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Abstract: To address the disorderliness issue of point cloud data when directly used for tree species
classification, this study transformed point cloud data into projected images for classification. Build-
ing upon this foundation, the influence of incorporating multiple distinct projection perspectives,
integrating depth information, and utilising various classification models on the classification of tree
point cloud projected images was investigated. Nine tree species in Sanjiangkou Ecological Park,
Fuzhou City, were selected as samples. In the single-direction projection classification, the X-direction
projection exhibited the highest average accuracy of 80.56%. In the dual-direction projection classifica-
tion, the XY-direction projection exhibited the highest accuracy of 84.76%, which increased to 87.14%
after adding depth information. Four classification models (convolutional neural network, CNN;
visual geometry group, VGG; ResNet; and densely connected convolutional networks, DenseNet)
were used to classify the datasets, with average accuracies of 73.53%, 85.83%, 87%, and 86.79%,
respectively. Utilising datasets with depth and multidirectional information can enhance the accuracy
and robustness of image classification. Among the models, the CNN served as a baseline model,
VGG accuracy was 12.3% higher than that of CNN, DenseNet had a smaller gap between the average
accuracy and the optimal result, and ResNet performed the best in classification tasks.

Keywords: image recognition; deep learning; tree species classification; three-dimensional point
cloud; projection image; convolutional neural network; residual neural network

1. Introduction

Forest species classification [1] plays a vital role in forest resource monitoring [2],
forest management [3], biodiversity assessment [4], and carbon storage [5], among others.
Surveying tree species [6] relies on the visual inspection and measurement of individual
trees through various parameters, such as tree height, canopy width, trunk diameter (diam-
eter at breast height), morphological structure, leaf shape, and bark texture. Gathering this
detailed information requires significant manpower, time, and prior knowledge, rendering
it unsuitable for undertaking large-scale tree species surveys. With technological advance-
ments, remote sensing has gradually been applied in tree species classification [7]. This
approach initially extracts features from data that are then combined with traditional super-
vised classification methods, such as support vector machines [8], maximum likelihood [9],
and random forest [10], to achieve tree species classification. However, due to spatial
resolution constraints, early remote sensing images were only suitable for regional scale
assessments alone and were incapable of achieving individual tree-level classification [11].
With the emergence of high-resolution remote sensing [12] and hyperspectral remote
sensing [13,14], the resolution and accuracy of tree species classifications have significantly
improved. However, there remain inherent limitations in passive remote sensing images,
such as difficulties in acquiring information on tree species below the canopy, reliance on
sunlight, and susceptibility to meteorological conditions and time factors [15].
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In comparison, Light Detection and Ranging (LiDAR) [16–18], as a form of active
remote sensing technology, possesses the ability to autonomously emit light sources and
receive reflected signals, which are uniquely high in reflectivity when interacting with
plant matter [19]. The quality of its signals is not affected by meteorological conditions or
time. LiDAR allows for changes in the signal transmitter position to obtain information
about forest trees from various angles. It exhibits higher spatial resolution for complex
forest terrains and vegetation structures along with superior penetration capabilities, en-
abling it to capture information beneath the canopy. Furthermore, LiDAR can collect
three-dimensional (3D) point cloud data under various environmental conditions, among
many other advantages. Consequently, it has gradually become a research hotspot for the
classification of tree species [20–22].

One challenge in the application of point cloud data for tree species classification lies
in its unordered nature [23]. Given that each point in a point cloud dataset is independently
collected in space, the arrangement of these points in the dataset is random and unrelated
to their physical locations. This disorder implies that point cloud data cannot be directly
applied to traditional machine learning methods. To address this issue, it is often necessary
to transform unordered point cloud data into a format that can be processed by tradi-
tional machine learning classifiers. Currently, the most prevalent method is feature-based
classification. This approach involves extracting a series of features from the point cloud
data, which are then used as inputs for conventional machine learning classifiers for tree
species identification. In this manner, the inherent disorder of point cloud data can be
converted into ordered information suitable for machine learning classifiers through feature
extraction and selection, thereby enabling effective identification of different tree species.
Xiaoyi et al. [24] used an optimal feature parameter set based on point cloud distribution
characteristics for tree species classification, achieving an average classification accuracy of
58.8%. Cao et al. [25] used full-waveform LiDAR data to achieve an overall classification
accuracy of 68.6% for six subtropical forest tree species, including Pinus massoniana and
Cunninghamia lanceolata. In the process of feature-based classification, it is evident that the
selection of features typically relies heavily on deep prior knowledge. The accuracy of the
classification results demonstrates a high sensitivity to the categories of selected features,
which greatly limits the effectiveness of this method. Concurrently, although point cloud
data provide comprehensive 3D spatial information about trees, feature-based classification
methods often fail to effectively exploit and utilise the features and 3D information inherent
within point cloud data.

Simultaneously, considering the strong correlation between a tree species and its mor-
phological structure [26–28], image-based tree classification stands as one of the traditional
methods for tree species classification [29]. However, due to its intensive demands for
human labour and time, it is not suitable for current large-scale tree species surveys. The
advent of LiDAR technology has addressed the previous difficulty in obtaining tree images.
By merely segmenting individual trees from point cloud data and projecting them, it is
possible to acquire images exhibiting the complete morphological structure of the trees.
The introduction of these two-dimensional (2D) images also circumvents the disorderliness
issue inherent in point cloud data. Therefore, tree species classification can be based on
point cloud projection images. Hamid et al. [30] converted cloud data into a 2D projection
image dataset for individual trees. They used a convolutional neural network (CNN) to
classify the crowns of 124 conifers, achieving an average accuracy of 87% with limited tree
features provided by canopy information. Mizoguchi et al. [31] converted point cloud data
from the trunk sections of cedar and cypress trees into images and used the CNN method
to classify the two types of trunks, achieving an average accuracy of 89%.

In recent years, image classification algorithms have made significant progress. The
evolution of these algorithms is notable, transitioning from early machine learning feature
extraction methods to today’s advanced deep learning techniques. The mainstay of current
image classification algorithms is the CNN [32]. CNNs are often used for feature extraction
and dimension reduction, making them a crucial component of modern image classification.
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Another significant development is the visual geometry group (VGG) [33], characterised
by the use of small convolutional kernels. This technique enhances the effectiveness of the
image classification process, especially in dealing with detailed and complex image content.
The advent of the residual network (ResNet) [34,35] marked a considerable advancement
in the field. ResNet addresses the vanishing gradient problem encountered in deep neural
networks by introducing cross-layer residual connections. This innovation significantly
enhances the learning capability of deep networks. Furthermore, the densely connected
convolutional network (DenseNet) introduced dense connections, another leap forward in
the evolution of image classification algorithms. These methods continuously explore the
potential of image classification, offering innovative perspectives for the classification of
individual tree species.

For the aforementioned reasons, this study focused on tree species classification based
on projected images from point cloud data. The main research emphasis lies in exploring
the impact of different projection directions, the various classification models, and the
incorporation of colour information as a method to restore depth information lost during
the transformation of 3D point cloud data into 2D projection images. The feasibility of these
methods in resolving the issue of dimensional information loss during the projection process
and in enhancing classification accuracy in the context of tree species identification using
point cloud projected images was investigated with the aim of informing and benefiting
future research.

2. Materials and Methods
2.1. Study Area

The study area was located in the Sanjiangkou Ecological Park in the south-eastern part
of Fuzhou City, Fujian Province. Fuzhou City has a typical subtropical monsoon climate.
In spring and autumn, temperatures average between 15 and 25 ◦C. The summers are hot
and rainy with temperatures of around 33–37 ◦C, while winters are warm and humid with
temperatures of around 6–10 ◦C. The city also sustains an average annual relative humidity
of approximately 77% and an average annual precipitation of 1224.2 mm. Within this region
lies a natural forest with a canopy closure of about 0.5. The main tree species include the
council birch (Betula), mango (Mangifera indica), Tung (Alstonia scholaris), banyan (Ficus
religiosa), and Chinese soapberry (Sapindus saponaria), as illustrated in Figure 1. A partial
top-down view of the research area is shown in Figure 2. The 3D point cloud data of the
research area were obtained using the SAL-1500 3D scanning system(South Group, Beijing,
China) mounted on the SF1650 flight platform(DJI, Shenzhen, China) on 15 March 2022.
Table 1 lists the main parameters of the 3D laser scanning system.

Table 1. SAL-1500 instrument parameters.

Parameter SAL-1500

Measurement Rate 2,000,000 points per second
Scanning Speed 400 lines per second
Flight Altitude 200 m

System Relative Accuracy 20 mm
Field of View 20 mm

2.2. Data Processing

The experiment was conducted using the deep-learning framework PyTorch 1.8 cou-
pled with CUDA 11.4. The workstation used for this research ran on Windows 10 Profes-
sional equipped with an Intel Core i7-13700F CPU, 32 GB of RAM, and an NVIDIA GeForce
RTX 4080 (16 GB) GPU.
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Nine tree species; namely, council (Ficus altissima), birch (Betula), mango (M. indica),
Tung (A. scholaris), banyan (F. religiosa), Chinese soapberry (S. saponaria), Simon poplar
(Populus simonii), and camphor (Cinnamomum cam), were selected as classification samples
in the study area. By comparing the coordinates of each tree species that were manually
identified and labelled on-site during the collection of point cloud data, the point cloud
data of different tree species were separately extracted. Subsequently, the point cloud data
collected from airborne LiDAR were pre-processed in three steps. (1) Data calibration: first,
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coordinate system conversion was performed, allowing for data analysis and processing
in a uniform coordinate system to obtain precise raw data. (2) Data conversion: statistical
analysis and smoothing filter methods were adopted to denoise the collected data and ad-
dress the issues related to noise, overlapping points, and missing points. (3) Data cleaning:
finally, outliers were removed based on various measures, such as distance, density, or
fitting error, and the number of point clouds were reduced to a consistent quantity using a
range of techniques, such as interpolation enhancement [36], jitter augmentation [37], and
neighbourhood-based methods, which ultimately improved the data quality. The point
cloud data utilised in this study were denoised using a radius outlier removal method with
specific parameters set as a minimum neighbouring point count of six and a neighbour-
hood radius of one. Data augmentation was implemented through jitter interpolation, with
specific parameters defined as a mean value of 0.0001 and a standard deviation of 0.01 for
the normal distribution of the jitter.

Considering that some data-point clouds had too few points and provided insufficient
feature information for image classification, a threshold of 512 points [38,39] was established
for screening. Trees with point cloud counts <512 were removed. To avoid difficulties in
reading folders named in Chinese during training, the nine tree folders were numerically
renamed from zero to eight. A total of 557 files were collected. Overall, 80% of each type
of tree projection image was used to train the classification model, whereas the remaining
20% was used to validate the training results. Ultimately, nine numerically named folders
were obtained, each containing samples for the test and training sets, as listed in Table 2.

Table 2. Number of trees for each species.

Tree Species Latin Names
Number of Trees

Train Test

Council tree Ficus altissima 66 19
Birch Betula 40 10

Mango tree Mangifera indica 64 16
Scholar tree Alstonia scholaris 43 11
Bodhi tree Ficus religiosa 43 11

Wingleaf soapberry Sapindus saponaria 38 10
Terminalia neotaliala Terminalia neotaliala 40 10

Simon poplar Populus simonii 39 9
Camphor tree Cinnamomum cam-phora 70 18

Total — 443 114

2.3. Classification Methods

Considering the requirements of individual tree projection quality and dataset size,
four models were selected for dataset classification: CNN, VGG, ResNet, and DenseNet.
Figure 3 shows schematic diagrams of the models selected. Fundamental CNNs include
convolutional, pooling, and fully connected layers [40]. Convolutional and fully connected
layers output the classification results, enabling automatic feature learning and optimisa-
tion of feature extractors. A CNN can effectively handle large batches of data, mitigate
overfitting issues caused by large data volumes, and perform admirably when dealing with
data with a grid-like structure. In order to enhance the comparability between models, this
study standardised the parameters of the classification models. The specific parameters are
detailed in Table 3.
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Table 3. Parameter settings for the classification model.

Parameter Value

Optimizer Adam
Batch size 24

Epoch 300
Learning rate 0.0001

Figure 3 illustrates the key operations of the models used. These include convolution,
which intermixes information from input pixels or nodes to learn data features, and batch
normalisation, which improves network stability by standardising the output of previous
activation layers, thereby reducing overfitting and boosting performance. The ReLU
activation function is employed to pass non-negative values alone to the subsequent layer,
enhancing the network’s non-linearity. Feature maps from various layers are combined
using concatenation, enabling the network to retain information from previous layers.
Dimensionality reduction and overfitting prevention are achieved via max pooling and
dropout, respectively. The latter disregards random neurons during training for this
purpose. Dilated convolution expands the receptive field without resolution or coverage
loss by applying filters over an area larger than their size because of the added gaps.
Softmax, an activation function, is typically utilised in the final network layer for multi-
class classification as it converts numbers into probabilities. Average pooling further
reduces dimensionality by down-sampling an input using average values over a window
defined by a filter. In the fully connected layer, each neuron connects to every neuron in
the subsequent layer to learn more global patterns. Finally, transposed convolution, also
known as deconvolution, is employed in various tasks, such as segmentation, to increase
the input’s spatial dimension.

We adopted a strategy of training a shallow, simple network (VGG11) and then reused
the weights of VGG11 to initialise VGG13. This iterative training and initialisation process
was repeated for VGG19, accelerating convergence during training and addressing issues,
such as weight initialisation. VGG builds on a CNN by proposing a more refined learning
structure based on depth. It uses multiple 3 × 3 convolutional and pooling layers for
gradual feature extraction. As a simple and deep CNN structure, it enhances the image
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processing performance primarily by increasing the network depth, resulting in higher
accuracy and a more efficient learning process for complex feature representation. However,
owing to its simple structure and excessive depth, it is susceptible to overfitting during
training, and the training process takes a significant amount of time [41].

ResNet uses residual blocks to extend the depth of the model by incorporating resid-
ual units through a shortcut mechanism and replacing the fully connected layer with a
global average pool layer. This network resolves the problem of the gradients becoming
progressively smaller during the training of the dataset, which causes slow weight updates
during backpropagation. Optimising the training effect of the neural network reduces
the training difficulty, accelerates convergence, and improves the overall model perfor-
mance [42]. Model performance refers to the ability of the neural network to accurately
predict or classify new, unseen data based on the learned patterns from the training phase.
Higher performance models have lower error rates and better generalisability to different
datasets, making them more reliable and robust in various applications.

Although ResNet uses element-wise addition to connect each layer to the two pre-
ceding layers, DenseNet extends this principle by proposing that all layers are intercon-
nected [43]. Each layer accepts all previous layers as additional inputs, thereby improving
the gradient utilisation. DenseNet also introduces a parameter called “Growth Rate” that
controls the growth of feature maps in each layer, enabling better control of complex
networks and parameter quantity.

2.4. Point Cloud Projection Transformation

To transform the point cloud data into the 2D images required by the classifier, it is
necessary to project the point cloud. Taking the x-axis (east–west direction) as an example,
it was first necessary to normalise the point cloud file. In this process, the x-axis coordinates
of each 3D point were disregarded, their values were changed to zero, and they were
projected on to the 2D (Y–Z) plane. Consequently, the point cloud data were rendered as a
scatterplot on the Y–Z plane, and the formula for the x-axis normalisation was as follows:

normalisedx =
x − xmin

(xmax − xmin)
× 255, (1)

where X represents the x-axis coordinates in the point cloud data and xmin and xmax denote
the minimum and maximum values of the x-axis coordinates, respectively. The X value
after grayscale normalisation, denoted as normalisedx, was scaled between 0 and 255.

Partial projection results are illustrated in Figure 4.
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Figure 4. Schematic of projection images with different directions.

This study also incorporated depth information, converting it into colour depth values
which were then assigned to the projected images. Therefore, it was necessary to normalise
the coordinate information of the compressed dimension in the point cloud data, convert
it into greyscale values, and use it to colour the originally colourless 2D point cloud
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projection image. Taking the x-axis in Figure 5 as an example, when an x-axis projection
was performed, all the x-axis coordinate values change to zero, resulting in a projection
image without x-axis depth information. By converting the x-axis coordinate values into
colour values to colour the projection image, a projection image was obtained with x-axis
depth information.

The formula for colouring the point cloud is as follows:

colours[:, 0] = normalisedx (2)

In Equation (2), the colour is an RGB colour array containing all points. colours [:, 0]
indicate setting the green channel value of all points as normalisedx. This implies that points
with smaller x-axis coordinates have lower green-channel values, whereas points with
larger x-axis coordinates have higher green-channel values. Meanwhile, the red and blue
values were set to zero; therefore, all the points appeared green. As illustrated in Figure 6,
contrast diagrams were developed with and without depth in the X and Y directions for
four of the nine tree types. For instance, in the case of a mango tree projection with depth
in the X-direction, the further away from the projection surface, the deeper the green dot
colour, and the closer to the projection surface, the lighter the green dot colour.
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Considering the phototropism exhibited by trees during their growth, there are certain
differences in the canopy structure in the north–south and east–west directions [44]. In
this study, projection occurred from the X (east–west), Y (north–south), and –Z (top–down)
directions. Consequently, a single tree generated three different point cloud projection
images, as illustrated in Figure 5.

The four classification models employed in this study all incorporated the normalisa-
tion of image data. Therefore, the images obtained from the projection could be directly
inputted into the classification models, obviating the need for any further processing of the
images. The entire data processing workflow is illustrated in Figure 7. The arrows indicate
the sequence of the process.
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2.5. Evaluation Metrics

The confusion matrix is a common tool in machine learning used to display the
statistical information comparing model predictions to existing classifications [45]. It refers
to the actual similarity scores generated using a benchmark. It reports four primary values:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP
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represents the number of instances that the machine learning model correctly predicts as
belonging to a specific class, which is consistent with the actual results of the reference
alignment. Conversely, TN represents the number of instances that the model correctly
predicts as not belonging to a specific class, consistent with the actual reference alignment
results. FP indicates the number of instances that the model predicts as belonging to a
specific class; however, the reference alignment result suggests otherwise. FN denotes the
number of instances that the model predicts as not belonging to a specific class; however,
the actual result of the reference alignment indicates the opposite.

The evaluation metrics used in this study were precision and recall. Precision refers to
the proportion of correctly predicted tree species quantity to the total number of prediction
results, as formulated below:

Precision =
TP

TP + FP
(3)

Recall refers to the proportion of correctly predicted quantities to actual quantities, as
formulated below:

Recall =
TP

TP + FN
(4)

The F-Score is the harmonic mean of precision and recall, offering a balance between
the two. It is computed as follows:

F − Score =
2 × Precision × Recall

Precision + Recall
(5)

3. Results
3.1. Exploring the Potential of the Bi-Directional Approach for Classification

To compare the classification effects, the X single-direction (without depth), Y single-
direction (without depth), and Z single-direction (without depth) datasets were classified
into the following four models: CNN, VGG, ResNet, and DenseNet. As shown in Table 4,
the average precision and recall rates were 79.08% and 78.36% for the X-direction and
78.50% and 77.49% for the Y-direction, respectively. The training accuracy of the Z-direction
projection dataset was extremely low, with average precision and recall rates of 57.73% and
56.36%, respectively. This may be because the tree crown obscured the trunk information
during the Z-axis projection, resulting in a substantial loss of 3D information. Therefore,
this study did not use the Z-direction in subsequent experiments.

Table 4. Comparison of the precision and recall of different methods for the X-, Y-, and Z-axes.

Classification
Model

X Y Z Average

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

CNN 68.43 67.54 67.01 65.79 38.87 37.72 58.10 57.02
VGG 82.81 81.58 84.62 84.21 66.08 63.16 77.84 76.32

ResNet 84.98 83.33 83.82 84.21 57.85 58.77 75.55 75.44
DenseNet 86.01 85.96 83.88 82.46 68.13 65.79 79.34 78.07

The scale of the training set directly influences the quantity and quality of knowledge
and patterns that the algorithm can learn. In other words, the larger the size of the training
set, the richer the information it contains, consequently enhancing the performance of the
algorithm’s training results. In the next step, the projection images of the same tree were
combined in the X- and Y-directions to create a training set, while keeping the original
feature information unchanged, with the aim of improving the generalisation ability and
accuracy of the model. This was done to expand the training set and sample size and avoid
problems such as overfitting and underfitting.
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3.2. Classification Results

Six datasets were created based on the tree projection images: X-direction without
depth, Y-direction without depth, XY bi-direction without depth, X-direction with depth,
Y-direction with depth, and XY bi-direction with depth. Four classification models (CNN,
VGG, ResNet, and DenseNet) were employed to classify these datasets. The confusion
matrix of some classification results is shown in Figure 8.

As shown in Table 5, the CNN performed poorly in image classification across various
datasets, with average precision and recall rates of only 73.53% and 71.20%, respectively.
The highest accuracy for the XY bi-directional projection was 79.29%. Considering that
the CNN utilized in this study represents an early version of the CNN algorithm, it has
a simple structure and fewer feature-extraction capabilities, and thus generally yields
mediocre accuracy.

Table 5. Comparison of CNN precision and recall in different directions.

Precision (%) Recall (%) F-Score (%)

X-direction without depth 68.43 67.54 67.98
Y-direction without depth 67.01 65.79 66.39

XY bidirectional without depth 77.99 76.32 77.16
X-direction with depth 74.94 71.05 72.94
Y-direction with depth 73.51 69.30 71.34

XY bidirectional with depth 79.29 77.19 78.23
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depth, (h) DenseNet_XY bi-directional with depth.

As presented in Table 6, the average precision and recall rates of the VGG image
classification model were 85.83% and 85.09%, which represented improvements of 12.30%
and 13.89% over the CNN classification model, respectively. The precision of the XY bi-
directional projection reached 89.36%, which was 10.07% higher than that of the CNN. This
may have been because VGG uses multiple convolutional and pooling layers to reduce
the number of parameters, enabling the model to learn the rich features of the tree crown
and trunk during training. Furthermore, by loading fewer fully connected layers, training
becomes more stable and accurate.

Table 6. Comparison of VGG precision and recall in different directions.

Precision (%) Recall (%) F-Score (%)

X-direction without depth 82.81 81.58 82.19
Y-direction without depth 84.62 84.21 84.41

XY bidirectional without depth 85.88 85.09 85.48
X-direction with depth 86.27 85.09 85.69
Y-direction with depth 86.04 85.96 86.00

XY bidirectional with depth 89.36 88.60 88.98

As shown in Table 7, the average precision and recall rates of the ResNet image
classification model were 87% and 86.26%, respectively. This may have been due to the
use of cross-layer connections in ResNet, which simplify the propagation of tree contour
information in the network and deepen the learning of important tree features and solve the
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problems of gradient vanishing and exploding in deep network training, thereby improving
the precision of learning tree features and patterns. Consequently, both metrics were 1.17%
higher than those of the VGG classification model. The precision of the XY bi-directional
projection reached 91.46%, which was 2.1% higher than that of VGG.

Table 7. Comparison of ResNet precision and recall in different directions.

Precision (%) Recall (%) F-Score (%)

X-direction without depth 84.98 83.33 84.15
Y-direction without depth 83.82 84.21 84.01

XY bidirectional without depth 86.46 85.53 85.99
X-direction with depth 87.89 86.84 87.36
Y-direction with depth 87.37 86.84 87.10

XY bidirectional with depth 91.46 90.79 91.12

As shown in Table 8, the average precision and recall rates of the DenseNet image
classification model were 86.79% and 86.04%, which were 13.26% and 14.84% higher than
those of the CNN classification model and 0.96% higher and 0.22% lower than those of the
VGG classification model, respectively. The precision of the XY bi-directional projection
reached 88.43%, which was 9.14% higher than that of the CNN, 0.93% lower than that of
VGG, and 3.03% lower than that of the ResNet model. A possible reason is that DenseNet
connects each layer to all subsequent layers in deep learning training. This more compre-
hensive connection method can cause the amount of tree feature transmission in the point
cloud projection image to increase rapidly, thereby increasing the computation and storage
costs. This may also cause overfitting and gradient vanishing problems during the tree
data training. Therefore, the performance of the DenseNet model in tree classification was
slightly lower than that of the ResNet model.

Table 8. Comparison of DenseNet precision and recall in different directions.

Precision (%) Recall (%) F-Score (%)

X-direction without depth 86.01 85.96 85.98
Y-direction without depth 83.88 82.46 83.16

XY bidirectional without depth 88.70 87.72 88.21
X-direction with depth 87.89 86.84 87.36
Y-direction with depth 85.83 85.09 85.4

XY bidirectional with depth 88.43 88.16 88.29

As shown in Figure 9, the basic CNN model exhibited the lowest average accuracy
among the four models. The VGG model, which increased the depth based on the CNN,
had an average precision of 85.83%. By optimising the connection mode between the
layers, the performance of ResNet was 1.17% higher than that of VGG. Owing to the large
dataset, the accuracy of DenseNet was slightly inferior to that of ResNet. The bi-directional
training results provided more 3D spatial relationships and the training result was 3.99%
higher than that of the single direction. With the addition of depth information, which
provided more 3D data, the average precisions of the models with and without depth were
81.72% and 84.86%, respectively. The depth-enabled direction was 3.14% higher than that
without depth.



Forests 2023, 14, 2014 14 of 19

Forests 2023, 14, x FOR PEER REVIEW 14 of 19 
 

 

XY bidirectional without depth 88.70 87.72 88.21 
X-direction with depth 87.89 86.84 87.36 
Y-direction with depth 85.83 85.09 85.4 

XY bidirectional with depth 88.43 88.16 88.29 

As shown in Figure 9, the basic CNN model exhibited the lowest average accuracy 
among the four models. The VGG model, which increased the depth based on the CNN, 
had an average precision of 85.83%. By optimising the connection mode between the lay-
ers, the performance of ResNet was 1.17% higher than that of VGG. Owing to the large 
dataset, the accuracy of DenseNet was slightly inferior to that of ResNet. The bi-directional 
training results provided more 3D spatial relationships and the training result was 3.99% 
higher than that of the single direction. With the addition of depth information, which 
provided more 3D data, the average precisions of the models with and without depth 
were 81.72% and 84.86%, respectively. The depth-enabled direction was 3.14% higher than 
that without depth. 

 
Figure 9. Comparison of precision and recall rates among the four classification models for different 
projected images. 

4. Discussion 
The results of this study show that the method of projecting point cloud data into 2D 

images can effectively address their issue of a lack of order. This approach transforms the 
original unordered points in point cloud data into pixels in a 2D image with explicit adja-
cency relationships and order, further employing existing machine learning techniques 
for classification. However, there is indeed a risk of information loss in this transformation 
process. To mitigate this risk, this study adopted several strategies. These strategies and 
their impact on the experimental results are discussed below. 

The quality of information contained within the projection images derived from dif-
ferent point cloud projection directions can vary, resulting in different classification accu-
racies. From the X-, Y-, and Z-direction projection images selected for this study, the av-
erage classification accuracies obtained in the X- and Y-directions were superior to those 
in the Z-direction. Upon comparing the projection images, it was observed that only the 
tree crown information, including shape, area, and degree of closure, were obtained from 
the Z-direction projection. As the selected trees in this study were concentrated in one 
region, similar climatic conditions caused insufficient crown differentiation in some tree 
species, ultimately leading to lower information content in this direction. Therefore, the 
classification model had a relatively low accuracy in this direction, and as such, the Z-axis 

Figure 9. Comparison of precision and recall rates among the four classification models for different
projected images.

4. Discussion

The results of this study show that the method of projecting point cloud data into
2D images can effectively address their issue of a lack of order. This approach transforms
the original unordered points in point cloud data into pixels in a 2D image with explicit
adjacency relationships and order, further employing existing machine learning techniques
for classification. However, there is indeed a risk of information loss in this transformation
process. To mitigate this risk, this study adopted several strategies. These strategies and
their impact on the experimental results are discussed below.

The quality of information contained within the projection images derived from
different point cloud projection directions can vary, resulting in different classification
accuracies. From the X-, Y-, and Z-direction projection images selected for this study, the
average classification accuracies obtained in the X- and Y-directions were superior to those
in the Z-direction. Upon comparing the projection images, it was observed that only the
tree crown information, including shape, area, and degree of closure, were obtained from
the Z-direction projection. As the selected trees in this study were concentrated in one
region, similar climatic conditions caused insufficient crown differentiation in some tree
species, ultimately leading to lower information content in this direction. Therefore, the
classification model had a relatively low accuracy in this direction, and as such, the Z-axis
projection model was not discussed. In comparison to the Z-direction, the information
content of the X- and Y-direction projection images was often richer.

Compared to single-directional projection images, XY dual-directional projection
images provided classification models with shape contour information from different
directions while effectively increasing the sample size. Consequently, dual-directional
classification outperformed single-directional classification. This strategy not only ex-
panded the training set and sample size compared to single-directional training but also
added further information dimensions, thereby enhancing the model’s generalisation abil-
ity and accuracy. This enabled the model to comprehensively understand the 3D coordinate
information of point clouds, enabling a more accurate acquisition of precise positional
information, thereby improving the classification accuracy and robustness. The average
precision increased from 81.34% to 85.43%.

By supplementing part of the information that was compressed in the dimension
during point cloud image projection using colouration methods, classification models
could obtain more spatial information, aiding the model in better understanding the 3D
information features and distance relationships between the points of the point cloud
data. Therefore, the accuracy of the classification model significantly improved, with the
average precision increasing from 81.72% to 84.86%. This result indicates that adding depth



Forests 2023, 14, 2014 15 of 19

information can beneficially impact point cloud projection image classification tasks and
that utilising spatial information increases the accuracy of the classification models.

By comparing the training results of the four models, it was observed that the simpler
CNN structure had lower accuracy; the VGG model had deeper training and, compared to
the ordinary CNN model, its accuracy improved by nearly 12%, reaching 85.83%; ResNet
possessed the advantages of VGG with lower time costs and resource occupation rates and
its classification accuracy was the highest; DenseNet, while occupying more computational
costs and storage space, had a precision that was slightly lower (3.03%) than that of ResNet.

In line with initial expectations, the strategies employed successfully mitigated the
problem of dimensionality information loss during the projection process and enhanced
classification accuracy. Compared to previous related studies [30,31], the results of the
present study expanded the classification from two species to nine. While this undoubtedly
increased the complexity of the classification task, a peak classification accuracy of 91.46%
was still achieved. This result provides substantial evidence for the efficacy and feasibility
of the research method displayed here and holds significant implications for advancing the
study of tree species classification using point cloud projection images.

There exists a significant correlation between the morphological structure of trees and
their corresponding species. Each tree has unique growth patterns and morphological
features, which, in most instances, are directly associated with the species. For instance,
some species might exhibit rapid vertical growth, resulting in slender, erect trunks, whereas
others might lean towards lateral expansion, forming expansive canopies. These character-
istics are intrinsic attributes of trees, manifesting as distinct dendritic structures. Moreover,
these differences in dendritic structure are reflected within point cloud data. Specifically,
by analysing and interpreting point cloud data, detailed 3D information about trees can
be obtained, encompassing various aspects such as trunk thickness, leaf distribution, and
canopy shape. This information can significantly aid in the accurate determination of a
tree’s species. In other words, to some extent, dendritic structure provides pivotal clues for
species identification.

During the tree species classification process, the classification model’s ability to
learn these dendritic structural features specific to tree species can be enhanced. This can
be achieved by incorporating additional viewing angle information, augmenting depth
information, and adjusting the classification model’s parameters and the model. These
methods aim to fulfil the objective of effective tree species classification. However, certain
misclassification issues persisted. For instance, council trees were misclassified as camphor
trees, mango trees as bodhi trees, and Wingleaf soapberries as council trees. Upon manual
comparison with the original point clouds, these misclassifications were attributed to spe-
cific individual morphologies or issues with point cloud quality. For example, council trees
with poor growth may exhibit morphological similarities to camphor trees, mango trees
with fewer lateral branches were erroneously identified as bodhi trees, and point clouds
of inferior quality misclassified Wingleaf soapberries as council trees. These scenarios un-
derscore that while the majority of trees manifest similar morphological structures during
their growth, free growth in natural environments might result in distinct morphological
deviations, leading machines to misidentify them as other species. Nevertheless, these
discrepancies still fall within an acceptable margin of error.

These challenges suggest the potential for further improving the classification accuracy
of point cloud projection images. However, given the complexity of these issues, it might
be essential to delve into deeper-level features, optimise the model parameters of the
classification methods, or employ superior techniques to observe the understory, such as
integrating data from airborne laser scanning (ALS) [46], terrestrial laser scanning [47],
and backpack laser scanning [48]. These strategies could potentially offer more effective
solutions to these challenging classification problems.

There were some limitations to this study that need to be addressed in future in-
vestigations. First, the tree segmentation method required manual assistance and the
sampling areas were relatively concentrated. In the future, we will explore the effects of
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more projection angles on tree classification and investigate the optimal combination of
projection angles to improve the speed and efficiency of classification and minimise redun-
dant samples. Additionally, we will introduce classification models, such as multi-view
CNN [49], which treat multiple views of an object as the same object for classification to
avoid the problem of treating different projections of the same object as separate entities.
For example, Silva et al. [50] achieved 95% accuracy in tree species classification by using
microscopic images of three major anatomical parts of wood and combining them with the
multi-view random forest model, which is different from the traditional approach of using
cross-sectional images alone. In future research, we will explore the optimal combination
of multi-view images and the multi-view classification model, along with the point cloud
data that are currently in use, to further investigate the upper limit of the classification
of tree species using multi-view projection images, which can be obtained quickly and
conveniently. Furthermore, considering the differences in tree growth patterns between
different terrains and regions, we will further validate the classification performance of
trees in different areas and climates and on different mountain slopes (shady versus sunny)
to enhance the reliability and generalisability of this method in practical applications. Fi-
nally, the point cloud data processed in this study only cover nine specific tree species. As
a result, the applicability of the trained classification model is somewhat limited at the
current stage, being effective only for the identification and classification of these nine tree
types. To augment the model’s versatility, robustness, and address the issue of parameter
generalization, [51] future research directions will focus on collecting and processing point
cloud data from a broader array of tree species across different geographical areas and
time frames. This expansion will broaden the model’s applicability, further elevating its
comprehensiveness and effectiveness in practical forestry applications.

5. Conclusions

Four classification models were used to classify the six datasets. The results indicated
that ResNet had the highest overall accuracy, with an average of 87%. The results of this
study revealed that multi-directional datasets provide more complete contour features and
spatial information for the classification model, and depth information helps compensate for
the content lost when converting 3D information into two dimensions. These two methods
can make better use of the spatial advantages of point cloud data, thereby improving the
classification accuracy. Among the four classification models, the CNN had a relatively
low accuracy as a baseline model. The VGG model exhibited a notable improvement over
the CNN. DenseNet performed the best for image classification without depth but was
not proficient in classifying images with depth. Finally, ResNet performed the best in all
classification tasks.

In summary, this study validated the feasibility of using ALS point cloud data for tree
species classification using point cloud projection images and improved classification accu-
racy by adding projection directions and supplementing depth information for projection
images. In summary, this study validated the feasibility of using ALS point cloud data for
tree species classification through point cloud projection images and enhanced classifica-
tion accuracy by incorporating projection directions and integrating depth information.
Currently, the acquisition and application of airborne point cloud data have reached a
certain scale. However, addressing the disorderliness of point cloud data is pivotal to
achieving tree species classification. Compared to traditional feature value classifications,
this research reduces the prerequisite prior knowledge and various intricate extraction
formulas. It efficiently and swiftly transforms point cloud data into two-dimensional im-
ages while ensuring limited information loss. This facilitates individuals with foundational
knowledge in point cloud and image classification to accomplish tasks such as rare tree
species identification, invasive tree species detection, and forest resource surveys using the
tree species classification method based on point cloud projection images. This contributes
significantly to forestry research.
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