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Abstract: In recent years, accurate estimation and spatial mapping of above-ground carbon (AGC)
storage in forests have been crucial for formulating carbon trading policies and promoting sustainable
development strategies. Forest structure complexities mean that during their growth, trees may be
affected by the surrounding environment, giving rise to spatial autocorrelation and heterogeneity
in nearby forest segments. When estimating forest AGC through remote sensing, data saturation
can arise in dense forest stands, adding to the uncertainties in AGC estimation. Our study used
field-measured stand factors data from 138 forest fire risk plots located in Fenglin County in the
Northeastern region, set within a series of temperate forest environments in 2021 and Sentinel-2
remote sensing image data with a spatial resolution of 10 m. Using ordinary least squares (OLS)
as a baseline, we constructed and compared it against four spatial regression models, spatial lag
model (SLM), spatial error model (SEM), spatial Durbin model (SDM), and geographically weighted
regression (GWR), to better understand forest AGC spatial distribution. The results of local spatial
analysis reveal significant spatial effects among plot data. The GWR model outperformed others with
an R2 value of 0.695 and the lowest rRMSE at 0.273, considering spatial heterogeneity and extending
the threshold range for AGC estimation. To address the challenge of light saturation during AGC
estimation, we deployed traditional linear functions, the generalized additive model (GAM), and the
quantile generalized additive model (QGAM). AGC light saturation values derived from QGAM most
accurately reflect the actual conditions, with the forests in Fenglin County exhibiting a light saturation
range of 108.832 to 129.894 Mg/ha. The GWR effectively alleviated the impact of data saturation,
thereby reducing the uncertainty of AGC spatial distribution in Fenglin County. Overall, accurate
predictions of large-scale forest carbon storage provide valuable guidance for forest management,
forest conservation, and the promotion of sustainable development strategies.

Keywords: above-ground carbon storage; spatial mapping; spatial autocorrelation and spatial
heterogeneity; light saturation value; Sentinel-2 images; uncertainty

1. Introduction

Forests play a central and indispensable role in the global carbon cycle [1,2]. The
forest ecosystem is characterized by species richness, structural complexity, and diverse
resources [3]. The powerful carbon sequestration ability of forests plays a crucial role
in climate change [4,5]. Forest above-ground carbon (AGC) storage is defined as the
total amount of carbon stored in the above-ground components of a forest ecosystem,
including tree trunks, branches, and leaves [6,7]. Forest AGC represents a more stable
indicator of long-term carbon accumulation and is an essential attribute for reflecting the
dynamics of forest ecosystems [8,9]. Although most studies indicate that estimating AGC in
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forests comes with uncertainty [10–12], accurately assessing its spatial distribution remains
essential for climate change mitigation and shaping carbon trading policies [13].

According to convention, forest AGC estimation methods can be categorized into
field measurement techniques based on allometric equations [14,15], detailed biophysical
models [16,17], and empirical models that combine field data with various remote sensing
data, including optical, thermal, microwave, radar, and LiDAR data [18]. The advantage
of remote sensing technology lies in its ability to effortlessly collect information on forest
types and coverage, facilitating large-scale, long-term, and repetitive monitoring [19,20].
As an economically efficient approach, it is widely employed for the extensive estimation
of forest AGC [21]. Multisensory data have been widely used for AGC mapping and are a
primary data source for AGC estimation [22,23]. However, the processing and analysis of
multisensory data can pose complexities due to the diverse characteristics and calibration
requirements of different sensors [24]. Furthermore, cost and feasibility considerations need
to be accounted for when acquiring data. LiDAR data, unaffected by lighting conditions,
offer high-precision estimation by capturing canopy height information. It is considered
to be a promising technology for AGC estimation [25,26]. However, due to its high cost,
the complexity of forest structure, and the challenges associated with data processing,
LiDAR data are predominantly employed in small-scale areas. Optical remote sensing data
are a commonly used data source for estimating AGC [27,28]. Medium-resolution and
high-resolution data are usually used for local-scale AGC estimation, such as Landsat series,
SPOT, Sentinel series, and GF series [11,29–31]. Despite the significant limitations of optical
imagery, including relatively low estimation accuracy, lack of consistency, and significant
initial costs to acquire and produce results, it still serves as an alternative method for
mapping large-scale forest AGC [27]. High-resolution imagery can be used to gather more
detailed vegetation information, such as vegetation indices and texture features [32–34].
These data sets are typically used for parametric or nonparametric estimation methods
by establishing a complete mathematical model and combining remote sensing image
information with ground standard survey data. Ultimately, analysis formulas are used
to estimate AGC [35]. Compared to parametric models, nonparametric models generally
exhibit superior data fitting ability and higher estimation accuracy [36,37]. However,
nonparametric models are more susceptible to the size and representativeness of the
sample, meaning that their effectiveness may be limited in study areas with smaller sample
sizes [38]. As a result, addressing the challenge of reducing uncertainty in estimating forest
AGC based on remote sensing data remains a significant area of research [11,38,39].

Differences in AGC levels are anticipated across different regions due to variations in
geographic location, site conditions, soil characteristics, and climate [40]. Vegetation types
and their structures and physiologies are influenced to varying degrees by the surrounding
environment during the growth process, which is manifested in forestry data as spatial
correlations between adjacent trees. As trees compete, spatial heterogeneity becomes
evident [41]. Although the spatial distribution of trees is discrete and independent variable
data, their spatial distribution at the stand level, such as diameter at breast height and
tree height, is directly affected by different continuous variables, such as light conditions,
soil characteristics, temperature, and rainfall, so it can be assumed that these variables
are continuous and spatially correlated [42]. Some scholars believe that spatial effects
consist of spatial heterogeneity and spatial autocorrelation. Ignoring spatial effects in the
modeling process may result in biased tests and suboptimal predictive models [43]. The
spatial regression model can incorporate spatial effects into the regression model without
requiring independent data [38,44]. Among the most commonly used models are the
spatial lag model (SLM), the spatial error model (SEM), and the spatial Durbin model
(SDM), which aim to capture the spatial dependence and autocorrelation of data [45–47].
However, when dealing with spatial heterogeneity, the geographically weighted regression
(GWR) model is the preferred approach. GWR allows for a local analysis of the relationship
between variables, providing more accurate and detailed results in situations where the
relationship between variables differs spatially [48]. The use of remote sensing to determine
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the spatial distribution of forest AGC and the challenge of reducing estimation uncertainty
have gained widespread attention, especially the prevalent issues of overestimation and
underestimation [49,50]. When the forest cover on the ground is too dense to be accurately
distinguished by remote sensing methods, a data saturation phenomenon may occur.

This study focuses on the mixed coniferous forest AGC of a 2967 km2 area in Fenglin
County, Yichun City, Heilongjiang Province, Northeast China. It aims to offer a reference
for estimating forest AGC in the Northeastern Forest Region. Using Sentinel-2 remote
sensing images and 138 field-measured plots, both nonspatial and spatial regression models
were employed to evaluate their capabilities in estimating forest AGC. The study contents
and methods are described as follows: (1) we calculate the forest AGC storage using field
measurements and remote sensing imagery processing and subsequently select modeling
variables through stepwise regression analysis; (2) we construct ordinary least squares
models and spatial regression models and compare their predictive abilities; (3) we analyze
the inversion and spatial distribution of forest AGC in the study area; and (4) finally, we
calculate AGC light saturation values resulting from data saturation phenomena during
remote sensing estimation. The objective of this study is to use remote sensing technology
to accurately estimate the spatial distribution of above-ground carbon storage in temperate
forests, offering guidance and direction for forest dynamic monitoring. Additionally, it
explores how various spatial regression models can enhance the estimation accuracy of
forest AGC and alleviate challenges posed by data saturation.

2. Materials and Methods
2.1. Study Area

The study area is in Fenglin County, Yichun City, Heilongjiang Province, Northeast
China, and includes the three forestry bureaus of Wuying, Hongxing, and Xinqing. It is
situated on the southern slope of the Xiaoxing’an Mountains and serves as a quintessential
example of the Northeastern Forest Zone. The Northeastern Forest Zone is an ecologi-
cally significant region in China, playing a pivotal role in timber production, biodiversity
conservation, and maintaining environmental stability. The specific geographical loca-
tion is shown in Figure 1. This area has a north temperate continental humid monsoon
climate, with an annual average temperature of 0.6 ◦C and an annual precipitation of
500–610 mm [51]. Most of the precipitation is concentrated in June–August, which ac-
counts for 73% of the total annual precipitation. The annual temperature variation range
of the study site spans from −34 ◦C to 33 ◦C, and the average annual sunshine duration
is approximately 2196 h. Historical meteorological data were sourced from the China
National Meteorological Information Center (http://data.cma.cn/ (accessed on 15 April
2023)). This area is a natural forest, and the main vegetation types are mixed conifer-
ous and broad-leaved forests, deciduous broad-leaved forests, and temperate coniferous
forests. The dominant tree species include Pinus, Betula, Larix, Picea, Abies, Fraxinus, and
Populus. This region has abundant diverse forest resources and is a national-level nature
reserve. It contains the most representative forest type in Northeast China—coniferous and
broad-leaved mixed forest dominated by Korean pine.

http://data.cma.cn/
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Figure 1. (a) The figure shows the location of the study area in Fenglin County, Heilongjiang Prov-
ince, China, and the distribution of the digital elevation model (DEM) across Heilongjiang Province. 
(b) The figure shows the Sentinel-2 image of Fenglin County and the distribution of 138 plots in the 
study area in 2021. 
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2.2.1. Processing Standard Ground Survey Data 

Standard ground survey data were sourced from 138 fixed distribution sample plots 
for forest fire risk investigation in Fenglin County in 2021. Each sample plot had an area 
of 0.06 ha, which translates to 600 m2 or a square that is approximately 20 m × 30 m. The 
specific distribution locations of the sample plots are shown in Figure 1b. 

The survey of the sample plot comprises various factors, such as the average diameter 
at breast height, average tree height, number of trees, forest age, vegetation type, and 
dominant tree species. Specifically, the DBH of the tree was measured using diameter 
tape, and the tree height and crown base height were measured with an ultrasonic altim-
eter. In addition, we also measured the location within the plot and the geographic coor-
dinates of all trees using real-time kinematic (RTK) technology and Global Navigation 
Satellite System (GNSS) receivers. We use GNSS receivers to obtain the coordinates of the 
center point and four corner points of the sample plots. An example of a sample plot is 
shown in Figure 2. 

Figure 1. (a) The figure shows the location of the study area in Fenglin County, Heilongjiang Province,
China, and the distribution of the digital elevation model (DEM) across Heilongjiang Province.
(b) The figure shows the Sentinel-2 image of Fenglin County and the distribution of 138 plots in the
study area in 2021.

2.2. Data Acquisition and Treatment
2.2.1. Processing Standard Ground Survey Data

Standard ground survey data were sourced from 138 fixed distribution sample plots
for forest fire risk investigation in Fenglin County in 2021. Each sample plot had an area
of 0.06 ha, which translates to 600 m2 or a square that is approximately 20 m × 30 m. The
specific distribution locations of the sample plots are shown in Figure 1b.

The survey of the sample plot comprises various factors, such as the average diameter
at breast height, average tree height, number of trees, forest age, vegetation type, and
dominant tree species. Specifically, the DBH of the tree was measured using diameter tape,
and the tree height and crown base height were measured with an ultrasonic altimeter. In
addition, we also measured the location within the plot and the geographic coordinates
of all trees using real-time kinematic (RTK) technology and Global Navigation Satellite
System (GNSS) receivers. We use GNSS receivers to obtain the coordinates of the center
point and four corner points of the sample plots. An example of a sample plot is shown in
Figure 2.

The calculation of forest above-ground biomass (AGB) followed prior research on
forest carbon storage in the Xiaoxing’an Mountains [52]. The AGB of individual trees for
different tree species was calculated using the individual tree biomass model from the
DBH data collected from each tree measured, as shown in Equations (1)–(3). The calculated
values of WS, WB, and WL were multiplied by the corresponding carbon content coefficients
provided in Table 1 to obtain CS, CB, and CL respectively. Finally, Equation (4) was used
to calculate the AGC of a single tree. The sum of the AGC of individual trees in each plot
divided by the unit area is the AGC of each plot, and the unit used is Mg/ha.

WS= C0 ∗ Db0 /
(

1 + r2 ∗ Dk2+r3 ∗ Dk3+r4 ∗ Dk4
)

(1)

WB= r2 ∗ C0 ∗ D(k2+b0)/
(

1 + r2 ∗ Dk2+r3 ∗ Dk3+r4 ∗ Dk4
)

(2)
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WL= r3 ∗ C0 ∗ D(k3+b0)/
(

1 + r2 ∗ Dk2+r3 ∗ Dk3+r4 ∗ Dk4
)

(3)

where WS is the AGB of a single wood trunk; WB is the AGB of single wood branches; WL
is the AGB of single wood leaves; D is tree diameter at breast height; and c0, b0, r2, k2, r3, k3,
r4, and k4 are the biomass model parameters of different tree species.

C = CS+CB+CL (4)

where C is the AGC of a single tree; CS is the AGC of a single tree trunk; CB is the AGC of
single tree branches; and CL is the AGC of single tree leaves.
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Figure 2. Sample plot photos. Figures (a–d) depict the site conditions of the actual study plots, with
figures (b,c) specifically showing the standard plot corner stakes and the use of a compass clinometer
for establishing the survey plot.

Table 1. Carbon storage conversion coefficients of different tree species in the Xiaoxing’an Mountains.
(Num is the number of samples; SD is the standard deviation.)

Species
Carbon Storage Conversion

Num SD
CS CB CL

Picea koraiensis Nakai 0.4727 0.4875 0.4839 48 0.0407
Abies fabri (Mast.) Craib 0.4673 0.4783 0.5057 60 0.0406
Tilia amurensis Rupr. 0.4426 0.4255 0.4484 46 0.0212
Quercus mongolica 0.4558 0.4491 0.4672 64 0.0201
Ulmus pumila 0.4355 0.433 0.4322 40 0.0183
Acer pictum Thunb. 0.4422 0.4346 0.4462 46 0.0187
Betula dahurica Pall. 0.4529 0.4585 0.4639 52 0.0179
Betula platyphylla 0.4634 0.4619 0.4857 73 0.0229
Populus davidiana Dode 0.4430 0.4454 0.4587 54 0.0193
Pinus sylvestris var. mongolica 0.4775 0.4833 0.4967 85 0.0203
Pinus koraiensis Sieb. et Zucc 0.4807 0.4989 0.4924 34 0.0108
Larix gmelinii 0.4695 0.4761 0.4832 103 0.0311

2.2.2. Remote Sensing Data

Sentinel-2 is a large-scale, high-resolution multispectral imaging satellite funded by
the European Union, the European Space Agency (ESA), and the Copernicus program.
It is primarily used for monitoring the land environment and can provide observations
on land vegetation growth, land cover status, and inland waterways and coastal areas.
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The remote sensing data used in the study were Sentinel-2 Level-2A images acquired in
April 2021, with image IDs N0300_R046_T52UEU and N0300_R046_T52UDU. To ensure
data quality, the selected images over the study area were free of cloud cover. Level-2A
images have undergone orthorectification, subpixel-level geometric accuracy correction,
radiometric calibration, and atmospheric correction [53]. The remote sensing images are all
downloaded from the Google Earth Engine platform (https://earthengine.google.com/
platform/ (accessed on 2 March 2022)). The original remote sensing imagery consists of
12 bands. In this study, we only used bands with a resolution of 10 m, specifically band
2 (blue band: 0.458–0.523 µm), band 3 (green band: 0.543–0.578 µm), band 4 (red band:
0.650–0.680 µm), and band 8 (near-infrared band: 0.785–0.900 µm). In order to ensure
that the pixel area of the remote sensing image matches that of the measured sample plot
area, we employed the nearest neighbor interpolation method to resample the remote
sensing image to a spatial resolution of 25 m. Subsequently, we used ENVI 5.3 software to
crop the remote sensing image of the study area and to compute various remote sensing
factors, including the original bands, vegetation indices, and texture features [54–58]. We
computed the co-occurrence matrices for only the red, green, blue, and near-infrared bands,
resulting in a total of 32 texture features. The corresponding formulas are shown in Table 2.
Texture features derived from remote sensing imagery capture the visual homogeneity or
heterogeneity within the image. These features represent specific variations in color or
grayscale on the Earth’s surface and are often indicative of the inherent properties of the
surface objects [59–61]. Texture features provide image horizontal structure information
and reflect the spatial variation in its gray values. When combined with vegetation indices,
they can effectively depict the characteristics and changes in land features. In this study,
terrain factors were extracted using a free digital elevation model (DEM). Downloaded
from the Geospatial Data Cloud website (https://www.gscloud.cn/search (accessed on 19
March 2022)), ArcGIS 10.7 with the spatial and statistical analyst extensions was used to
extract terrain factors, such as elevation, slope, and aspect.

Table 2. The calculation method of the vegetation index (B1, B2, B3, and B4 represent blue reflectivity,
green reflectivity, red reflectivity, and near-infrared reflectivity, respectively).

Type Vegetation Index Abbreviation Calculation Formula

Original Band

B2-Blue B1 B2
B3-Green B2 B3
B4-Red B3 B4
B8-NIR B4 B8

Vegetation Index

Ratio Vegetation Index RVI B8/B4
Atmospheric Ratio Vegetation Index ARVI [B8 − (2 × B4 − B2))/(B8 + (2 × B4 − B2)]

Soil Adjusted Vegetation Index SAVI 1.5 × (B8 − B4)/8 × (B8 + B4 + 0.5)
Difference Vegetation Index DVI B8 − B4

Normalized Difference Vegetation Index NDVI (B8 − B4)/(B8 + B4)
Weighted Difference Vegetation Index WDVI B8 − 0.5 × B4
Infrared Percentage Vegetation Index IPVI B8/(B8 + B4)

Red–Green Vegetation Index RGVI (B4 − B3)/(B4 + B3)
Triangular Vegetation Index TVI 0.5 × [120 × (B8 − B3)] − 200 × (B4 − B3)

Visible Atmospheric Resistance Index VARI (B3 − B4)/(B3 + B4 − B2)

Texture

Mean ME ∑N−1
i=0 ∑N−1

j=0 iP(i, j)

Variance VA ∑N−1
i=0 ∑N−1

j=0 (i − mean)2P(i, j)

Homogeneity HO ∑N−1
i=0 ∑N−1

j=0
P(i,j)

1+(i−j)2

https://earthengine.google.com/platform/
https://earthengine.google.com/platform/
https://www.gscloud.cn/search
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Table 2. Cont.

Type Vegetation Index Abbreviation Calculation Formula

Texture

Dissimilarity CO ∑N−1
|i−j|=0|i− j|2

{
∑N

i=0 ∑N
j=0 P(i, j)

}
Contrast DI ∑N−1

|i−j|=0|i− j|
{

∑N
i=0 ∑N

j=0 P(i, j)
}

Entropy EN −∑N−1
i=0 ∑N−1

j=0 P(i, j)log(P(i, j))

Angular Second Moment ASM ∑N−1
i=0 ∑N−1

j=0 P(i, j)2

Correlation COR ∑N−1
i=0 ∑N−1

j=0 P(i,j)2−µxµy

σxσy

The Kolmogorov–Smirnov (K-S) test was used to check the normality of the research
data. Then, the Pearson correlation was applied to study the relationship between AGC and
factors such as forest stand, terrain, and remote sensing in the study area. Multiple stepwise
regression analysis (MSR) was used to select the dependent variables for AGC modeling,
with the significance levels for variable entry and removal set at 0.1 and 0.05, respectively.
Variables were determined for collinearity based on a standard of variance inflation factor
(VIF) of less than 10. Finally, utilizing the selected remote sensing variables through
stepwise regression, we performed AGC estimation and spatial distribution analysis.

2.3. Model Building and AGC Estimation
2.3.1. Ordinary Least Squares Model

The ordinary least squares (OLS) model is used to obtain a best-fit model by incor-
porating data and prior information [62]. The dependent variable Y is the AGC, with n
observations and p independent variables X, such as forest, terrain, and remote sensing
factors. The relationship between the independent variable X and the dependent variable
Y can be expressed using linear regression, as shown in Equation (5):

Y = Xβ + ε (5)

where β is the model parameter and ε is the model residual, which are assumed to follow a
distribution. The parameters are estimated using the least sum of squares of the deviations
between the dependent variable and the predicted values.

The OLS model is based on assumptions that apply to a whole region and is a global
model where the constant and coefficients of explanatory variables are assumed to be the
same across different study areas. However, the OLS model does not account for spatial
autocorrelation and spatial heterogeneity between different regions.

2.3.2. Spatial Lag Model

The spatial lag model (SLM), also known as the spatial autoregressive model, is an
autoregressive model that account for spatial variables [63]. When the dependent variable
has significant spatial dependence on a spatial point, the spatial lag item can be introduced
as a new explanatory variable in the classical statistical regression model. Assuming that
the AGC of a sampling site is influenced by surrounding sampling sites, each sampling site
can be viewed as a lagged effect of other sampling sites [64]. The SLM model is realized
by adding the spatial lag item of the dependent variable y to the OLS model, as shown in
Equation (6):

Y = Xβ + ρWy+ε (6)

where β is the prognostic parameter; W is the row-normalized spatial weight matrix; Wy
is the weighted average of adjacent sample sites; y is the spatial lag item; ρ is the spatial
autocorrelation parameter, which is influenced by the matrix W; and ε is a random error
item that obeys an N

(
0, σ2 I

)
normal distribution.
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2.3.3. Spatial Error Model

The spatial error model (SEM) refers to a model where the error term is spatially
correlated, meaning that the spatial correlation is attributed to the error term rather than
the systematic part of the model [65]. The SEM assumes that the spatial autocorrelation
is considered from the error term without changing the explanatory variables, thereby
estimating the spatial autocorrelation coefficient. Specifically, the model error is partitioned
into two components: the error caused by spatial autocorrelation and the error from the
model itself, as shown in Equation (7).

Y = Xβ + λWε+ξ (7)

where λ is the spatial autocorrelation parameter; Wε is the spatial error term; and ξ is a
random error item that obeys an N

(
0, σ2 I

)
normal distribution.

2.3.4. Spatial Durbin Model

The spatial Durbin model (SDM) is an extended form that combines the SLM and SEM
by incorporating corresponding constraints on these models [66]. This model considers
the spatial autocorrelation of both the dependent and independent variables and can be
formulated as shown in Equation (8).

Y = ρWY + Xβ + λρWXβ + ε (8)

where ρ is the spatial autoregressive coefficient, which indicates the strength of spatial
dependence. W is the spatial weight matrix, which describes the degree of spatial interde-
pendence in the sample. λ is the spatial lag coefficient, and ρWY and λρWXβ denote the
spatially lagged dependent and independent variables, respectively.

2.3.5. Geographically Weighted Regression Model

The geographically weighted regression model (GWR) is widely recognized as one
of the most effective methods for addressing spatial heterogeneity [44,67]. This model
extends the global regression model by building a regression model at each point in space,
weighting all observations using a distance function from nearby points [68]. The aim is to
identify spatial patterns by estimating a set of coefficient values for each point by moving a
window over the data [69]. The basic form of the model is shown in Equation (9).

Y(ui ,vi)
= β0(ui ,vi)

+β1(ui ,vi)
X1i+β2(ui ,vi)

X2i + · · ·+βn(ui ,vi)
Xni+εi (9)

where (ui, vi) is the coordinate at point i; Y(ui ,vi)
is the dependent variable at point i; n is

the number of samples; Xni is the value of the nth variable at point i; β0 is the intercept;
and εi is the error term. In this model, the parameters of each sampling point are estimated
based on the spatial weight matrix (Wi), where Wi is a diagonal matrix of spatial weights
for point i, and Wi= f (di, h), where di is the distance vector between location i and all
neighbors and h is the bandwidth. We used an adaptive bisquare kernel function to select
the optimal bandwidth, enabling the detection of nonstationary relationships that global
models might overlook.

2.3.6. Model Accuracy Evaluation Method

The sample plots are divided into 103 training data sets and 35 testing data sets by
random sampling, and RStudio 4.2.1 is employed to fit OLS, SEM, SLM, SDM, and GWR
models. The model fitting accuracy is commonly evaluated using the correlation coefficient
(R2), the adjusted coefficient of determination (R2

adj), the relative root mean squared error
(rRMSE), the mean absolute percentage error (MARE), the mean absolute error (MAE), and
the mean percentage bias (MPE) [70]. Typically, a higher R2 and R2

adj, as well as a lower
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rRMSE, MARE, MAE, and MPE, indicate better performance of the model. These statistical
analyses are expressed in Equations (10)–(15).

R2= 1 − ∑n
i=1(y− ŷi)

2

∑n
i=1(y− yi)

2 (10)

R2
adj= 1 −

(
1− R2)(n− 1)

n− k− 1
(11)

rRMSE =

√
1
n ∑n

i=1(y− ŷi)
2

y
× 100% (12)

MARE =
1
n ∑n

i=1
|y− ŷi|

yi
(13)

MAE =
1
n ∑n

i=1 |y− ŷi| (14)

MPE =
∑n

i=1|y− ŷi|
∑n

i=1 yi
× 100% (15)

In this study, we analyzed spatial autocorrelation and heterogeneity in forest AGC
and model residuals using global and local Moran’s I methods [71,72], as shown in
Equation (16). A positive Moran’s I indicates similar residual levels, while a negative
value suggests contrasting trends. If Moran’s I is near zero, the residuals are randomly
distributed with no mutual influence [73,74]. Moran’s I was used to measure the global
autocorrelation between the AGC and model prediction residuals.

I =
n ∑n

i=1 ∑n
j=1 wij(d)(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 wij(d)∑n

i=1(xi − x)2 (16)

where n is the sample size, xi is the observed values at different locations, x is the average
of the observed values at different locations, and wij(d) is the weight based on the distance
between sample points i and j. The Z value is a multiple of the standard deviation, and
the significance of Moran’s I is tested by the Z value to determine whether the spatial
autocorrelation of the observed values exists. The Z value calculation method is shown in
Equation (17).

Z(I) =
I− E(I)√

Var(I)
(17)

If the Z value falls within the range of −1.96 to +1.96, the uncorrected p value will
be greater than 0.05. Therefore, the null hypothesis cannot be rejected, indicating that the
spatial distribution of AGC is likely to be random and does not exhibit any spatial effects.
If the Z value falls outside this range, the spatial pattern displayed would be a statistically
significant cluster or dispersion trend [75]. Lastly, we used the local spatial autocorrelation
tool in ArcGIS 10.7 to visualize the spatial cluster or dispersion trend [76].

2.3.7. Confirmation of Light Saturation Value

Optical remote sensing images can capture the unique spectral characteristics of
different vegetation types. When the forest cover on the ground is too dense to be accurately
distinguished by remote sensing methods, a data saturation phenomenon may occur. Since
different remote sensing images and different estimation methods will produce different
saturation values, this study defines the saturation value of light as a range, indicating
that when the AGC reaches this range, using remote sensing images for AGC estimation
will result in saturation. Previous studies on the saturation value of above-ground carbon
storage often used the most relevant variables to build nonlinear or spherical models and
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calculated the extreme values as the saturation value of above-ground carbon storage [11].
However, using a single variable to estimate the saturation of above-ground carbon storage
may result in the loss of valuable information, leading to low and inaccurate precision. The
generalized additive model (GAM) is an additive modeling technique in which the predictor
variables are modeled by a smoothing function [77]. This approach is highly flexible and
offers strong interpretability. The quantile generalized additive model (QGAM) is based on
the GAM, employing quantile regression for predictions. Compared to traditional methods,
this approach can use more variables and avoid information loss. This study attempts to
estimate the AGC saturation value using linear, quadratic, and logarithmic functions and
GAM and QGAM. QGAM is fitted using seven quantile points (q = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8) to estimate the AGC saturation value in Fenglin County using range values to replace
single-point values and eliminate estimation errors caused by maximum and minimum
values. Unlike traditional regression models that only focus on the mean, QGAMs allow us
to model in different distribution regions of the data, thus gaining a more comprehensive
understanding of the nature of the data. The GAM and QGAM are fitted using functions
from the gam and qgam packages in R [78] Figure 3 shows a flowchart of the steps used in
our study.
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basic data processing, model fitting, determination of light saturation value, AGC spatial distribution
inversion, and statistical analysis.

3. Results
3.1. Variable Screening

Descriptive statistics for the data are shown in Table 3. Based on the K-S test results,
as the null hypothesis assumes no difference between the data and a normal distribution,
and with a p-value significantly greater than 0.05, we cannot reject the null hypothesis,
indicating that the data can be considered to follow a normal distribution. According
to the correlation analysis between AGC and remote sensing factors shown in Figure 4,
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26 remote sensing factors exhibit a significant correlation at the p < 0.05 level. A stepwise
regression method was used for optimal variable selection, and finally, four remote sensing
variables, IPVI, B3EN, SLOPE, and Aspect, were selected to estimate and analyze the spatial
distribution of AGC in Fenglin County. The mean AGC measured in the sample plot is
63.121 Mg/ha, which is attributed to the natural secondary forest being in the middle-aged
stage. Due to the presence of a few trees with a diameter at breast height greater than 0.3 m
in some plots, the AGC in those areas exhibits higher values, where peak value reaches up
to 153.058 Mg/ha. All VIF values are below 10, indicating the absence of multicollinearity
among the selected variables. This aids in achieving a stable, interpretable, and accurate
model outcome, thereby preventing overfitting.
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Figure 4. Correlation analysis of AGC and remote sensing factors. The value range of the Pearson
correlation coefficient is between−1 and 1, red (p > 0) represents a positive correlation, and blue (p < 0)
represents a negative correlation. The smaller and darker the ellipse is, the higher the correlation
between the two variables. The green box represents the correlation between the dependent variable
AGC and each independent variable. The correlation coefficients are listed in the bottom-left corner
of the table. The variables selected as the final choices for stepwise regression are surrounded by red
boxes: 5, 39, 55, and 56.

In the field of geography and spatial data analysis, the instability of the relationship
between spatially distributed variables is called spatial nonstationarity. To study the spatial
nonstationarity of different variables and AGC, a scatter diagram of AGC and different
variables in space is shown in Figure 5. The distribution of AGC is lower in the central
part of the study area, and each variable shows different trends as latitude and longitude
increase. The distribution of IPVI closely mirrors that of AGC, both exhibiting a trend
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where values are elevated at the periphery of the study area while diminishing towards the
central region.

Table 3. Descriptive statistics of independent variables and remote sensing variables. D: Kolmogorov–
Smirnov distance; P: Kolmogorov–Smirnov test p-value.

Variable Num Min Median Max Mean Unit Std VIF D p

AGC 138 6.130 57.375 153.058 63.121 Mg/ha 30.951 — 0.090 0.213
IPVI 138 0.582 0.774 0.895 0.769 — 0.067 1.074 0.091 0.207

B3EN 138 0.000 0.349 1.581 0.502 — 0.472 1.087 0.108 0.964
SLOPE 138 0.155 4.787 15.133 5.494 ◦ 3.570 1.098 0.118 0.927
Aspect 138 0.000 168.368 347.005 170.557 ◦ 96.123 1.022 0.176 0.571
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Figure 5. Variation trend of different variables and actual above-ground carbon reserves along
longitude and latitude. The X-axis represents longitude, the Y-axis represents latitude, and the Z-axis
represents the values of different variables. Figures (a–e) illustrate the spatial distribution of variables
IPVI, B3EN, SLOPE, Aspect, and AGC, showing their respective values at different locations.

3.2. Spatial Correlation Analysis

The independent variables selected after the stepwise regression were standardized,
and Moran’s I test of spatial correlation was carried out on OLS. The results in Table 4 show
that the p-value is close to zero, indicating that there is significant spatial autocorrelation in
the residuals of the OLS model. Therefore, when constructing the AGC model of Fenglin
County, it is necessary to consider the spatial effect and solve the AGC estimation error
caused by the spatial effect.

Table 4. Moran’s I test for spatial correlation in residuals.

Moran’s I Moran’s I Statistic Marginal Probability Mean Standard Deviation

0.8590 53.0058 0.0000 −0.0004 0.0162
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Using local spatial correlation analysis to explore the spatial distribution of various
types of clusters, Figure 6 shows the cluster distribution of AGC. Spatial correlation refers
to the phenomenon where objects that are close to each other spatially tend to have similar
trends and values in their attributes. Conversely, if objects that are spatially close have
different trends and values in their attributes, this spatial correlation manifests as a negative
spatial correlation, which is characterized by the presence of a “high–high cluster” or “high–
low outlier” distribution [79,80]. Table 5 shows the Z-score statistics for local Moran’s I.
In the study area, there is one sample plot showing a low–high outlier, possibly due to
its proximity to a road. There are three plots of land that show high–low outliers, which
account for 2.174% of the total sample. Additionally, there are eight plots of land that
exhibit high–high clustering, representing 5.797% of the total sample and showing a clear
positive correlation. Finally, there are eleven plots of land that display low–low clustering,
which account for 7.971% of the total sample.

Forests 2023, 14, x FOR PEER REVIEW 13 of 25 
 

 

Table 4. Moran’s I test for spatial correlation in residuals. 

Moran’s I Moran’s I Statistic Marginal Probability Mean Standard Deviation 
0.8590 53.0058 0.0000 −0.0004 0.0162 

Using local spatial correlation analysis to explore the spatial distribution of various 
types of clusters, Figure 6 shows the cluster distribution of AGC. Spatial correlation refers 
to the phenomenon where objects that are close to each other spatially tend to have similar 
trends and values in their attributes. Conversely, if objects that are spatially close have 
different trends and values in their attributes, this spatial correlation manifests as a nega-
tive spatial correlation, which is characterized by the presence of a “high–high cluster” or 
“high–low outlier” distribution [79,80]. Table 5 shows the Z-score statistics for local Mo-
ran’s I. In the study area, there is one sample plot showing a low–high outlier, possibly 
due to its proximity to a road. There are three plots of land that show high–low outliers, 
which account for 2.174% of the total sample. Additionally, there are eight plots of land 
that exhibit high–high clustering, representing 5.797% of the total sample and showing a 
clear positive correlation. Finally, there are eleven plots of land that display low–low clus-
tering, which account for 7.971% of the total sample. 

 
Figure 6. Local spatial autocorrelation. The red points represent high–high clusters; the yellow 
points represent high–low outliers; the green points represent low–high outliers; the blue points 
represent low–low clusters; and the black points represent nonsignificant local spatial autocorrela-
tion. 

  

Figure 6. Local spatial autocorrelation. The red points represent high–high clusters; the yellow points
represent high–low outliers; the green points represent low–high outliers; the blue points represent
low–low clusters; and the black points represent nonsignificant local spatial autocorrelation.

Table 5. Z score statistics of local Moran’s I. LH: low–high outlier; HL: high–low outlier; HH:
high–high cluster; LL: low–low cluster.

Z Score Type Number Percentage

<−2.58 LH 1 0.725%
−2.58~−1.96 HL 3 2.174%
−1.96~−1.65 — 0 0.000%
−1.65~1.65 — 115 83.333%
1.65~1.96 HH 8 5.797%
1.96~2.58 LL 10 7.246%

>2.58 LL 1 0.725%
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3.3. AGC Model Evaluation

The accuracy evaluation and prediction effect of each model are shown in Table 6. The
fitting effect and predictive ability of the OLS model are poor, and the SDM model performs
best in the global regression model, which indicates that the SDM model can better fit the
global structure of the data. The GWR model has the highest R2 (0.695) and the smallest
rRMSE (27.329), MARE (0.280), MAE (14.858), and MPB (22.734) values. To further visualize
the model fitting performance, Figure 7 shows scatter plots of the observed and predicted
AGC for 103 plots based on the OLS model and 4 spatial regression models. The global
regression models exhibit a clear tendency to overestimate at low values and underestimate
at high values of AGC when it is less than 40 Mg/ha or greater than 100 Mg/ha. The GWR
estimation threshold of forest AGC was expanded from 0–100 Mg/ha to 0–120 Mg/ha. The
GWR model not only offers superior predictive accuracy but also outperforms the other
four global regression models in both fitting and predictive performance.

Table 6. Comparison of modeling results.

Models

Training Set (n = 103) Validation Set (n = 35)

R2 R2
adj

rRMSE
(%)

MARE
(Mg/ha)

MAE
(Mg/ha)

MPB
(%)

rRMSE
(%)

MARE
(Mg/ha)

MAE
(Mg/ha)

MPB
(%)

OLS 0.320 0.299 40.813 0.385 21.367 32.694 41.167 0.544 18.384 32.509
SLM 0.326 0.306 40.623 0.385 21.302 32.594 41.035 0.543 18.381 32.504
SEM 0.327 0.306 40.617 0.385 21.346 32.662 40.983 0.540 18.337 32.427
SDM 0.371 0.352 39.251 0.379 20.591 31.506 39.184 0.522 18.407 32.551
GWR 0.695 0.686 27.329 0.280 14.858 22.734 28.927 0.394 13.908 24.595
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ordinary least squares model (OLS) and 4 spatial regression models (SLM, SEM, SDM, and GWR).
The blue points represent the sample data, the dashed line represents the central line, and the red line
represents the fitted line. The closer the red line is to the central line, the better the model fit is.

Furthermore, according to the variance analysis results of the GWR model shown in
Table 7, the GWR model has improved compared to the OLS model. The sum of squared
residuals decreased by 33,306.914, indicating a decrease in the overall variation in the
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model residuals. The degrees of freedom also decreased by 40.442, and the mean squared
residuals decreased by 823.571. These findings suggest that the OLS model had significant
spatial autocorrelation and spatial heterogeneity in the residuals, while the GWR model
could address the spatial effects present in the model residuals.

Figure 8 shows the spatial distribution of AGC in Fenglin County based on five
different model inversions. This observation suggests a lower distribution of AGC in the
central region, contrasting with a higher distribution in the southwestern region. This
finding is consistent with the results of the high–high clustering discussed in Section 3.2.
The OLS model tends to overestimate low values and underestimate high ones. While
global regression improves estimation slightly, the GWR model significantly enhances
the accuracy for both high and low value areas, aligning more closely with the true AGC
distribution. The AGC distribution in Fenglin County exhibits a pattern of gradual increase
from the sparser central region to the outer periphery, with areas of 100–120 Mg/ha
encompassing 10.40% and those surpassing 120 Mg/ha occupying 3.99% of the total area.
By using remote sensing information extracted from Sentinel-2 images and estimating the
distribution of AGC in Fenglin County through a spatial regression model, the results
obtained are consistent with the actual situation, providing a reference for analyzing the
spatial distribution of forest AGC using remote sensing.

Table 7. Variance analysis of the GWR model. Sum Sq: sum of squares of mean deviations; DF:
degree freedom; Mean Sq: mean square; F: value of F.

Source Sum Sq DF Mean Sq F

OLS Model Residuals 73,278.508 98.000 — —
GWR Model Improvement 33,306.914 40.442 823.571 —

GWR Model Residuals 39,971.593 57.558 694.458 1.186
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(b) SLM, (c) SEM, (d) SDM, and (e) GWR model. The pie chart shows the proportion of carbon
storage area distribution in each interval.
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3.4. Spatial Correlation Analysis

The residual Moran’s I of five models for nine different bandwidths in the range of
0 m to 9000 m are compared, as shown in Figure 9. As the bandwidth increases, Moran’s I
gradually approaches zero, indicating that the spatial autocorrelation of the model residuals
also decreases as the spatial scale increases.
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The five models’ residual Moran’s I and the corresponding Z values are listed in
Table 8. The Z values of OLS and SLM are significantly positive (Z value > 1.96), indicating
that these two models are similarly clustered at a significance level of 0.05, while GWR
is negative with an absolute value below 1.96. The LISA cluster map provides a clear
visualization of the spatial distribution of HH, LL, LH, and HL regions. Figure 10 displays
the four significant autocorrelations present within the study area. From the figure, it is
evident that the low–low clusters are primarily located in the central region, while the high–
high outliers are predominantly situated in the southeastern and southwestern regions.
Overall, the GWR has significantly reduced the impact of spatial autocorrelation.
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Table 8. Moran’s I and Z score values for the prediction residuals of the five models.

Model Moran’s I Z Value

OLS 0.415 2.602
SLM 0.338 1.967
SEM 0.312 1.805
SDM 0.252 1.413
GWR −0.145 −0.565

3.5. Determination of Light Saturation Value

Table 9 shows the fitting estimation results of the AGC light saturation value using the
linear regression and nonlinear regression models. The maximum value of the regression
results represents the estimated light saturation value of AGC under the respective method.
It can be seen that all variables are more interpretable than a single variable, with higher
R2

adj and explained deviance and smaller AIC values. Previous studies on optical saturation
often relied on a single variable for prediction. This study demonstrates that appropriately
additional predictive variables can improve the model’s fitting accuracy, resulting in more
realistic and reliable predictions. Although the GAM offers the best fit, it is one-sided to
represent the light saturation value of AGC by a single value. The results of fitting all
variables to the QGAM can be used as a reference for the range of AGC saturation values.

Table 9. Estimation results of the AGC light saturation value in Fenglin County.

Variable Function R2
adj AIC Max DE

IPVI

Linear function 0.198 1312.48 89.608 —
Quadratic function 0.216 1310.4 76.925 —

Logarithmic function 0.163 1315.36 91.706 —
GAM 0.217 1310.15 82.975 22.80%

QGAM

0.2 0.2 1278.44 54.544 60.80%
0.3 0.206 1286.69 59.864 44.40%
0.4 0.208 1292.72 65.058 26.30%
0.5 0.213 1305.99 71.932 17.10%
0.6 0.218 1328.18 83.863 15.10%
0.7 0.213 1345.05 99.007 21.70%
0.8 0.184 1377.54 117.145 37.60%

All
variables

Linear function 0.285 1299.67 100.763 —
GAM 0.294 1298.8 97.071 31.90%

QGAM

0.2 0.271 1264.83 65.48 64.70%
0.3 0.279 1278.12 71.285 52.90%
0.4 0.274 1284.29 77.862 36.80%
0.5 0.274 1294.29 85.026 27.40%
0.6 0.279 1310.25 95.702 23.90%
0.7 0.285 1331.79 108.832 28.40%
0.8 0.273 1397.39 129.894 43.50%

To further visualize the QGAM, this study shows the QGAM with 138 plot fits applied
to the most significant variable IPVI, as shown in Figure 11. In both low-value and high-
value regions, the model demonstrates exemplary fitting performance. Relative to a singular
linear model, this approach markedly elevates the predictive accuracy, adaptability, and
interpretability. At the same time, it allows for segmented evaluation of AGC prediction
outcomes from different spatial regression models.

Based on the light saturation value statistics of a single variable and all variables
based on QGAM, the proportions of forest AGC area in Fenglin County inverted by each
spatial regression model are shown in Figure 12. The figure reveals that the saturation
phenomenon is more prominent in the QGAM results based on all variables, and significant
differences in estimation among the models are evident within the q range of 0.7–0.8.
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We consider the results obtained from the QGAM constructed using all variables, within
the q value range of 0.7 to 0.8, as the range for AGC light saturation values (108.832 to
129.894 Mg/ha). The global regression model fails to accurately estimate forest AGC within
the saturation range and is also incapable of predicting AGC values exceeding this range.
The inversion results from the GWR model reveal that the forest AGC in Fenglin County is
saturated in approximately 6.26% of the total area and exceeds saturation in about 1.97%
of the area. The GWR model to some extent addresses the issue of data saturation when
utilizing remote sensing for AGC estimation.

Forests 2023, 14, x FOR PEER REVIEW 18 of 25 
 

 

Table 9. Estimation results of the AGC light saturation value in Fenglin County. 

Variable Function Radj
2  AIC Max DE 

IPVI 

Linear function 0.198 1312.48 89.608 — 
Quadratic function 0.216 1310.4 76.925 — 

Logarithmic function 0.163 1315.36 91.706 — 
GAM 0.217 1310.15 82.975 22.80% 

QGAM 

0.2 0.2 1278.44 54.544 60.80% 
0.3 0.206 1286.69 59.864 44.40% 
0.4 0.208 1292.72 65.058 26.30% 
0.5 0.213 1305.99 71.932 17.10% 
0.6 0.218 1328.18 83.863 15.10% 
0.7 0.213 1345.05 99.007 21.70% 
0.8 0.184 1377.54 117.145 37.60% 

All 
variables 

Linear function 0.285 1299.67 100.763 — 
GAM 0.294 1298.8 97.071 31.90% 

QGAM 

0.2 0.271 1264.83 65.48 64.70% 
0.3 0.279 1278.12 71.285 52.90% 
0.4 0.274 1284.29 77.862 36.80% 
0.5 0.274 1294.29 85.026 27.40% 
0.6 0.279 1310.25 95.702 23.90% 
0.7 0.285 1331.79 108.832 28.40% 
0.8 0.273 1397.39 129.894 43.50% 

To further visualize the QGAM, this study shows the QGAM with 138 plot fits ap-
plied to the most significant variable IPVI, as shown in Figure 11. In both low-value and 
high-value regions, the model demonstrates exemplary fitting performance. Relative to a 
singular linear model, this approach markedly elevates the predictive accuracy, adapta-
bility, and interpretability. At the same time, it allows for segmented evaluation of AGC 
prediction outcomes from different spatial regression models. 

 
Figure 11. The QGAM fitted by the most significant variable IPVI (after standardization) (note: the 
red line is the QGAM of q = 0.2, 0.3, 0.4 from bottom to top; the yellow line is the QGAM of q = 0.5; 
the blue line is from bottom to top QGAM with q = 0.6, 0.7, 0.8, respectively). The white circle is the 
AGC data of the measured sample plot. 

Based on the light saturation value statistics of a single variable and all variables 
based on QGAM, the proportions of forest AGC area in Fenglin County inverted by each 
spatial regression model are shown in Figure 12. The figure reveals that the saturation 

Figure 11. The QGAM fitted by the most significant variable IPVI (after standardization) (note: the
red line is the QGAM of q = 0.2, 0.3, 0.4 from bottom to top; the yellow line is the QGAM of q = 0.5;
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4. Discussion
4.1. Uncertainty Analysis of AGC Estimation

Uncertainties in forest AGC estimation using remote sensing primarily stem from
the selection of AGC modeling variables and the choice of algorithm for constructing the
AGC estimation model [26]. In this study, a spatial regression model was used to estimate
the AGC. From the above model fitting and prediction results, the spatial effect cannot be
ignored. Spatial effects can be caused by many factors, such as distance-related species
interactions, spatial nonstationarity among variables, and nonlinear relationships between
environmental factors and species that are erroneously modeled as linear [81]. Notably,
some sample plots in the study area are distributed near villages within the study area,
exhibiting lower AGC values. Simultaneously, there is a large spatial heterogeneity among
the plots due to the influence of altitude. In this study, GWR was used to explore the
spatial distribution of large-scale sample plots. By considering spatial correlation, the AGC
spatial heterogeneity is reduced for model construction, which has a strong improvement
compared with the OLS model fitting prediction. The GWR model reduces uncertainty
in remote sensing estimates by accounting for spatial heterogeneity and correlation, thus
mitigating overestimation in high-value areas and underestimation in low-value areas [82].
This finding is consistent with the results obtained by Ou et al., who used Landsat 8 and a
spatial regression model for predicting AGB [38]. For AGC estimation methods, there are
also nonparametric and machine-learning models, which are higher than GWR in terms
of fitting accuracy [30,83]. Li et al. employed Sentinel-2 and used four machine learning
methods to estimate forest AGC in Shanghai. They discovered that the model yielding
the best predictive results still exhibited instances of overestimation. The researchers
attributed this phenomenon to the uneven distribution of samples and the presence of
significant spatial heterogeneity within the sample data [30]. Puliti et al. improved the
estimation accuracy of AGB in Norway by utilizing ArcticDEM and Sentinel-2 data in
conjunction with a random forest model. They indicated that forest characteristics and
terrain are sources of uncertainty in model predictions [84]. Although the nonparametric
method closely responds to sample data characteristics, its sensitivity is accentuated given
the small sample size in this study. In contrast, GWR not only offers superior predictive
capabilities but also delivers a more lucid mathematical interpretation. It emphasizes
the spatial distribution of the studied multivariate relationship and adeptly accounts for
the influences of spatial autocorrelation and heterogeneity on local-scale AGC estimation,
making it well suited for analyzing spatial nonstationarity in dynamic environments [85].

4.2. Light Saturation Phenomenon

The issue of light saturation is common when estimating AGC using remote sensing
data [10]. In a previous study, Steininger used Landsat data to determine the age and above-
ground biomass of 34 tropical secondary forest sites in Manaus, Brazil, and found that data
saturation occurred when the above-ground biomass approached approximately 15 kg/m2

or when the vegetation reached an age of 15 years or more and canopy reflectance was
saturated [86]. Mature forest stands with complex structures can also cause data saturation,
and there are many reasons why this may occur [10,87]. Ahmad et al. conducted a study
on biomass estimation in moist temperate forests in the Galies region of Abbottabad,
Pakistan, using Sentinel-2 remote sensing data. They discovered that the accuracy of
Sentinel-2-derived indices was influenced in areas with higher vegetation density [88]. To
improve the reliability of above-ground biomass carbon estimation, integrating data from
multiple sensors, stratifying AGC estimation based on vegetation types and slope, and
combining age virtual variables and texture features have been proposed [26,89]. Visible
light saturation is an important factor that results in inaccuracies in estimations of high
AGC values. Researchers studying the biomass saturation of temperate forests in China
have obtained saturation values that are not significantly different from the results of this
study [11]. In this study, the QGAM method was used to accurately estimate the forest AGC
light saturation value from 108.832 to 129.894 Mg/ha. It was found that more than 8% of
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the forest AGC in Fenglin County inverted by the GWR model was in the saturation range,
which improved the problem of data saturation compared with the global regression model.
This finding indicates that the forest AGC area falling within the light saturation value
is not small and the uncertainty caused by data saturation issues cannot be overlooked.
Accurately estimating the saturation value of forest AGC is crucial for formulating sensible
management strategies and environmental protection policies.

4.3. Limitations and Future Works

This study highlights the benefits of using remote sensing for forest AGC estimation.
However, it should be noted that the image quality of optical remote sensing is often com-
promised by cloud cover. It is recommended to select remote sensing images from spring
or summer with cloud cover less than 2% for processing and analysis in order to enhance
the usability of the image data. The dataset used in this study is uniformly distributed
and representative. The fixed distribution plots measured in the field ensure high data
quality. This allows us to not only provide a more comprehensive and accurate analysis of
the spatial distribution of forest AGC in Fenglin County but also offer a reference for its
precise estimation in the Northeast Forest Region. Additionally, Sentinel-2 data and spatial
regression models can also be used for spatial distribution analysis in other fields, such as
the spatial variation in crops, soil organic carbon distribution, and air quality [28,46,58].
In the future, it will be essential to analyze the spatial distribution of carbon storage in
other forest types and even broader ecosystem contexts. With the implementation of forest
conservation policies, it is anticipated that future forest distribution will be dominated
by mature forests. It is imperative to delve deeply into the data saturation challenges
encountered in remote sensing estimation.

5. Conclusions

Based on Sentinel-2 remote sensing images, we constructed a spatial regression model
to predict the spatial distribution of cold temperate forest AGC in Northeast China. This
study resulted in the following conclusions: (1) The GWR model constructed by combining
vegetation index texture features and terrain factors has the best fitting accuracy and predic-
tive performance. It shows the highest R2 (0.695) and the lowest rRMSE (0.273). Following
closely were the SDM, SEM, SLM, and OLS models in terms of their performance. (2) The
spatial effect should not be ignored, as evidenced by the analysis of model residuals and
the spatial distribution inversion of AGC. (3) During AGC estimation using optical remote
sensing, a saturation phenomenon occurs. The AGC light saturation values estimated
through QGAM range from 108.832 to 129.894 Mg/ha, with a saturated area percentage of
8.23% for forest AGC in Fenglin County.
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