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Abstract: Terrestrial laser scanning (TLS) is an effective tool for extracting stem distribution, providing
essential information for forest inventory and ecological studies while also assisting forest managers
in monitoring and controlling forest stand density. A feature-based method is commonly integrated
into the pipelines of stem detection, facilitating the transition from stem point to stem instance, but
most studies focus on feature effectiveness from the point level, neglecting the relationship between
stem point extraction and stem detection. In this paper, a feature-based method is proposed to
identify stems from TLS data, with features selected from stem levels. Firstly, we propose a series
of voxel-based features considering the stem characteristics under the forest. Then, based on the
evaluation of some commonly used and proposed features, a stem-based feature selection method is
proposed to select a suitable feature combination for stem detection by constructing and evaluating
different combinations. Experiments are carried out on three plots with different terrain slopes and
tree characteristics, each having a sample plot size of about 8000 m2. The results show that the
voxel-based features can supplement the basic features, which improve the average accuracy of stem
point extraction and stem detection by 9.5% and 1.2%, respectively. The feature set obtained by the
proposed feature selection method achieves a better balance between accuracy and feature number
compared with the point-based feature selection method and the features used in previous studies.
Moreover, the accuracies of the proposed stem detection methods are also comparable to the three
methods evaluated in the international TLS benchmarking project.

Keywords: terrestrial laser scanning (TLS); feature extraction and selection; voxel-based feature; stem
detection; forestry

1. Introduction

Terrestrial laser scanning (TLS) is an effective tool for observing vegetation objects
(e.g., tree stems) at the forest holding level because it can acquire detailed three-dimensional
(3D) point clouds in a nondestructive way [1,2]. For forest resources inventory, stem de-
tection is the foundation of many applications such as stem mapping [3,4], the estima-
tion of the diameter at breast height (DBH) [5], stem volume prediction [6], and stem
reconstruction [7].

There have been many studies retrieving stem information from the TLS point cloud,
which can be categorized into model-fitting and feature-based methods. In the model-
fitting methods, the raw point clouds are divided into slices along the vertical direction, and
model fitting (e.g., circle fitting [8–10], circle-ellipse fitting [11], and cylinder fitting [3,12])
is applied to the sliced points. The point clouds that are successfully fitted to the model
will be considered as stem points. However, those methods are easily disturbed by a high
stem density and rich understory vegetation, leading to model fitting failure. Therefore, the
height and thickness of slices play crucial roles in model-fitting methods [13]. Moreover,
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before model fitting, image-based methods [14–16] and top-based methods [17,18] were
used to extract tree locations.

Feature-based methods are commonly used to directly identify all potential wood
or stem points from TLS data. Béland et al. [19] classified wood and leaf points based on
intensity information because the intensity of wood points is usually higher than that of
leaves. Ma et al. [20] separated photosynthetic and non-photosynthetic components using
geometric information and two additional enhanced ground filters, which improved the
overall classification accuracy of forest canopies. Zhang et al. [21] proposed a method to
extract stem points using the curvature feature of the points and connected component
segmentation. A part of the branches and foliage points were removed by using the
difference of the surface curvature, and subsequently, the stem points were identified
effectively via connected component segmentation. Moreover, the deviation between
the z-component of normal vectors is commonly used in the first step of stem and leaf
separation because it represents the spatial distribution relative to the vertical direction
(i.e., verticality) [22,23]. Wang et al. [24] used the median z-normal value and the planar
density to detect the stem locations. Liang et al. [12] used the local geometrical features
(i.e., flatness and normal direction) to identify the stem points. Xia et al. [25] adopted
two-scale classification based on the dimensionality features to extract the candidate stem
points. Additionally, the point cloud is translated into a voxel structure and the flatness
saliency feature is calculated to recognize the stem points [26].

Moreover, machine learning algorithms are confirmed for leaf–wood classification by
using abundant geometric information. Zhu et al. [27] extracted a series of local radiometric
and geometric features derived from TLS point clouds and separated wood and leaf points
using the Random Forest (RF) model. The overall classification accuracy is between 80%
and 90%. Chen et al. [28] also applied the Support Vector Machine (SVM) classifier and
combined multiple features, such as dimensionality features, normal vectors, and intensity
values. Hackel et al. [29] and Becker et al. [30] constructed 16- and 15-geometric feature
Random Forest training models, with classification accuracies of 90% and 84%, respectively.
Moorthy et al. [31] used radially bounded nearest neighbors at multiple spatial scales to
classify wood and foliage in an RF model. There were 30 features applied, with an overall
average accuracy of 94.2%. However, research shows that more features do not mean a
higher accuracy in the classification [32].

In summary, most previous feature-based methods have achieved satisfactory point-
based results. Then, the individual stem can be detected using segmentation and clustering
based on prior knowledge (e.g., tree growth direction) [4,33]. However, there is still room
for improvement and discussion. Firstly, although voxel-based features have been proven
to be effective for object recognition in urban scenes [34–37] and have been used to extract
stem points with a series of predefined segmentation rules [38,39], their effectiveness has
been discussed less under a classification framework in terms of stem extraction results.
Secondly, the combination of features, rather than simply integrating features, plays a
key role in classification [38,40]. In a forest environment, particularly, factors such as
variations in the point cloud density and occlusion can render the features ineffective.
Therefore, constructing reasonable feature combinations is a critical aspect of improving
the stem detection result. Thirdly, the performance of different feature combinations is
commonly evaluated based on point-based results in urban scenes [32,41,42]. However, the
utilization of a forest point cloud is typically centered around stem instances, and there has
been limited discussion in previous studies regarding the assessment of various feature
combinations in the context of stem-based results.

Considering the points mentioned above, the target of this study is to detect stems
using a feature-based method and analyze the potential relationship between different
feature combinations and stem-based results. Our two main contributions are (1) propos-
ing a series of voxel-based features to identify stem points and detect stems from TLS
data considering the stem characteristics under a forest and (2) developing a feature selec-
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tion method by analyzing the effectiveness of different feature combinations in terms of
stem-based metrics.

This article is structured as follows: In Section 2, we provide a comprehensive intro-
duction of the data. Section 3 describes the proposed approach. Following that, Section 4
presents the experimental results. In Section 5, we engage in a discussion of the approach.
Lastly, in Section 6, we conclude this article.

2. Data Acquisition and Introduction

Two groups of datasets are used in this study. The first dataset was obtained from three
plots with different topographic and tree characteristics (Figure 1). Plot 1 was collected in a
camphor forest at Wuhan university (30.54◦ N, 114.36◦ E), China, characterized by a flat
terrain, straight tree stems, and sparse understory vegetation. Plot 2 was obtained from
a sloping mixed forest in Luojia hill (30.59◦ N, 114.29◦ E), China, primarily consisting of
Masson’s pine, oak and cypress trees. It has a higher density with smaller trees, denser
understory vegetation, and more irregular and diverse stem forms. Plot 3 was collected
in a mountainous region in Shennongjia (30.07◦ N, 112.32◦ E) in China, where the terrain
fluctuates greatly and is mainly covered by Euptelea pleiospermum. In this plot, the trees start
branching from a height close to the ground and have diverse growth directions. All data
were acquired in single-scan mode using Riegl VZ-400 (Riegl GmbH, Horn, Austria) with an
angular density of 0.04◦, and the largest distance to scanner position was more than 100 m.
Detailed information of the three plots is shown in Table 1. The second dataset was obtained
from the international TLS benchmarking project organized by the Finish Geospatial
Research Institute, including six forest plots obtained using both single- and multi-scan
format. These plots are situated in the southern boreal forests of Evo, Finland, covering
various tree species, stem densities, developmental stages, and understory vegetation
richness. Based on these characteristics, the six plots were categorized into three complexity
levels (i.e., easy, medium, and difficult), each with a fixed size of 32× 32 m2. Further details
regarding the comprehensive description of the benchmark datasets can be found in [43].
All experiments were performed with MATLAB R2018b on a computer with Intel Core
i7-10750H CPU and 32 GB RAM.
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Figure 1. The location of the study area of first dataset.

But as point-level accuracy is also validated in this study, point-level reference data
are also required. Below is the process of manually labeling each point in this study. We
manually divided all the points into three classes: foliage, stem, and ground. Initially, the
ground points were extracted via CSF filtering, and the misclassified points were then
refined through manual inspection. Subsequently, we separated the stem points from the
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remaining points, with only the trunk, primary, and secondary branches labeled as stem
points in this study, as shown in Figure 2.

Table 1. Detailed information of the three plots in the first dataset.

Plot ID Plot Size
(m2)

Sum of
Trees DBH (cm)

Tree
Height

(m)
Slope (◦)

Point
Spacing

(m)

Point Number

All Stem Ground Foliage

1 120 × 70 287 27.5 ± 6.9 14.9 ± 2.5 ~2 0.001~1.175 23,794,665 1,996,887 8,056,326 13,741,452
2 140 × 60 386 21.8 ± 5.0 11.1 ± 4.6 ~17 0.001~0.935 23,332,788 2,179,648 6,692,757 14,460,383
3 140 × 60 480 12.8 ± 4.2 7.6 ± 2.3 ~42 0.001~1.425 7,568,384 508,853 2,112,451 4,947,080
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3. Methods

The proposed method consists of four major steps (Figure 3): feature extraction, point
classification, stem detection, and feature selection. The goal of the first two stages is to
determine the subset of probable candidate stem points from the entire input. This is
achieved via supervised classification with a series of features, including some commonly
used features and the proposed features. Sections 3.1 and 3.2 describe these procedures in
detail. As outlined in Section 3.3, a clustering-based point cloud segmentation framework
is applied to individual stem extraction. In the final section of the method, the features
are evaluated and selected via the stem-based results after the feature importance ranking
based on the point classification results.
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3.1. Feature Extraction

We extract candidate stem points using the classification method in this study. Con-
structing reasonable features is crucial for obtaining satisfying classification results [44,45],
and we select the features proposed in previous studies [27,32,46,47] as basic features in
this study. As the aim is to provide a group of basic features for the following proposed
feature selection strategy, this study does not attempt to cover all ever-used point features.
Additionally, feature correlation can be recognized partially by the Recursive Feature Elim-
ination of Random Forest [48] in our strategy. Then, we follow the feature construction
and classification framework in [41,49], classifying the basic features (BFs) into 3D features,
2D features, grid features, and intensity-based features, and voxel-based features (VFs)
are proposed.

3.1.1. Basic Features (BFs)

1. Three-dimensional features

Each 3D point and its k nearest points form a local neighborhood, and we optimize k
for each point to obtain an optimal neighborhood according to the principle of the minimum
eigenentropy [41]. In the search process for the optimal neighborhood, the three eigenvalues,
λ1, λ2, and λ3 (λ1 > λ2 > λ3), are obtained by performing a principal component analysis
(PCA) [50], and the eigenentropy Eλ is calculated using Equation (1). Subsequently, by
comparing the eigenentropy across different neighborhoods, the neighborhood associated
with the minimum eigenentropy is chosen as the optimal neighborhood for each point.
Figure 4 illustrates the process of neighborhood selection. Based on the eigenvalues of
the optimal neighborhood, a variety of geometric 3D features are defined to represent the
spatial distribution of the 3D point cloud within the neighborhood. Table 2 summarizes the
first set of 3D features.

Eλ = −λ1 ln(λ1)− λ2 ln(λ2)− λ3 ln(λ3) (1)

2. Two-dimensional features

The extraction process of 2D features is similar to that of 3D features. First, the 2D
point and its k closest neighbors are obtained based on the cylinder-based neighborhood.
Then, the eigenvalues, λ1,2D and λ2,2D (λ1,2D > λ2,2D), are calculated by constructing the
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second-order covariance matrix. From its eigenvalues, the sum of eigenvalues and some
basic properties of local 2D neighborhood can be calculated and exploited as 2D features,
as shown in Table 3.
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Figure 4. Illustration of the neighborhood selection. (a) Neighborhood selection result (colored with
the selected k value) on sample data. (b) The neighbors pk (k ∈ [10, 100], ∆k = 1) of one stem point
(black dot) close to foliage. (c) The neighbors pk (k ∈ [10, 100], ∆k = 1) of one stem point (black dot)
close to ground. The color of each neighbor pk corresponds to the value of eigenentropy Eλ computed
on the smallest neighborhood containing pk. The eigenentropy first decreases until the neighborhood
reaches the edge of the stem (red points show the range of optimal neighborhood), and then increases
and reaches its maximum when a different object (e.g., foliage and ground) is aggregated within
the neighborhood.

3. Grid features

The grid feature is formed by projecting the scanning area into a regular grid in the
XY plane. For the points in the XY plane, the regular grid is used as a special neighborhood
for feature extraction, which can simplify the calculation related to the spatial relationship
of the point cloud. The grid size is set to 1 m by considering the stem spacing in the sample
plot, and then the following features are calculated according to the points in each grid:

• Ngrid: the point number in each grid.
• ∆H: the maximum height difference of point cloud in each grid.
• σH: the standard deviation of point height of each grid.
• Norz: the z-value difference between each point and the lowest point in each grid.

4. Intensity-based feature

The intensity information can be used to differentiate wood and leaf points because the
intensity of leaf points is usually darker than that of wood. In this paper, the intensity-based
feature is labeled as I.
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Table 2. Three-dimensional features extracted from the point cloud.

No. Symbol Feature Definition

1 Lλ linear saliency (λ1 − λ2)/λ1

2 Pλ planar saliency (λ2 − λ3)/λ1

3 Sλ volumetric saliency λ3/λ1

4 E3D Shannon entropy −Lλ ln Lλ − Pλ ln Pλ − Sλ ln Sλ

5 Eλ eigenentropy −∑3
n=1λn ∗ ln λn

6 nx x-component of the normal vector NV 1 NV (1)
7 ny y-component of the normal vector NV NV (2)
8 nz z-component of the normal vector NV NV (3)
9 Oλ structure tensor omnivariance (λ1 ∗ λ2 ∗ λ3)

1/3

10 Aλ structure tensor anisotropy (λ1 − λ3)/λ1

11 Sumλ sum of eigenvalues ∑3
n=1λn

12 Cλ change in curvature λ3/(λ1 + λ2 + λ3)

13 Vp verticality 1− nz

14 rknn radius of the spherical neighborhood \
15 D3D local point density 3(k + 1)/

(
4πr3

knn
)

1 NV ∈ R3 denotes the normal vector, and k is the suitable number of closest neighbors for each given 3D point.

Table 3. Seven 2D features extracted from the point cloud.

No. Symbol Feature Definition

1 Lλ,2D linear saliency of local 2D neighborhood (λ1 − λ2)/λ1
2 Pλ,2D planar saliency of local 2D neighborhood λ2/λ1
3 E2D Shannon entropy of 2D neighborhood −Lλ ln Lλ − Pλ ln Pλ

4 Eλ,2D eigenentropy of 2D neighborhood −∑2
n=1λn,2D ∗ ln λn,2D

5 Oλ,2D structure tensor omnivariance of 2D neighborhood (λ1 ∗ λ2)
1/2

6 D2D local 2D point density (k + 1)/
(

πr2
knn,2D

)
1

7 Sumλ,2D sum of eigenvalues of 2D neighborhood ∑2
n=1λn,2D

1 rknn,2D is radius of the circular neighborhood defined by a 2D point and its k closest neighbors.

3.1.2. Voxel-Based Features (VF)

Voxelization is an effective way to organize and structure 3D point clouds. In our
study, we treat a voxel as a form of a neighborhood instead of directly using it to detect stem
points. Firstly, we establish cubical voxels over the whole point cloud, as shown in Figure 5b,
and only retain voxels containing at least one point to reduce memory consumption and
improve traversal speed, as shown in Figure 5c. Then, the voxel is converted to the axis-
aligned bounding box (AABB), as shown in Figure 5d, and the voxel-based features (VFs)
are extracted based on both points in each voxel and the voxel size change.

Each retained voxel is recoded as Vk, containing m points {pn = (xn, yn, zn)|pn ∈ Vk,
n = 1, 2, . . . , m}. Similar to the calculation of basic features, we use the covariance matrix
∑ to calculate the normal vector of points within each voxel, which is defined as

∑ =
1
m

m

∑
n=1

(pn − p)(pn − p)T (2)

where p = (x, y, z) is the coordinate of the center of the point within voxels.
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After performing the eigenvalue decomposition of matrix ∑ in Equation (2), the
process yields three distinct eigenvectors along with their corresponding eigenvalues.
Among these eigenvectors, the one associated with the smallest eigenvalue is referred to
as the normal vector. The different distributions of leaf, stem, and ground points can be
captured by the three components, vx, vy, vz, of normal vector based on voxel space, as
shown in Figure 6b–d. This difference in spatial distribution makes it possible to separate
stem points from other points. As shown in Figure 6c, the stem points have a dominant
direction of normal vector, which is indicated by the vx or vy components of the XY plane
rather than vz. Similarly, the ground point has a prominent value of vz (Figure 6d). Leaf
points, on the other hand, have similar values for both vy and vz (Figure 6b).

In addition, VFs are extracted based on the size difference between the initial voxel and
the formed AABB. The bottom area SAABB and the height hAABB are calculated according to
the points of each voxel Vk as follows:

SAABB = (max(xn)−min(xn))× (max(yn)−min(yn)) (3)

hAABB = max(zn)−min(zn) (4)

where xn, yn, and zn are the x-, y-, and z-axis coordinate values of point pn, pn ∈ Vk,
n = 1, 2, . . . , m. Then, the bottom area ratio RS and the height ratio Rh can be calculated.

RS = SAABB/Svoxel (5)

Rh = hAABB/hvoxel (6)

where Svoxel and hvoxel indicate the bottom area and height of the initial voxel, which can be
calculated using our predefined voxel size.

Figure 6e–g show the differences between the foliage, stem, and ground points. Since
the foliage points are usually scattered and evenly distributed in different directions, the
size change is relatively small, and both RS and Rh are almost equal to 1 (Figure 6e). For
voxels containing stem points, the height ratio Rh is close to 1, while the bottom area ratio
RS is much smaller (Figure 6f), because the stem is shaped like a slender pole. Conversely,
the ground points cover almost the whole bottom part of the voxel, while the height ratio
Rh is much smaller (Figure 6g). Moreover, we also calculate the mean intensity and variance
of intensity values of the 3D points within each voxel. Finally, the VF is assigned to each
3D point in the voxel. Table 4 summarizes the VFs and depicts the difference between each
class using a radar chart.
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Voxel-Based Feature Description 1
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3.2. Classification and Feature Importance Evaluation

In this paper, the Random Forest (RF) classifier is used for the stem point identifica-
tion based on the aforementioned features [50]. The accuracy of stem point extraction is
evaluated using Equations (7)–(9).

Precision =
TP

TP + FP
(7)
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Recall =
TP

TP + FN
(8)

F1− score = 2× Precision× Recall
Precision + Recall

(9)

where TP is the number of correctly classified stem points, FP is the number of wrongly
identified stem points, and FN is the number of stem points that are wrongly labeled as other
classes. RF is chosen as it gives a good trade-off between accuracy and computational cost.
In addition, it has also been proven to be successfully applied to wood–leaf classification
from forest TLS point clouds [31,51]. Meanwhile, RF can also be used for feature selection
in the workflow of point classification based on the Recursive Feature Elimination (RFE)
algorithm [52]. All features are ranked by the decision tree-based strategies, and the Gini
index of each feature can be calculated using the average of all decision trees in the RF
classifier. Through this process, a Random Forest can estimate the importance of each
feature for the classification task.

To train the RF model, 1000 training samples are randomly selected from three classes,
respectively. Moreover, all features are used as inputs in the RF classifier. Note that a
unity-based normalization is used to bring the values of each dimension into the range [0, 1]
before being applied to the Random Forest classifier.

3.3. Stem Detection
3.3.1. Candidate Stem Recognition

Candidate stem points can be obtained after the classification. Due to the similarity
of point features and the uncertainty of noise, there are still non-stem points (mainly leaf
points). However, the residual non-stem points are sparser than tree stem points after
classification. Thus, the Euclidean clustering algorithm is used to generate stem point
clusters and exclude non-stem points [25,28]. If the distance between any two points is
less than d, they are labeled as the same cluster; otherwise, they are divided into two
different clusters. Generally, the point number of stem clusters is much larger than that of
the remaining non-stem clusters. Therefore, we remove the clusters with point number less
than Nc.

Our situation is similar to that in [28], in which the maximum scanning distance of the
scanner is more than 100 m, and the point density decreases with the increase in distance.
In this case, a fixed threshold may not be able to generate appropriate stem clusters and
filter small clusters. Therefore, according to the method used in [28], the thresholds of d and
Nc are generated adaptively, based on the distance. The threshold d can be calculated as

d = N ∗ dp ∗ ρangle (10)

where dp represents the distance from the current point to the scanner position, and ρangle
represents the angular resolution in radians. Therefore, the threshold d is expressed as N
times the arc length formed by two adjacent scanning beams.

The adaptive filtering threshold can be obtained using the following equation:

Nc = (Dmin ∗ γ ∗ Hmin)/
(

ρangle ∗ dc

)2
(11)

where Dmin and Hmin are the preset minimum stem diameter and height, respectively. dc is
the average distance from the point in the target cluster to the scanner position, and γ is the
occlusion rate, which represents the invisibility or incompleteness of the stem, expressed as
a percentage and the value between 0 and 1. According to the characteristics of the trees in
different plots, Dmin and Hmin are set to 0.2 and 10 m (plot 1), 0.05 and 8 m (plot 2), and
0.05 and 4 m (plot 3), respectively.



Forests 2023, 14, 2035 11 of 24

3.3.2. Calculation of Stem Position

In order to calculate the stem position, we use a cylinder model based on the Random
Sample Consensus algorithm (RANSAC) [53] to fit the lowest slice of clusters. The cylin-
drical fitting needs to meet the following two conditions. First, the diameter of a cylinder
should be within the range of [0.05, 0.5]. This range is intuitively related with the size of
the trees in a specific plot and it will work well as long as the distribution range of the
diameter is covered for most trees. Thus, it can be determined based on prior knowledge
about the tree species, a random single tree inspection from the point cloud, and on-site
sampling. Second, the angle between the cylindrical axis and the z-axis should be less than
8◦. It is suitable for most cases, as most trees grow vertically. The intersection point of the
cylindrical axis vector with the triangle irregular network (TIN) model constructed from
ground points is calculated as the stem position, as shown in Figure 7.
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3.4. Stem-Based Feature Selection

Feature combination is commonly evaluated based on point-based classification re-
sults, but the basic application is usually based on stems in forest TLS data. Thus, we
propose a feature selection method based on stem detection results in this study. The main
steps are as follows:

(1) Data preparation. A sample scan is picked from a plot, and sample points are manually
selected for RF training, as described in Section 3.2. Feature importance ranking can
be obtained using an RF classifier with the Recursive Feature Elimination (RFE)
algorithm. Then, stem positions are marked manually as reference for stem-based
result evaluation.

(2) Feature combination construction. We sort all features in a decreasing order of feature
importance and iteratively add them to form different feature combinations. Each
combination is used for stem point extraction and stem detection.

(3) Feature combination evaluation. Stem-based accuracy is calculated for each combina-
tion based on the reference data obtained in (1).

Correctness =
nmatch
nextr

(12)

Completeness =
nmatch
nre f

(13)
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IoU =
nmatch

nre f + nextr − nmatch
(14)

where nmatch is the number of found reference stems, nextr is the number of extracted stems,
and nref is the number of reference stems. The feature combination with the highest IoU is
regarded as the optimal, as shown in Figure 8.
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4. Results
4.1. Performance of Voxel-Based Features

In order to analyze the performance of voxel-based features, we compare the results
with and without voxel-based features, as shown in Tables 5 and 6. Thus, two groups
of feature combinations are used in this test. The first only consists of the basic features
described in Section 3.1.1, labeled as BF in Tables 5 and 6. The second consists of both basic
and voxel-based features, labeled as BF-VF in Tables 5 and 6. The voxel size for BF-VF
is set as x ∈ {0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.0 m, 1.2 m, 1.4 m}, according to the distance of
the adjacent stems and the average DBH of the stem in the scene. The result of BF-VF is
averaged by different voxel sizes.

Table 5. Results of stem point extraction with and without the voxel-based features.

Plot ID Actual
Quantity Feature Set Estimated

Quantity

Correctly
Estimated
Quantity

Precision
(%) Recall (%) F1-Score (%)

1 1,996,887
BF 2,748,648 1,769,377 64.41 88.61 74.58

BF-VF 2,481,683 1,833,304 73.91 91.81 81.88

2 2,179,648
BF 1,915,221 1,132,381 59.13 51.95 55.31

BF-VF 2,012,364 1,402,336 69.79 64.34 66.86

3 508,853
BF 605,041 256,065 42.34 50.32 45.98

BF-VF 577,693 301,287 52.18 59.21 55.46

The point-based results are shown in Table 5. In order to facilitate an objective
comparison, the accuracy of each feature combination is averaged over 10 loops since
the result of the RF classifier may vary slightly for each run. It shows that the voxel-based
features significantly improve the result of the stem point extraction, with the F1-score
increasing by 7.3%, 11.6%, and 9.5% for plots 1, 2, and 3, respectively. In addition, with
the increase in the complexity of the sample plot, the accuracy of stem point extraction
gradually decreases. Figure 9 shows the detailed comparison of the classification results. It
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can be seen that more continuous stem (the red boxes in Figure 9a,c) and foliage points (the
red box in Figure 9b) can be obtained by including voxel-based features. However, within
the blue boxes in Figure 9b, we observe less satisfactory classification results, particularly in
areas characterized by thin stems and the presence of foliage. The occlusion of the foliage
in these areas diminishes the number of identifiable stem points, which, in turn, affects the
effectiveness of voxel-based features.

Table 6. Results of stem detection with and without the voxel-based features.

Plot ID nref Feature Set nextr nmatch
Correctness

(%)
Completeness

(%) IoU (%)

1 287
BF 322 250 77.64 87.11 69.64

BF-VF 317 248 78.53 86.56 70.00

2 386
BF 478 352 73.64 91.20 68.75

BF-VF 462 353 76.57 91.41 71.38

3 480
BF 537 392 73.00 81.67 62.72

BF-VF 545 398 73.01 82.83 63.41
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Table 6 shows the results of stem detection generated on the basis of extracted stem
points. The IoU increases by 0.4%, 2.6%, and 0.7% for plots 1, 2, and 3, respectively, when
voxel-based features are involved. This shows that the voxel-based features are also helpful
in stem detection. It should be noticed that, although more stem points are extracted by
BF-VF in plot 1 (recall of 91.81% versus 88.61% in Table 5), fewer stems are detected with
the completeness of 0.8656 versus 0.8711 in Table 6. This is mainly because a certain stem
segment can be sufficient for stem detection, even the points on the stem surface are not
completely extracted.

In order to evaluate the effect of the voxel size, we make an insight into the results in
terms of different voxel sizes, as shown in Figure 10. It shows that including voxel-based
features can improve the result of stem point extraction with all tested parameters, while
the improvement in stem-based results differs among different voxel sizes (Figure 10a). A
voxel size of [0.2 m, 0.8 m], including voxel-based features, can improve the stem-based
results stably, but both the best and worst results occur when the voxel size is larger than
1 m (Figure 10b). Additionally, a better stem point extraction result may not achieve a better
stem detection result, which is similar to the results in Tables 5 and 6. In total, the proposed
voxel-based features are beneficial to improve both point- and stem-based results and the
improvement is stable in different parameter settings.
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4.2. Effects of Feature Combination on Stem Detection

As shown in Figure 11, we use the Random Forest method to evaluate the importance
of each feature for different plots, and the importance value is averaged over different voxel
sizes. It is noted that there are 2–4 voxel-based features among the top 5 features ranked by
importance in different plots, which helps to explain why voxel-based features can improve
the accuracy of stem point extraction. It is worth mentioning that the feature importance
ranking in plot 3 is different from those in plots 1 and 2, which is mainly reflected in the
features related to vertical distribution, including nz, Vp, Rh, and vz. The probable reason is
the large slope in plot 3 and the diverse stem direction.

The point-based feature selection method is commonly used to evaluate features [54,55],
so it is used for comparison with the proposed method. To generate different feature
combinations, the order of feature importance in Figure 11 is used to successively generate
stem-based results with one additional feature added per iteration. The results of stem
point extraction and stem detection under different feature combinations are depicted in
Figure 12. It shows that with the increase in the feature number, the accuracy of stem point
extraction gradually improves at the beginning and finally tends to be stable, which is
similar to the conclusion in many previous studies [32,38,42]. And the stem-based accuracy
shows the similar trend as a point-based result. However, the result of stem detection is
not fully synchronized with the point-based result. Therefore, according to the point-based
feature selection method, the optimal feature subsets in the three plots are composed of
26-, 22-, and 19 best-ranked features, respectively, while the first 9, 12, and 15 features will
be selected using the proposed method. Compared to the proposed method, the features
selected using the point-based feature selection method did not yield higher stem detection
results, which further proves that extracting more stem points may not be a necessary
condition to stem detection.
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A detailed comparison of the two feature selection methods is shown in Table 7. The
relation between the point-based and stem-based results in terms of recall (completeness)
and precision (correctness) is not absolute either, which is caused by three probable reasons.
First, it is important to note that detecting more stem points may not necessarily lead to
the detection of more tree stems, as the additionally detected points may belong to the
stems that have already been covered (Figure 13a–c). Second, even more non-stem points
labeled as stem points can lower the precision significantly, and they can be removed easily
because of obviously different characteristics. Third, the addition of features enhances
the ability to discriminate details (e.g., branches), but it can lead to adjacent tree stems
being unable to separate (Figure 13d–f). Thus, the key to stem detection may be preserving
points that can cover stem objects as more as possible. In summary, compared with the
point-based feature selection method, the proposed feature selection method can improve
the accuracy of stem detection and reduce the feature dimension. In addition, due to
distinct optimal feature sets containing different features and numbers, the universality
of features is restricted. To address this issue, the union of optimal feature sets from the
three plots is regarded as the final feature set Ffinal, consisting of 16 features (Figure 14), and
representing the most effective components of optimal feature combinations in each plot.
The results are presented in Table 8. Despite a slight decrease in the stem detection accuracy,
it still surpasses the results obtained using the point-based method, thereby validating the
portability of this feature set. Finally, Figure 15 illustrates the stem detection result using
the proposed feature selection method in each plot, with the slope of different plots and the
distance to the scanner position. It can be seen that most undetected trees are distributed
far away from the scanner as the stems at a large distance are prone to be obscured by the
occlusion of the foreground objects.
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Table 7. The accuracies of stem point extraction and stem detection for different optimal feature
combination in three plots.

Plot ID Feature Sets
Feature
Number

Stem Point Extraction (%) Stem Detection (%)

Precision Recall F1-Score Correctness Completeness IoU

1
Proposed method 9 69.01 91.68 78.72 80.91 85.61 71.23

Point-based method 26 74.66 92.06 82.44 77.96 86.31 69.39

2
Proposed method 12 57.28 76.88 65.55 81.51 87.45 72.86

Point-based method 22 65.29 72.37 68.57 75.58 91.30 70.50

3
Proposed method 15 50.08 62.79 55.71 74.14 82.75 64.20

Point-based method 19 51.21 63.20 56.56 73.53 82.37 63.55

Table 8. The accuracies of stem point extraction and stem detection for final feature set Ffinal in
three plots.

Plot ID
Feature
Number

Stem Point Extraction (%) Stem Detection (%)

Precision Recall F1-Score Correctness Completeness IoU

1
16 (Ffinal)

70.19 91.79 79.53 80.20 85.96 70.85
2 61.89 73.20 66.97 77.90 90.01 71.61
3 52.08 61.38 56.33 74.04 82.40 63.94
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4.3. Comparison with Feature-Based Methods

The final feature set obtained by using the feature selection method in this paper is
compared with four feature combinations used in previous studies [28,31,33,38], as shown
in Table 9. The experimental data were collected from different scans in the three research
areas outlined in Section 2 to verify the effectiveness of the proposed method in the plot
with similar structural distributions and stem characteristics.

Table 9. Comparison of different feature combinations.

Plot ID Feature Sets
Feature
Number

Stem Point Extraction (%) Stem Detection (%)

Precision Recall F1-Score Correctness Completeness IoU

1

Proposed method 16 81.14 80.97 81.05 90.00 91.53 83.08
Featured in [28] 9 80.13 78.00 79.05 90.91 88.98 81.71
Featured in [31] 30 83.28 83.82 83.55 90.00 91.53 83.08
Featured in [33] 6 62.10 65.84 63.92 84.91 76.27 67.16
Featured in [38] 23 81.27 78.86 80.05 88.98 92.37 82.89

2

Proposed method 16 66.47 89.09 76.14 81.45 86.01 71.91
Featured in [28] 9 65.59 88.96 75.51 78.16 80.15 65.49
Featured in [31] 30 70.96 89.59 79.19 80.95 86.51 71.88
Featured in [33] 6 53.26 75.94 62.61 78.68 63.87 54.45
Featured in [38] 23 69.07 91.91 78.87 82.27 84.99 71.83

3

Proposed method 16 50.88 61.94 55.87 76.18 84.10 66.59
Featured in [28] 9 47.76 60.13 53.24 78.39 74.31 61.68
Featured in [31] 30 61.48 76.53 68.18 77.43 82.87 66.75
Featured in [33] 6 42.58 62.79 50.75 82.72 61.47 54.47
Featured in [38] 23 47.84 59.83 53.17 76.55 82.87 66.10

Compared to the four feature combinations in previous studies, the feature number
selected using the proposed method and the accuracy of the stem point extraction reach
middle to upper levels, while the accuracy of stem detection is the highest in plots 1 and 2,
and only slightly lower than that of [31] in plot 3. First, 30 features were calculated
at five scales for stem–leaf separation in [31], and the highest accuracy of stem point
extraction was obtained, particularly in plot 3. However, the stem detection accuracy
did not improve significantly, which aligned with the conclusions of [21] and this paper;
although most stem points are extracted, stem detection accuracy is still influenced by the
scene’s complexity. Secondly, the feature sets used in [28,33] resulted in lower accuracies
of stem point extraction and stem detection compared with our method. However, it is
worth noting that the feature set in [38] produced a stem detection accuracy that was nearly
identical to that obtained by the feature set selected in this paper. This is possibly due to the
use of voxel-based features, which are advantageous for stem detection. Additionally, even
though the stem detection accuracy of the feature sets used in [31,38] is similar to this paper,
they use more features that require more processing time and memory. Therefore, the
stem-based feature selection method has certain advantages, which can ensure the accuracy
of stem detection and avoid the effective feature loss and the effect of redundant features.

4.4. Experiments on Benchmark Datasets

To further validate the effectiveness of the proposed method in stem detection, we
conducted verification using the second dataset, the benchmark dataset. We selected points
from the multi-scan TLS datasets at a regular interval of 0.01 m to reduce the number
of points and calculated each feature of the final feature set Ffinal. Before computing the
voxel features, a voxel size of 0.6 m was set. Tables 10 and 11 show the accuracy of stem
detection of the six plots using both single- and multi-scan TLS datasets. The mean accuracy
measured in there is more suitable for comparison with other methods.
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Table 10. The stem detection accuracy using single-scan TLS datasets.

Plot ID 1 2 3 4 5 6
Mean

Plot Complexity Easy Easy Medium Medium Difficult Difficult

Completeness (%)
Zhang et al. [21] 80.39 57.14 46.62 34.62 13.74 8.47 40.16
Chang et al. [56] 88.20 63.10 52.00 44.90 22.90 14.40 47.58

Proposed method 88.24 77.38 68.24 70.51 59.54 29.24 66.12

Correctness (%)
Zhang et al. [21] 97.62 92.31 100.00 100.00 90.00 100.00 96.66
Chang et al. [56] 95.70 94.60 95.10 94.60 61.00 50.70 81.95

Proposed method 91.84 87.84 94.39 80.88 81.28 95.83 90.89

Mean Accuracy (%)
Zhang et al. [21] 88.17 70.59 63.59 51.43 23.84 15.63 52.21
Chang et al. [56] 90.90 75.70 68.40 60.90 33.30 22.40 58.60

Proposed method 90.00 82.28 79.22 75.34 68.72 44.81 73.40

Table 11. The stem detection accuracy using multi-scan TLS datasets.

Plot ID 1 2 3 4 5 6
Mean

Plot Complexity Easy Easy Medium Medium Difficult Difficult

Completeness (%)

Wang et al. [2] 90.20 92.90 79.10 78.20 64.10 52.50 76.17
Zhang et al. [21] 86.27 82.14 61.49 57.69 45.80 26.27 59.94
Chang et al. [56] 94.10 94.00 78.40 74.30 64.80 52.70 76.38

Proposed method 95.83 89.29 72.97 69.23 69.47 59.32 76.02

Correctness (%)

Wang et al. [2] 95.80 81.30 72.20 70.10 67.20 70.90 76.25
Zhang et al. [21] 97.78 95.83 100.00 97.83 93.75 98.41 97.27
Chang et al. [56] 94.10 89.70 94.30 93.50 85.80 81.60 89.83

Proposed method 93.88 91.46 87.80 81.82 79.13 89.17 87.21

Mean Accuracy (%)

Wang et al. [2] 92.90 86.70 75.50 74.00 65.60 60.30 75.83
Zhang et al. [21] 91.67 88.46 76.15 72.58 61.54 41.47 71.98
Chang et al. [56] 94.10 91.90 85.60 82.80 73.90 64.10 82.07

Proposed method 94.85 90.36 79.70 75.00 73.98 71.25 80.86

From the stem detection results of the single-scan scenarios, the proposed method
achieves a superior balance between completeness and correctness, while also attaining the
highest mean accuracy. Although correctness reached 100% in plots 2, 3, and 6 in [21], it
was achieved at the cost of reduced completeness, indicating that a considerable number
of stems in the plots remained undiscovered. Similarly, in the multi-scan scenarios, the
proposed method exhibits lower correctness compared to [21] but offers higher complete-
ness. The mean accuracy of the proposed method across all plots is slightly lower than
that achieved using the deep learning approaches [56]. However, it is worth noting that,
whether in single- or multi-scan mode, the proposed method detects more trees in difficult
plots, and the trade-off in correctness remains acceptable.

5. Discussion

In previous studies, feature combinations are commonly evaluated from the view of
point-based results [40,47]. Here, we focus on stem-based results, as applications of the
point cloud under a forest scene are usually based on stem instance, e.g., stem mapping [3],
DBH estimation [10], and biomass estimation [57]. For stem detection, we only require
partial stem points to fit a stem model (e.g., cylinder); thus, missing some stem points
may not cause stem misdetection. On the other side, as non-stem points can be filtered
via clustering [25] or cylindrical fitting [12] in the process of stem detection, the points
falsely labeled as stem in classification may not cause a false detection. This also explains
the above experimental results that the improving stem point extraction result may not
improve the stem detection result. Considering the above points, we try to construct
feature combination from both point-based and stem-based evaluations. Although feature
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combination is not directly related to stem-based results, an obvious correlation between
them can be observed (Figure 12). The comparison of different feature combinations also
shows that the stem-based feature selection method is effective. Compared with point-
based feature selection, less features are used to obtain similar or better stem-based results
in our method, which significantly reduces the computational burden with respect to
processing time and memory consumption. Moreover, compared to constructing feature
combination using prior knowledge, the feature set selected in this study performed well
and struck a good balance between stem detection in various forest scenes and feature
redundancy. In terms of the scanning mode, we first tested and validated the effectiveness
of the proposed method on single-scan TLS data. The single-scan mode serves as the
foundation for the multi-scan mode, and the stem positions obtained from the single-scan
mode can be used for TLS point cloud registration [58–60] and even assist in the fusion
of multi-sensor data [61,62]. Subsequent testing on the benchmark dataset indicated the
advantages of the proposed method in all plots under the single-scan mode and in two
different plots under the multi-scan mode. However, the difference in accuracy is related to
the plot size and forest stand complexity [63,64]. In regions with dense vegetation within
the plots and along the plot edges, the stem detection accuracy significantly decreases.

The feature set obtained using the stem-based selection method in this study demon-
strates the significant contributions of voxel-based features. Compared to basic features,
the inclusion of voxel-based features shows an improved accuracy in stem point extraction
across different voxel sizes (Figure 10a). However, for stem detection, the optimal results
were achieved in three different plots with voxel sizes of 1.4 m, 0.8 m, and 0.6 m (Figure 10b),
indicating that the determination of the voxel size should consider both the stem density
and understory vegetation richness. Using excessively large voxel sizes may lead to the
covering of stem points and non-stem points (e.g., foliage and shrub) within a single voxel,
while overly small voxel sizes may not be able to contain enough stem points, especially in
regions with significant density variations. Both situations can potentially result in errors
in stem detection caused by a decrease in the capability of feature expression. The features
I, VI, and VarI related to intensity information and the features ∆H, σH, and Norz related to
height are included in the optimal feature set and make significant contributions to all three
plots. This is because the ground, stem, and foliage have different materials and spatial
distributions. Moreover, the normal vector related with point distribution in the vertical
direction was often used in previous studies [3,24,28], as it is consistent with the law that
trees grow upward. But normal vector-based features (nz and vz) did not show a high
importance across all plots in our test. Figures 16 and 17 show the histogram of normal
vector-based features, nz and vz, respectively. In plots 1 and 2, the nz and vz of stems are
distributed in significantly different intervals from the other two types of objects, while
the normal vector distribution of three objects is relatively divergent in plot 3, and there
is a similar point number of three objects under the same interval (Figures 16 and 17c),
which leads to a decrease in the effectiveness of normal vector-based features. The possible
reasons lie in that the trees start branching from a height that is close to the ground, and the
terrain slope close to 42◦ also affects the growth direction in plot 3, which is similar to the
conclusion in [27]. Therefore, the performance of normal vector-based features is reduced
in plot 3. Moreover, the features Sumλ, D3D, Sumλ ,2D, and D2D are always among the least
relevant features, which is consistent to similar studies involving the features [32].
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or fusion. Nevertheless, this requires further investigation and study. 
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Figure 17. The histogram of the normal vectors’ z-values vz of foliage points stem points and ground
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6. Conclusions

In this study, we focus on the improvement in stem detection results by proposing
seven voxel-based features and optimizing the feature combination using a stem-based
feature selection method. The result shows that the voxel-based features are beneficial for
stem point extraction and stem detection in forest scenes. Moreover, our study highlights
the importance of tailoring feature combinations specifically for stem detection tasks, as
the benefits observed in point-based results may not always extend to stem-based results.
The proposed method can provide more reliable feature combination for stem detection in
different forests. Compared with the feature set in previous studies, the feature combination
constructed using our method achieves a good balance between the feature number and
accuracy. Regarding stem detection, the proposed method also yields comparable results
on the benchmark dataset and exhibits better mean accuracy on difficult plots. It is also
found that the performance of some features related with point distribution in the vertical
direction is significantly affected by the terrain slopes and tree characteristics. In general,
the accuracy of stem detection will decrease with an increasing forest complexity, because
complex forests usually have a strong and increasing likelihood of occlusion. Integrating
data from multiple sensors (e.g., TLS, UAV, and ALS) has the potential to enhance the
point cloud quality in complex forests, improving stem detection accuracy and enabling a
more precise estimation of forest structural parameters. Additionally, the stem positions
calculated in this paper can be valuable for assisting in point cloud registration or fusion.
Nevertheless, this requires further investigation and study.
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