−2), down-
welling long-wave radiation (W m−2), air temperature (K), precipitation (mm s−1), surface
pressure (Pa), relative humidity (%), and wind speed (m s−1)) at four ChinaFLUX sites
(http://www.nesdc.org.cn/ accessed on 15 June 2022) were collected to drive the CLM4.5
model. The four sites included Qianyanzhou subtropical coniferous forest (QYZ), Chang-
baishan temperate broadleaved Korean pine mixed forest (CBS), Dinghushan subtropical
evergreen coniferous forest (DHS), and Haibei alpine shrub-meadow (HBG). The CBS tem-
perate broadleaf deciduous forest is an old growth forest in northeastern China. The HBG
is a typical grassland site in the Qinghai–Tibet Plateau. QYZ and DHS are two evergreen
forests in southern China. A brief description of the sites’ characteristics is listed in Table 1.

Table 1. Site information of four ChinaFLUX sites.

Site Name QYZ CBS DHS HBG

latitude (E) 26.74 42.40 23.17 37.67
longitude (N) 115.06 128.10 112.57 101.33
elevation (m) 102 738 300 3327

plant functional type temperate NET temperate BDT temperate BET C3 grass
simulated years 2003–2008 2003–2008 2003–2008 2003–2008

Missing climate data were filled in using observations from meteorological stations at
the same site in the Chinese Ecosystem Research Network (CERN) (http://ww.cnern.org.
cn/ accessed on 25 June 2022). A seven-day running mean diurnal cycle was used under

http://www.nesdc.org.cn/
http://ww.cnern.org.cn/
http://ww.cnern.org.cn/
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the absence of station data. Other input data (e.g., plant functional type, soil depth, and
texture) were also collected at these sites. More details were given by Zhang et al. [27].

2.2. Model

CLM4.5 is a state-of-the-art land surface process model in the Community Earth Sys-
tem Model (CESM1.2), which couples terrestrial biogeophysical processes, biogeochemical
processes, and hydrological processes. CLM models have been evaluated widely for carbon
fluxes and pools, evapotranspiration, leaf area index, land water storage, and soil mois-
ture at different temporal and spatial scales [28–34]. The CLM4.5 model showed a good
performance when simulating GPP at the above four sites [27].

In CLM4.5, photosynthesis in C3 and C4 plants was simulated based on the models
of Farquhar et al. and Collatz et al. [35,36], respectively. Leaf net photosynthesis (An) is
defined as follows:

An = min
(
Ac, Aj, Ae

)
− Rd (1)

where Ac is the RuBP carboxylase (Rubisco) limited rate of carboxylation (µmol CO2m−2 s−1),
Aj is the maximum rate of carboxylation allowed by the capacity to regenerate RuBP
(µmol CO2 m−2 s−1), Ae is the product-limited rate of carboxylation for C3 plants and
the PEP carboxylase-limited rate of carboxylation for C4 plants, and Rd is the leaf dark
respiration rate (µmol CO2 m−2 s−1).

Photosynthesis is calculated separately for sunlit and shaded leaves to scale up carbon
flux from the leaf to canopy levels.

Ac = AsunLAIsun + AshadeLAIshade (2)

where Asun and Ashade are the photosynthesis for sunlit and shaded leaves (CO2 m−2 s−1),
LAIshade is the sunlit and shaded leaf area indices, and Ac is expressed as follows:

Ac =


Vcmax(ci−Γ∗)

ci+Kc(1+oi/Ko)
for C3 plants

Vcmax for C4 plants

 (3)

where Vcmax is the maximum rate of carboxylation (µmol m−2 s−1); ci is the internal leaf
CO2 partial pressure (Pa); oi is the O2 partial pressure (Pa); Kc and Ko are the Michaelis–
Menten constants (Pa) for CO2 and O2, respectively; and Γ∗ is the CO2 compensation
point (Pa).

Vcmax depends on temperature and is calculated from the value at 25 ◦C (Vcmax25).
Vcmax25 varies with foliage nitrogen concentration and specific leaf area.

Vcmax25 = NaFLNRFNRaR25 (4)

where Na is the area-based leaf nitrogen concentration (g N m−2 leaf area), FLNR is the
fraction of leaf nitrogen in Rubisco (g N in Rubisco g−1 N), FNR is the mass ratio of total
Rubisco molecular mass to nitrogen in Rubisco (g Rubisco g−1 N in Rubisco), and aR25
is the specific activity of Rubisco (µmol CO2 g−1 Rubiscos−1). Na is calculated from the
mass-based leaf nitrogen concentration and specific leaf area:

Na =
1

CNLSLA0
(5)

where CNL is the leaf carbon-to-nitrogen ratio (g C g−1 N) and SLA0 is specific leaf area at
the canopy top (m2 leaf area g−1 C).

The vertical variability in SLA within the canopy was simulated by a linear function
of SLA and the canopy depth as follows:

SLA(x) = SLA0 + mx (6)
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where SLA0 is a fixed value of SLA at the top of the canopy (m2 g−1), m is a linear slope
coefficient, and x is the canopy depth expressed as overlying leaf area index (m2 overlying
one-sided leaf area m2 ground area). SLA0 and m are both assumed to vary with plant
functional type. More details of the CLM4.5 model can be found in Oleson et al. and
Thornton et al. [25,37]. Although the leaf nitrogen content and Vcmax25 are updated from
static values in CLM4.5 to variates simulated by the leaf utilization of nitrogen for the
assimilation (LUNA V1.0) model in the new version of the CLM model (CLM5.0), the
quantification of SLA and related main processes in simulating photosynthesis remain the
same as in CLM4.5 [38,39].

2.3. Analysis of the Impact of SLA Variation on Gross Primary Productivity

We conducted six model experiments to examine the impacts of SLA variation on
gross primary productivity at the QYZ (temperate NET), CBS (temperate BDT), DHS
(temperate BET), and HBG (C3 grassland) sites. Different SLA values were used in the six
experiments. The default SLA values in the CLM4.5 model (p0) were used in experiment S1.
In experiment S2, we used the mean value of the observed SLA data collected in this study
for each PFT (pobs). In experiments S3 and S4, we added the observed SLA variation to the
mean SLA value used in experiment S2 (i.e., pobs − SDobs and pobs + SDobs, respectively).
In experiments S5 and S6, the variation in default SLA values across the models was
added to the mean default SLA values (pmod) of the seven terrestrial biosphere models (i.e.,
pmod − SDmod and pmod + SDmod, respectively).

For each model experiment, we first ran the CLM4.5 model to obtain the initial
values of the state variables under equilibria using a two-stage spin-up approach. The
first stage of spin-up followed the accelerated decomposition for 600 years; then, a normal
decomposition was implemented for 200 years, with a repeating cycle of 6 years (2003–2008)
with dynamic meteorological forcing and constant land use types, CO2 concentration
(284 ppmv), and N deposition (0.5 g N m−2 yr−1) at the pre-industrial level. A transient
run was operated from 1850 to 2008 after reaching equilibrium. The CO2 concentration and
N deposition data for the four sites were downloaded from the global dataset described in
Thornton et al. [37].

The relative changes in gross primary productivity (GPP), RuBP-limited photosynthe-
sis rate (Ac), and leaf area index (LAI) in model experiments S3 and S4 were compared
with the results in experiment S2 (Equation (7)). The relative changes in GPP, Ac, and
LAI in model experiments S4 and S5 were compared with the results in experiment S6
(Equation (8)).

R1 = MAX(

∣∣MS3 − MS2

∣∣
MS2

,

∣∣MS4 − MS2

∣∣
MS2

)× 100% (7)

R2 = MAX(

∣∣MS5 − MS1

∣∣
MS1

,

∣∣MS6 − MS1

∣∣
MS1

)× 100% (8)

where R1 and R2 are the relative changes in modeled GPP, Ac, and LAI caused by SLA
variation from observations and models and MSi is the model outputs of GPP, Ac, and LAI
in model experiments S1, S2, S3, S4, S5, and S6.

3. Results
3.1. Comparison of SLA between the CLM Model and Observations over China

We compared the SLA of mean observed values in China with default values in the
CLM4.5 for 14 plant functional types (PFTs), as shown in Figure 2. The default SLA val-
ues were shown as broadleaf deciduous tree (BDT) > needleleaf deciduous tree (NDT) >
broadleaf evergreen tree (BET) > needleleaf evergreen tree (NET), and broadleaf deciduous
shrub (BDS) > broadleaf evergreen shrub (BES), which were consistent with the observa-
tions. However, the CLM4.5 model overestimated SLA values by 0.009 m2/g on average for
most PFTs, except for tropical BET, temperate BET, and temperate BES. The positive bias of
the default SLA values was highest (0.013 m2/g) in tropical BDT and lowest (0.003 m2/g)
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in temperate NET. By contrast, the CLM4.5 model underestimated the SLA values by
0.002 m2/g in tropical BET and temperate BET and by 0.005 m2/g in temperate BES.
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We also evaluated the vertical gradients in simulated SLA varying with light from
the bottom to top of the canopy for temperate BDT, temperate NET, and temperate BET
in CLM4.5 (Figure 3). Compared with the observations, the CLM4.5 model overvalued
canopy gradients of SLA in temperate BDT (Figure 3a) and temperate NET (Figure 3b),
mainly because of the overestimation of SLA values at the top canopy. Specifically, the
decrease of 0.016 m2/g in simulated SLA in temperate BDT was larger than the mean
reduction of 0.014 m2/g observed for Phellodendron amurense Rupr., Fraxinus mandschurica
Rupr., and Juglans mandshurica Maxim. when light intensity increased from 15% to 100%.
For temperate NET, the simulated SLA decreased by 0.005 m2/g as light intensity increased
from 15% to 100%, which was the same as the observed change in Picea asperata Mast.,
but larger than the slight reduction of 0.002 m2/g for Pinus koraiensis Siebold & Zucc. In
addition, the simulated vertical gradients in SLA in temperate BET were within the range of
SLA values observed for the three species (Figure 3c). However, the response of simulated
SLA value was underestimated by 0.006 m2/g compared with the observed variation for
Ficus tinctoria G.Forst. and Serianthes nelsonii Merr. when light intensity varied from 0 to
100%. Moreover, the CLM4.5 model ignored the interspecific diversity of plants in the
response of SLA to light gradients, especially for the temperate BDT (Figure 3a) and BET
(Figure 3c).

3.2. Interspecific Variation in Observed Plant SLA within Plant Functional Types

The SLA among different species within a given plant functional type in China showed
large variability. The observed plant SLA varied from 0.0002 m2/g to 0.0997 m2/g, with
a mean variation coefficient (CV) of 42% across different PFTs (Table 2). The interspecific
variations in SLA were relatively small for tropical BET, boreal BDT, and boreal BDS, with
the CV values varying from 21% to 29%, but were large for the remaining PFTs, with the
CV values ranging from 40% to 59%. Among the different tree and shrub types, temperate
BDT and temperate BDS had the largest CV of SLA, respectively. Moreover, temperate
plants with a great interspecific diversity showed higher SLA variability than tropical and
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boreal plants in China. Specifically, the CV of SLA for temperate BDT was two times that
for boreal BDT.
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Figure 3. The responses of specific leaf area (SLA) to light gradients for temperate broadleaf deciduous
tree (BDT) (a), temperate needleleaf evergreen tree (NET) (b), and temperate broadleaf evergreen tree
(BET) (c). More details about the species can be found in Table S2 [40–43].

Table 2. The variation in specific leaf area (SLA) observations among different plant functional types
(PFTs) in China. Abbreviations: NET, needleleaf evergreen tree; NDT, needleleaf deciduous tree;
BET, broadleaf evergreen tree; BDT, broadleaf deciduous tree; BES, broadleaf evergreen shrub; BDS,
broadleaf deciduous shrub.

PFT Maximum SLA
Value (m2/g)

Minimum SLA
Value (m2/g)

Coefficient of
Variation (%)

Number of
Samples (n)

temperate NET 0.002 0.016 42.86 69
boreal NET 0.003 0.008 40.0 10
boreal NDT 0.005 0.024 40.0 11
tropical BET 0.004 0.027 28.57 103

temperate BET 0.0002 0.037 42.86 277
tropical BDT 0.007 0.032 41.18 9

temperate BDT 0.002 0.081 50.0 501
boreal BDT 0.005 0.028 25.0 4

temperate BES 0.004 0.048 47.06 221
temperate BDS 0.002 0.010 59.09 454

boreal BDS 0.004 0.025 21.05 6
C3 grass 0.002 0.082 57.14 822
C4 grass 0.003 0.052 47.37 126

rainfed crop 0.002 0.042 52.63 19
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3.3. Variation in the Parameter Values of SLA among Different Terrestrial Biosphere Models

Figure 4 displayed the variation in default SLA values among seven terrestrial bio-
sphere models within eight plant functional types, compared with the observed SLA data.
Almost all default SLA value settings in the models for each PFT were in the range of the
observed SLA values in China but had large differences within the same PFT. The CV of
the default SLA values across models within one PFT varied from 8.7% for crop to 60.0%
for NET. Particularly, the SLA value of grass in the BIOME-BGC model was higher than
that in the other models by 0.024 m2/g on average, although SLA variation in grass across
the seven models was relatively low. The SLA values for the PFTs of BES and NDT in the
SiBCASA model were high, which were greater than that of the others by 0.016 m2/g and
0.011 m2/g, respectively. By contrast, the SLA values in the JULES model were generally
lower than that in the other models by 0.011 m2/g on average for all PFTs. The variation in
SLA value assigned among models for a given PFT was lower than that from the observa-
tions, except for NET, BET, and BES. Specifically, the CV of SLA values among models for
NET was higher than the CV of observed values by 17.1%.
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Figure 4. The default SLA values in terrestrial biosphere models and the SLA mean observed
values in China for different plant functional types. Box plots show the mean, 25th percentile,
and 75th percentile of the observed SLA values. Abbreviations: NET, needleleaf evergreen tree;
NDT, needleleaf deciduous tree; BET, broadleaf evergreen tree; BDT, broadleaf deciduous tree; BES,
broadleaf evergreen shrub; BDS, broadleaf deciduous shrub.

The mean default values across models for a given PFT was greater than the observed
mean by 0.004 m2/g on average (Figure 4). The difference was largest for crop, reaching
0.009 m2/g, followed by NDT, with 0.0087 m2/g. The mean default SLA values across
different models were approximately equal with the observed mean for BES. In addition,
the default SLA values in few models were close to the mean observed values. For example,
the SLA value of BET in the CLM4.5 model was 0.012 m2/g and the average observation
was 0.014 m2/g. The difference in SLA values between the hybrid model and the observed
mean was only 0.001 m2/g.

3.4. Impacts of Variation in SLA on Modeled Gross Primary Productivity

We first estimated the differences in CLM4.5-modeled gross primary productivity
(GPP) at the QYZ, CBS, DHS, and HBG sites between model experiment S2 using the
observed SLA values and model experiment S1 with the default SLA values. Figure 5
presented the changes in annual GPP, mean photosynthesis rate (Ac), and mean leaf area
index (LAI) at four sites in the experiment S1 compared with those in experiments S2.
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The mismatch in SLA between default values in CLM4.5 and observations had a larger
influence on GPP simulation for temperate NET (QYZ) and temperate BET (CBS) than that
for temperate BDT (DHS) and grass (HBG). The overestimation of the default SLA value
by 0.003 m2/g for temperate NET could result in a lower annual GPP estimation at QYZ
by 161 g C m−2 yr−1. This weakened productivity was mainly caused by a decrease in the
photosynthesis rate in spite of an increase in LAI. Similarly, the higher default SLA value for
temperate BDT by 0.008 m2/g, induced a lower modeled GPP at CBS by 69 g C m−2 yr−1.
On the contrary, a 0.002 m2/g underestimation of the SLA value for temperate BET in the
CLM4.5 caused a decrease in LAI and a slight increase in Ac, which led to a higher annual
GPP by 51 g C m−2 yr−1. In addition, a large, overvalued SLA in CLM4.5 for C3 grass had
a small impact of 5 g C m−2 yr−1 on simulated GPP and Ac at HBG, although there was an
increase in LAI by 0.3 m2/m2.
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Figure 5. The differences in annual gross primary productivity (GPP), mean RuBP-limited photosyn-
thesis rate (Ac), mean leaf area index (LAI) between model experiment S1 (with default SLA values
in the CLM4.5 model) and model experiment S2 (with mean SLA observed values). The error bar
shows the standard deviation. QYZ site: temperate needleleaf evergreen tree; CBS site: temperate
broadleaf deciduous tree; DHS site: broadleaf evergreen tree; HBG site: C3 grass.

We then quantified the impacts of SLA variation calculated from the observations
and models on the modeled GPP at these sites. Table 3 presents the CV of SLA quantified
by observed data (Table 2) and default values across seven terrestrial biosphere models
(Figure 4), and the corresponding relative changes in modeled GPP, Ac, and LAI with the
involvement of these variation in SLA calculated by Equations (7) and (8), respectively. The
results showed a larger influence on modeled GPP at QYZ and DHS than that at the CBS
and HBG sites due to the variation of the SLA values. The SLA values in temperate NET
and temperate BET both changed by 43% at the mean observed level, which caused the
modeled GPP at QYZ and DHS to change by 7% and 8%, respectively. The observed SLA
variations in temperate BDT and C3 grass had little impact on the GPP simulation at CBT
and HBG, although Ac and LAI changed greatly. In particular, the SLA value of C3 grass
changed by 57% at the mean observed level and could lead to Ac and LAI changes by 48%
and 58%, while GPP at the HBG site only changed by 3%. Moreover, a large SLA variation
among models in temperate NET and temperate BET could result in greater impacts on
the modeled GPP than the effects from variations in the observation. For example, SLA
variation among the models with a CV of 60% in temperate NET caused a GPP change of
19%, resulting from changes in Ac with 31% and LAI with 62% at QYZ.
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Table 3. The relative changes in GPP, Ac, and LAI modeled with different SLA values. R1 is the
relative changes in modeled GPP, Ac, and LAI caused by the observed SLA variation based on model
experiments S2, S3, and S4 (Equation (7)). R2 is the relative changes in modeled GPP, Ac, and LAI
caused by the SLA variation across models based on model experiments S1, S5, and S6 (Equation (8)).
Abbreviations: PFT, plant functional type; NET, needleleaf evergreen tree; BDT, broadleaf deciduous
tree; BET, broadleaf evergreen tree.

Site PFT Relative
Change

CV of SLA
(%) GPP (%) Ac (%) LAI (%)

QYZ temperate
NET

R1 42.9 7.0 43.9 14.1
R2 60.0 18.5 31.0 61.7

CBS
temperate

BDT
R1 50.0 6.3 30.9 16.9
R2 29.4 8.8 24.5 43.8

DHS
temperate

BET
R1 42.9 8.0 37.3 14.7
R2 42.8 14.1 24.6 63.7

HBG C3 grass R1 57.1 3.3 57.9 48.4
R2 34.3 1.6 3.3 46.2

4. Discussion

Although current terrestrial biosphere models generally consider the differences in
SLA among plant functional types (PFTs), there still remain mismatches in SLA values
between model and observations. Our results suggested a remarkable mismatch of SLA
between the CLM4.5 model and observations collected in China, especially for tropical
broadleaf deciduous tree overestimated by 0.013 m2/g (Figure 2). It is necessary for us
to revise the SLA values when we use the CLM4.5 model to simulate terrestrial carbon
cycle dynamics at the regional scale. Our results also showed that the observed SLA
values for China plant were higher than the global average for all PFTs (Figure 6), which is
supported by a recent work showing that SLA in Asia was higher than that in Europe and
North America by about 0.004 m2/g and 0.001 m2/g for a given leaf dry matter content
of 0.25 g/g [44]. The higher values of SLA in Asia and China might be caused by intense
resource competition stress, where the communities are dominated by more acquisitive
species with high SLA [45]. Therefore, simply referring to other models or global traits data
to set SLA values in a regional gross primary productivity simulation study is unreliable.
Furthermore, since the observed SLA data for some plant functional types (e.g., temperate
BDT, temperate BET, and C3 grass) in China and around the world do not follow normal
distributions [9,46], the default model values and mean observed values remain uncertain.
We recommend using the probability density distribution of observed trait data within a
given PFT rather than setting trait parameter values based on the mean values.

The SLA among species within a given plant functional type has substantial vari-
ability in China and other regions due to differences in the genotype and environmental
changes [47,48], especially climate and soil factors, e.g., temperature, light, precipitation,
and soil nutrient [49,50]. As trait variation was revealed by previous studies as inducing
large effects on the simulations of ecosystem productivity (e.g., GPP, NPP, and NEP) and
biomass (e.g., vegetation biomass and litter pool) [21,23,51], our results also suggested that
SLA observation variation could bring great uncertainty to the GPP simulation, especially
for temperate NET and temperate BET. As shown in Table 3, the SLA value varying by
43% at the mean observation level could induce a change in the simulated annual GPP
by 161 g C m−2 yr−1 (7.0%) for temperate NET. It is necessary to describe trait variation
within each plant functional type to reduce model uncertainties.
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Figure 6. The differences in SLA values between the observation data in China and the global
average in the TRY database. The error bar shows the standard deviation. Abbreviations: NET,
needleleaf evergreen tree; NDT, needleleaf deciduous tree; BET, broadleaf evergreen tree; BDT,
broadleaf deciduous tree; BES, broadleaf evergreen shrub; BDS, broadleaf deciduous shrub.

The responses of plant SLA to environmental changes, as shown in previous studies,
have also not been well quantified in terrestrial biosphere models. The SLA vertical
variability under the change of light in canopy involved in the CLM4.5 model has not been
considered in many other terrestrial biosphere models (Figure 2). Moreover, the variation
in SLA with development stages was only simulated in some crop models, such as the
WOFOST (World Food Studies) model [52], as shown in Figure 7a. These variations in SLA
at different growth stages for both crops and trees (Figure 7b) should be added to terrestrial
biosphere models in the future. In addition, SLA also varies with other factors, such as
water stress (Figure 8a) and soil nitrogen content (Figure 8b), which need to be paid more
attention in terrestrial biosphere models.
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Figure 7. The changes in SLA values during key development stages (DVS) for different crops (a)
and observed SLA values in various growth periods (b). For (a), the dotted lines are the default
SLA values at different DVS in the WOFOST model and the solid line is the observed SLA values
of summer maize at the Gucheng site in China. DVS values range from −0.1 at sowing to 0.0 at
emergence, 1.0 at flowering, and 2.0 at physiological maturity. For (b), the different lowercase letters
indicate significant differences at the 0.05 level. More details about the species can be found in
Table S2 [53–57].
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addition levels (b). The different lowercase letters indicate significant differences at 0.05 level. More
details about the species can be found in Table S2 [58–65].

Within a given plant functional type, plants grouped by morphology and structure
may better describe the variability in traits [66,67]. In the Functionally Assembled Terrestrial
Ecosystem Simulator (FATES) in CLM5.0, the plant population in each patch is divided first
into plant functional types, and each plant type is presented as numerous height classes,
according to tree height, diameter, canopy layer, and other variables [68]. Trait–climate
relationships have also been analyzed in few modelling studies. For instance, SLA, Vcmax25,
and Jcmax25 within the PFTs were re-parameterized yearly depending on the local climatic
conditions (e.g., MAT, MAP, and soil moisture) in the JSBACH model [69]. Yang et al. used
trait–climate relationships to predict the spatial patterns of LMA, Nmass, and LAI and then
simulated vegetation distributions and vegetation responses to climate changes in China
using a Gaussian mixture model trained with these trait data [70]. However, the underlying
mechanisms behind these trait–climate relationships require more long-term observations,
to be able to simulate vegetation responses to future climate change.

The collected SLA data in this study mainly distributed in temperate and subtropical
forest and grassland ecosystems, SLA observations in boreal ecosystems, woody plants in
the Tibetan Plateau region, and crops were relatively few, and need to be supplemented by
further research. Different protocols for measuring SLA (e.g., all leaves vs. the topmost
leaf, with vs. without petioles) have been used in published studies [15], which may cause
bias in data statistics and analysis. The methods, time, and positions of sampling should
be standardized in the future to enhance the representativeness of the plant trait database,
especially at the region scale. This paper only quantified the impacts of SLA variation
on GPP simulation with the CLM4.5 model for four PFTs; its effects in other PFTs and
terrestrial biosphere models need to be further investigated.

5. Conclusions

In this study, we evaluated the CLM4.5-simulated SLA against the observed data
collected from China and examined the impacts of SLA variation on GPP simulation using
the CLM4.5 model. The results showed that CLM4.5 overestimated the default SLA values
at the top of canopy for 11 PFTs and the canopy gradient of SLA for temperate BDT and
temperate NET. The higher default SLA values in temperate NET, temperate BDT, and
C3 grass caused an underestimation in the modeled GPP at the QYZ, CBS, and HBG sites
compared with the results from the mean SLA observations. Substantial SLA variation
could cause great changes in modeled GPP, especially for temperate NET and temperate
BET. Our study suggested that the interspecific variation in SLA within a given PFT and its
responses to environmental changes should be considered in terrestrial biosphere models to
reduce the uncertainties in GPP and LAI estimations. More efforts are needed to make full
use of the plant trait database to understand the underlying mechanisms of trait variation
and to promote model development so as to enhance the prediction ability of ecosystem
responses to future climate changes.
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