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Abstract: The rapid socio-economic development and urbanization in China have led to a decline in
air quality. Therefore, the spatial and temporal distribution patterns of urban air pollution, as well
as its formation mechanisms and influencing factors, have become important areas of research in
atmospheric environment studies. This paper focuses on nine monitoring sites in Nanjing, where
concentration data for six air pollutants and vegetation index data were collected from 2013 to
2021. The objective of this study is to investigate the changes in air pollutants and vegetation index
over time and space, as well as their relationship with each other, and to assess the social and
environmental impacts of air pollution. The findings reveal a spatial distribution pattern of air
pollution in Nanjing that exhibits significant variability, with pollutant concentrations decreasing
from the city center towards the surrounding areas. Notably, the main urban area has lower air
quality compared to the peripheral regions. The results obtained from best-fit linear regression models
and correlation heatmaps demonstrate a strong correlation (coefficient of determination, R2 > 0.5)
between the normalized difference vegetation index (NDVI) and pollutants such as SO2, NO2, PM2.5,
PM10, and O3 within a radial distance of 2 km from the air pollutant monitoring sites. These findings
indicate that NDVI can be an effective indicator for assessing the distribution and concentrations of air
pollutants. Negative correlations between NDVI and socio-economic indicators are observed under
relatively consistent natural conditions, including climate and terrain. Therefore, the spatiotemporal
distribution patterns of NDVI can provide valuable insights not only into socio-economic growth but
also into the levels and locations of air pollution concentrations.

Keywords: Landsat; NDVI; air pollutants; socio-economic indicators; correlation; China

1. Introduction

With the rapid socio-economic development and acceleration of urbanization in China,
the issue of air pollution has become increasingly severe, thereby negatively impacting
human health, climate, and the sustainable development of cities [1,2]. Mainly, particulate
matter (PM) is composed of toxic and harmful substances with high fluidity, which can
linger in the atmosphere for extended periods, leading to elevated rates of cardiovascular
and respiratory diseases and subsequent morbidity and mortality [3]. To address this severe
air pollution problem, the State Council of the People’s Republic of China issued the “Action
Plan on Prevention and Control of Air Pollution” in September 2013, focusing explicitly on
regional air pollution and addressing characteristic pollutants such as inhalable and fine
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PM. The plan entails various measures implemented by the Chinese government, including
expanding green spaces in urban areas, reducing motor vehicle usage, and increasing
clean energy. While the concentrations of air pollutants have reduced to some extent
since 2017, exceedances still persist [4]. Nanjing, as the political and cultural hub of East
China and a significant center of the eastern Chinese economy, is densely populated with
well-developed industrial and agricultural sectors. As of 2021, the permanent population
of Nanjing stands at 9.42 million people, with a population density of 1430.6 persons per
square kilometer. However, due to rapid economic and population growth, as well as its
unique topographical and climatic characteristics, air pollution has become an increasing
concern as a widespread issue in Nanjing.

Recent research on regional air pollution has primarily centered on pollution source
profiling [5], the relationship between air pollutants and meteorological conditions [6],
and the analysis of spatiotemporal variations [7]. Among the meteorological conditions,
wind speed is recognized as the primary driver of nitrogen-related air pollution. For
example, Banerjee et al. found that atmospheric NO2 concentration was most influenced
by wind speed, followed by the weekly average temperature [8]. Wang et al. reported
that higher temperatures, lower surface pressures, and increased wind speed facilitated
the dispersion of air pollutants [9]. Jia et al. also emphasized the significant impact of
temperature and wind speed on air pollutants [10]. Hrishikesh et al. identified temperature
as the main influencing factor, with NO2 exhibiting a strong correlation with temperature
during the monsoon season and humidity during winter [11]. Guo et al. and Cui et al.
conducted analyses of air pollution in Nanjing, investigating its spatiotemporal distribution,
patterns, and potential sources of pollutants [12,13]. Yuan et al. used machine learning
research methods to identify unreasonable NOx/VOCs emissions reduction as the main
factor contributing to the overall extension of ozone in the Pearl River Delta in spring and
winter [14]. Ersin, O.O. discovered, through the employment of the dynamic Panel STAR
method, that CO2 emissions are an accumulated process with path-dependence related to
the history of emissions and economic growth [15]. However, these studies have primarily
focused on the composition, distribution, and concentrations of air pollutants, neglecting
the importance of environmental management. Consequently, it is crucial and urgent to
conduct research on the spatiotemporal variations of air pollutants, the drivers influencing
their concentrations, and environmentally proactive measures to mitigate and prevent
these pollutants.

Recent evidence has highlighted the significant role of technological innovations in
determining emissions [16]. Currently, two main approaches are employed in studies on
air pollution management. The first approach utilizes chemical methods and technologies
to address air pollution. For instance, Escobedo et al. employed photocatalytic technology
to degrade air pollutants [17]. Wang et al. utilized analytical techniques to investigate dust
deposition on streets [18]. Kaya et al. applied green analytical chemistry to mitigate air
pollution [19]. The second approach focuses on ecological or environmental management,
employing green methods where plants play a vital role in the adsorption, transformation,
assimilation, and degradation of air pollutants. This approach also aims to rehabilitate or
restore ecosystems affected by air pollution [20]. Plant leaves respond sensitively to air
pollution and serve as significant pathways for energy exchange between vegetation and
the external environment. Consequently, studying the complex and dynamic interactions
between air pollutants and vegetation growth and development has emerged as a promi-
nent research topic. For instance, Freer-Smith et al. demonstrated that plant leaves intercept
and immobilize atmospheric PM due to their surface properties [21]. Prusty et al. indicated
that plants can absorb air pollutants and reduce atmospheric dust concentrations [22].
Nowak et al. estimated that vegetation in American cities removes a total of 711,000 tons
of air pollutants from the atmosphere, providing an economic benefit of USD 3.8 billion.
They further revealed that vegetation effectively controls air pollution and enhances the
cleanliness of urban environments [23].
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Various evaluation indices have been proposed to quantify vegetation, including
the normalized difference vegetation index (NDVI), leaf area index, living vegetation
volume, green cover index, green visual ratio, and fractional vegetation cover [24–29].
NDVI is derived from a combination of linear and non-linear spectral bands, allowing it to
capture the spatiotemporal growth and distribution of vegetation effectively. Furthermore,
NDVI demonstrates a strong correlation with vegetation cover and, to some extent, can
reflect the socio-economic status of a city [30]. Recent advancements in remote sensing
technology have facilitated the exploration of the relationship between urban green spaces
on a large scale and the mitigation of urban air pollution [31]. For instance, Sun, S. et al.
conducted a correlation analysis between NDVI and air pollution in Beijing, Tianjin, and
Hebei, China [32]. Similarly, Huang, G.J. et al. investigated the correlation between PM2.5
concentration and fractional vegetation cover in Liupanshui, Guizhou [33]. However, to
the best of our knowledge, no studies have been conducted thus far on the spatiotemporal
variations and patterns of air pollutants in Nanjing, as well as the impact of vegetation on
air pollutants.

The normalized difference vegetation index (NDVI) serves as a standardized vegeta-
tion index that effectively characterizes the extent of vegetation coverage within a specific
region. By examining the correlation between NDVI and atmospheric pollutants, the devel-
opment of ecologically responsible urban green spaces with varying purification capacities
can be facilitated. This innovative approach utilizes plant-based remediation to control
air pollution. Vertical greening, as a viable botanical remediation solution, effectively
mitigates the presence of airborne pollutants such as volatile organic compounds (VOCs)
and PM, concurrently enhancing urban vegetation coverage within constrained horizontal
spaces [34]. Srbinovska et al. reported that vertical greening, through plant-based absorp-
tion mechanisms, resulted in a notable reduction of 25.0% and 37.0% in PM2.5 and PM10
levels, respectively, thereby affirming its capacity to sequester deleterious fine particulate
matter [35]. Additionally, Pettit et al. discerned the capacity of vertical greening in purifying
NO2 and O3 emissions from combustion by-products, registering purification rates of 121
and 50 m3/(h·m2) for these pollutants, respectively [36]. These findings are of considerable
significance for urban landscaping, environmental planning, and the construction of eco-
logical environments. Air pollution can cause direct and indirect adverse effects on fauna,
flora, and human health on a regional scale, as seen in Iran [37]. Furthermore, it exerts
a significant socio-economic impact on both public health and photovoltaic energy effi-
ciency [38]. Therefore, the objective of this study is to analyze the spatiotemporal variations
and patterns of six air pollutants (SO2, NO2, CO, O3, PM2.5, and PM10) in relation to NDVI
in Nanjing from 2013 to 2021 while also exploring the spatiotemporal relationships among
air pollutants, NDVI, and socio-economic indicators. The outcomes of this study provide
insights into sustainable development strategies and practices for governing Nanjing, as
well as macro-economic regulation and environmental management.

2. Materials and Methods
2.1. Study Region

Nanjing, the capital of Jiangsu Province, is situated in eastern China downstream
of the Yangtze River. It serves as a catalyst for the development of central and western
China, radiating from the Yangtze River Delta. Nanjing resides in the Nanjing–Zhenjiang–
Yangzhou Hilly Region, characterized by predominantly flat land, low mountains, and
hills, with a diverse array of land uses and covers [39]. Surrounded by mountains on three
sides and the river on the remaining side, Nanjing boasts an expansive area of mountains
and forest vegetation, forming the foundational framework of its green space system [40].
This study focuses on nine air quality monitoring stations located across different districts
in Nanjing, as detailed in Table 1.
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Table 1. Presents the latitude and longitude coordinates for the nine air quality monitoring sites.

Station District Latitude Longitude

Caochangmen Jiangdong Street, Gulou District 32.05528 118.754
Shanxi Road Ninghai Road Street, Gulou District 32.07014 118.7832
Maigaoqiao Maigaoqiao Street, Qixia District 32.1064 118.8083

Xianlin University City Xianlin Street, Qixia District 32.10135 118.9105
Pukou Jiangpu Street, Pukou District 32.0878 118.626

Olympic Sports Center Xinglong Street, Jianye District 32.00726 118.7422
Zhonghuamen Zhonghuamen Street, Qinhuai District 32.01267 118.7817
Xuanwu Lake Xuanwu Gate Street, Xuanwu District 32.07545 118.8
Ruijin Road Ruijin Road Street, Qinhuai District 32.03225 118.8058

2.2. Data Sources

For this study, satellite images from the Landsat 8 Operational Land Imager (OLI)
were employed. These images consist of nine spectral bands with a spatial resolution of
30 m, along with a 15 m panchromatic band. The coverage of the imagery spanned an area
of 185 × 185 km. These image data were acquired from the Landsat 8 dataset, which is
available through the Resources and Environmental Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/, accessed on 16 December 2022). The dataset
encompasses the period from 2013 to 2021.

In this study, we employed index calculation techniques and utilized the ENVI 5.3
software, developed by Harris Geospatial, to combine and overlay data from various bands
of Landsat 8 spanning the period from 2013 to 2021 in Nanjing. Through index calculation,
we derived mean values of NDVI, the ratio vegetation index (RVI), and the green vegetation
index (GVI) for the spring, summer, autumn, winter, and annual periods. The analysis
primarily focused on the NDVI, air pollutants, and socio-economic data from the summer
and winter seasons. Statistical methods were applied to determine the average NDVI
values within different buffer zones surrounding each air quality monitoring site.

In this study, the nine monitoring sites served as central points for analysis. For the
monitoring sites in the city center, a radial range of 100, 200, 300, 400, and 500 m was
selected due to their relatively short distances. On the other hand, the monitoring sites in
suburban areas were chosen with radial ranges of 500 m, 1 km, 2 km, 4 km, 8 km, and 16 km
as they were spatially further apart. Figure 1 demonstrates that the selection of these ranges
ensured that the surface feature categories and NDVI values remained representative,
avoiding issues of being too close or too far apart.

Meter-level accurate DEM data were acquired from the Google Maps Elevation API
(Figure 2), offering a spatial resolution of 5 m. To generate a Nanjing DEM with precise
geographic information, the obtained DEM data underwent processing in ArcGIS 10.8.
This involved mask extraction, spatial adjustment, and coordination system specification,
resulting in an accurate representation of Nanjing’s terrain. Socio-economic data, including
industrial gross value added, GDP per capita, and other relevant information, were sourced
from the statistical yearbooks of Nanjing covering the period from 2013 to 2019 [41].

2.3. Data Processing
2.3.1. Determination of NDVI, RVI, and GVI Values

For this study, monitoring points near the city center of Nanjing, specifically along the
river basin, were carefully selected. Each monitoring point had a radius ranging from 100 m
to 32 km. Among these points, Caochangmen, Shanxi Road, Maigaoqiao, the Olympic
Sports Center, the Zhonghuamen, Ruijin Road, and Xuanwu Lake had radii varying from
100 m to 2 km. On the other hand, Pukou and Xianlin University City had radii ranging
from 2 km to 32 km. This selection ensured that the indicators obtained from each data point
were representative [32]. Using ArcGIS 10.8 software, we calculated various indicators,
such as NDVI, RVI, and GVI, within the coverage zones of these monitoring.

https://www.resdc.cn/
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2.3.2. Spatiotemporal Distributions and Concentrations of Air Pollutants

The data for the six air pollutants in different areas underwent a screening process
to eliminate any missing, abnormal, or invalid entries. The data corresponding to the air
pollutants at the nine monitoring points for each year were then classified and screened
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to determine the concentrations of six specific pollutants: SO2, NO2, CO, O3, PM2.5, and
PM10. Mean annual values of pollutant concentrations at each monitoring point were
subsequently calculated. The air pollution data were also compared to the Chinese national
concentration limits for key ambient air pollutants (Table 2). For the purpose of analysis,
data from three years (2013, 2017, and 2021) within the 2013–2021 timeframe were chosen
and averaged. To obtain spatial distribution maps illustrating the levels of atmospheric
pollutants at each monitoring point in the Nanjing region, the Kriging method was em-
ployed for the interpolation of annual mean concentration values. The application of the
Kriging interpolation method facilitated the creation of spatial distribution maps depicting
the levels of air pollutants at each monitoring point [42].

Table 2. Concentration limits for essential items of atmospheric pollutants.

Sequence Number Pollutant Average Times
Concentration Limits

Unit
Level 1 Level 2

1 Sulfur dioxide (SO2)
Annual average 20 60

µg/m324-h average 50 150
1-h average 150 500

2 Nitrogen dioxide (NO2)
Annual average 40 40

µg/m324-h average 80 80
1-h average 200 200

3 Carbon monoxide (CO)
24-h average 4 4

mg/m3
1-h average 10 10

4 Ozone (O3)
Daily maximum

8-h average 100 160
µg/m3

1-h average 160 200

5 Particulate matter (PM10)
Annual average 40 70

µg/m3
24-h average 50 150

6 Particulate matter (PM2.5)
Annual average 15 35

µg/m3
24-h average 35 75

2.3.3. Heatmap Generation

This study aims to examine the correlations between air pollutants, socio-economic
indicators, and NDVI in Nanjing from 2013 to 2021. To assess the socio-economic indicators,
we selected six representative variables based on the Nanjing Statistical Yearbook. These
indicators include gross industrial product, the first industry, the secondary industry, the
third industry, GDP per capita, and urban population density [43,44]. For the generation of
the heatmap, we utilized Origin 2022 software.

2.3.4. Correlation Analysis

In order to examine the relationships between air pollutants, minimum, average,
and maximum NDVI values in various buffer zones (500 m, 1 km, and 2 km) at the
nine monitoring sites and socio-economic indicators in Nanjing, a correlation analysis
was conducted. This analysis aimed to determine the strength and direction of the linear
relationships between the variables. The correlation coefficient (R2) was utilized, ranging
from −1 to 1. The proximity of the r value to 1 or −1 indicates a more substantial positive
or negative correlation between the variables, respectively [45].

3. Results and Discussion
3.1. Spatial Characteristics of Air Pollutants in Nanjing

The average daily concentrations of the six air pollutants in Nanjing between 2013 and
2021 were examined, and their spatial distribution and patterns in each area are depicted
in Figure 3. Among the nine monitoring points, Ruijin Road exhibited the highest levels
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of SO2, NO2, CO, and PM2.5, with maximum concentrations of 44 µg/m3 for SO2 and
116 µg/m3 for NO2. The upper range of SO2, NO2, CO, and PM2.5 concentrations fell
within the interval of 23, 62, 1.3, and 68 µg/m3, respectively. Based on the “Ambient Air
Quality Standards” issued by the Ministry of Environmental Protection of the People’s
Republic of China, all nine monitoring points, including residential, mixed-use, cultural,
industrial, and rural areas, were classified as “Class 2 areas.” The daily mean concentra-
tion limits for SO2 and NO2 in these areas are 150 and 80 µg/m3, respectively. While the
mean daily concentration of SO2 fell within the regulatory range, the concentration of
NO2 significantly exceeded the standard limit. Although the concentrations of certain air
pollutants remained relatively stable within specific intervals at the monitoring points,
their magnitudes of change were notably high at certain times. For instance, the maximum
PM2.5 concentration at each monitoring point increased by over three times the box model
value, primarily between 2013 and 2015. The concentrations of SO2 and NO2, as the critical
traffic-related pollutant gases, also demonstrated significant fluctuations exceeding 200%
at three monitoring points, namely Ruijin Road, Shanxi Road, and Zhonghuamen, with
the fluctuation primarily occurring between 2013 and 2016. This analysis confirms that the
spatiotemporal characteristics of different monitoring points influence the concentrations
of air pollutants. Among the monitoring points, Maigaoqiao displayed the lowest O3 con-
centration; however, the steady-state box model values ranged between 47 and 57.7 µg/m3,
with a peak value of 176 µg/m3, indicating an increase of over 300%. The O3 concentration
did not exhibit significant variations across the nine points.
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Spatial distribution maps were generated to depict the locations of the different
districts where the monitoring points were situated (Figure 4). Between 2013 and 2021,
all six pollutant concentrations exhibited a downward trend. The highest concentrations
of CO and NO2 at the monitoring points decreased from 1.17 mg/m3 and 54.13 µg/m3

to 0.92 mg/m3 and 38.49 µg/m3, respectively. The concentration of O3 initially increased
and then decreased, reaching a peak value of 77.38 µg/m3 in 2017 before decreasing
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to 67.72 µg/m3 in 2021. Notably, the PM10 concentration exhibited the most significant
reduction, declining from a maximum value of 103.77 µg/m3 in 2013 to 76.77 µg/m3 in 2021.
The highest concentration of SO2 decreased from 38.24 µg/m3 in 2013 to 7.54 µg/m3 in
2021, while the PM2.5 concentration similarly decreased from 74.85 µg/m3 to 33.24 µg/m3.
Overall, Pukou District and Qixia District displayed the best ambient air quality, while
Xuanwu District and Gulou District had relatively poorer air quality. Significantly, the
concentration of environmental air pollutants gradually decreased from the center to the
surrounding areas of the central urban region.
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in 2017; (I) average annual concentration of CO in 2017; (J) average annual concentration of O3 in
2017; (K) average annual concentration of PM10 in 2017; (L) average annual concentration of PM2.5 in
2017; (M) average annual concentration of SO2 in 2021; (N) average annual concentration of NO2 in
2021; (O) average annual concentration of CO in 2021; (P) average annual concentration of O3 in 2021;
(Q) average annual concentration of PM10 in 2021; (R) average annual concentration of PM2.5 in 2021.

In this study, nine monitoring sites were carefully selected to ensure accurate measure-
ments of pollutants across different spatial scales [46,47]. The results revealed variations
in the concentrations of the six air pollutants among these sites in Nanjing. Ruijin Road
and Shanxi Road stood out as locations with notably higher pollutant levels. In contrast,
recreational areas like Xuanwu Lake showcased relatively low pollutant concentrations.
As expected, monitoring sites near roads, densely populated areas, and industrial zones
exhibited higher pollutant levels compared to standard values due to exhaust and industrial
emissions. Conversely, areas with well-designed landscape patterns demonstrated lower
pollutant concentrations. The monitoring sites located near roads and densely populated
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urban areas showed more pronounced intensity in pollutant concentration and sensitivity.
These findings align with Zhao, Y.Y. et al., who conducted a similar analysis on the influence
of socio-economic activities on air pollutants [48]. Previous studies have also reported
significant outcomes by employing a radial buffer range of 3 km to study air pollutants,
such as PM2.5, and assess vegetation patterns and urban green spaces [49].

3.2. Temporal Variation Patterns of Air Pollutants in Nanjing

Based on long-term meteorological data, the study period was divided into winter
(December–February) and summer (June–August) seasons. The seasonal fluctuations
in NO2, CO, SO2, PM2.5, and PM10 (except for O3) between 2013 and 2021 exhibited a
consistent pattern, with higher concentrations observed in winter and lower concentrations
in summer (Figure 5). Throughout the entire period, the mean concentration of SO2
was highest in the winter of 2013, peaking at 44.25 µg/m3. However, by 2021, both the
mean summer and winter concentrations of SO2 were low and similar, measuring 5.4 and
5.9 µg/m3, respectively. The concentration of SO2 gradually decreased over time during
both winter and summer seasons. The mean concentration of NO2 in summer exhibited
a clear downward trend, reaching 21.05 µg/m3 in 2021, which was below the secondary
emission standard for NO2. In contrast, the average concentration of NO2 in winter was
66.95 µg/m3 in 2013 and remained relatively stable at around 54 µg/m3 until 2021. The
summer concentration of CO exhibited a gradual decline with slight fluctuations ranging
from 0.6 to 0.9 mg/m3. In contrast to other air pollutants, the variation in the concentration
of O3 differed, with lower levels observed in winter and higher levels in summer. Starting
from 2013, the concentration of O3 continuously increased, reaching its peak of 263 µg/m3

in the summer of 2019. Both PM2.5 and PM10 showed similar variations, with their highest
concentrations occurring in winter each year. In the winter of 2013, the maximum values of
PM2.5 and PM10 were recorded as 30 and 474 µg/m3, respectively. Over the course of the
study, both PM2.5 and PM10 concentrations decreased in both winter and summer seasons.
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Figure 5. Changes in seasonal average concentrations of various pollutants from 2013 to 2021.
(A) changes in seasonal average concentrations of SO2; (B) changes in seasonal average concentrations
of NO2; (C) changes in seasonal average concentrations of CO; (D) changes in seasonal average
concentrations of O3; (E) changes in seasonal average concentrations of PM10; (F) changes in seasonal
average concentrations of PM2.5.

The study examined the average concentration of seasonal pollutants and determined
that in summer, the concentrations of PM2.5, SO2, NO2, CO, and PM10 were lower compared
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to winter. These results align with a previous study by Liu et al., which also found a
notable negative correlation between air temperature and the concentrations of PM2.5, SO2,
NO2, and other pollutants in Luoyang [50]. In this study, it was observed that seasonal
summer winds exhibited greater intensity and frequency compared to winter winds. Similar
findings were reported by Tao et al. [51], who also noted that during winter, air pollutant
dispersion was not apparent in the absence of consistent wind direction, resulting in higher
pollutant accumulation. Analyzing the yearly time dimension, a gradual decrease in the
concentrations of PM2.5, SO2, NO2, CO, and PM10 was observed. Notably, the decrease
in SO2 concentration was the most remarkable, with a reduction of approximately 75%
between 2013 and 2021. The remaining four pollutants displayed less fluctuation but
exhibited an overall decreasing trend over time. Since the occurrence of a rare haze event
in East China in 2013, Nanjing has taken swift measures towards industrial restructuring
and accelerated economic transformation [52]. The Nanjing Municipal Government has
implemented a series of progressive environmental protection policies and measures, such
as the “13th Five-Year Plan for Ecological Environment Protection in Nanjing” (2016) and
the “Nanjing Environmental Protection Regulations” (2017). As a result, the quality of the
ecological environment in Nanjing has consistently improved over the years [53]. However,
unlike other air pollutants, concentrations of O3 increased. O3 was the only pollutant
with higher concentrations in summer compared to winter. These findings align with the
studies conducted by Xu et al. in Chongqing and Shao et al. in Jiazhangkou [54,55]. The
higher concentrations of O3 in summer can be attributed to the elevated temperatures and
intense solar radiation, which provide favorable conditions for its formation. Overall, the
concentrations of air pollutants were higher in winter than in summer, primarily due to
the drier climate and lower wind speeds during winter, as well as human-induced factors
like vehicle exhaust emissions and heating [56]. The overall efficiency of vegetation in
removing pollutants was also lower during winter compared to summer.

3.3. Analysis of NDVI, GVI, and RVI Indexes in Nanjing
3.3.1. NDVI Variation

Figure 6 presents the spatial pattern of NDVI values in Nanjing from 2013 to 2021. The
pattern observed was as follows: the north region exhibited the highest values, followed by
the west, east, and south regions. In terms of seasonal variation, the overall variation was
lower during winter compared to summer. The maximum NDVI value ranged between
0.79 and 1, with the lowest value recorded in 2013. Conversely, the minimum NDVI value
ranged between −1 and −0.33, with −1 being the lowest except for the winter of 2013
(−0.41) and the summer of 2020 (−0.33). Specifically, the northwestern part of Nanjing,
characterized by forest land, displayed high NDVI values. In the eastern area, where
farmland predominates, the NDVI values were higher during the summer and autumn.
The central area along the river, primarily composed of built-up land, exhibited a low NDVI
value, indicating poor vegetation cover and a limited ability to reduce surface dust. Finally,
the southwestern area, which mainly comprises water bodies, notably Shijiu Lake, also
displayed a low NDVI value.

In this study, variations in land use classes were found to correspond to variations
in vegetation cover. The Xuanwu Lake area, designed and managed as a recreational
site, exhibited high NDVI values and relatively low concentrations of air pollutants. The
spatial analysis of NDVI displayed lower values in areas with limited vegetation cover,
such as lakes, farmlands, and densely built-up areas. As depicted in Figure 7, there was no
significant disparity in NDVI between summer and winter. Zheng et al. [57] discovered that
climate factors, including precipitation and temperature, influence the vegetation index in
the China–Pakistan Corridor, with the correlation between precipitation and temperature
being more robust than that of temperature alone. The relatively minor variance in NDVI
between summer and winter may be attributed to insufficient rainfall in recent years or
potentially influenced by other factors like human activities.
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Figure 6. Comparison of seasonal NDVI data between summer and winter from 2013 to 2021.
(A) NDVI in August 2013; (B) NDVI in December 2013; (C) NDVI in June 2014; (D) NDVI in
November 2014; (E) NDVI in September 2015; (F) NDVI in January 2016; (G) NDVI in September
2016; (H) NDVI in January 2017; (I) NDVI in July 2017; (J) NDVI in December 2017; (K) NDVI in
June 2018; (L) NDVI in November 2018; (M) NDVI in August 2019; (N) NDVI in December 2019;
(O) NDVI in April 2020; (P) NDVI in December 2020; (Q) NDVI in August 2021.

3.3.2. RVI Variation

Figure 7 illustrates that the RVI values attained their peak in the northern part of the
city and recorded their lowest values in the central region. Regarding seasonality, the RVI
values were lower in winter compared to summer. The summer of 2014 saw the highest
RVI value of 255, marking an 85% increase in comparison to the RVI value recorded during
the winter of the same year. From the summer of 2013 to the summer of 2021, there was
a notable decrease in the highest RVI value, declining from 36.312 to 23.501, reflecting a
22% decrease. In contrast to summer, the maximum RVI value witnessed an 88% increase
from the winter of 2013 to the winter of 2020, rising from 7.961 to 126. Notably, the winter
of 2020 recorded the highest RVI value among all winters within the nine-year period. In
general, the index values exhibited substantial variation, aside from the relatively consistent
RVI values observed in the northwest and southeast regions of the city. Furthermore, the
vegetation index values were lower in the area north of the Yangtze River compared to its
southern counterpart. Overall, the RVI value was significantly lower during winter than
during summer.
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Figure 7. Comparison of summer and winter RVI data from 2013 to 2021. (A) RVI in August 2013;
(B) RVI in December 2013; (C) RVI in June 2014; (D) RVI in November 2014; (E) RVI in September
2015; (F) RVI in January 2016; (G) RVI in June 2016; (H) RVI January 2017; (I) RVI in July 2017; (J) RVI
in December 2017; (K) RVI in June 2018; (L) RVI in November 2018; (M) RVI in December 2019;
(N) RVI in April 2020; (O) RVI in December 2020; (P) RVI in August 2021.

3.3.3. GVI Variation

The GVI serves as a means to assess the level of plant greenness. As depicted in
Figure 8, there was an overall upward trend in the GVI values over time, which exhibited
a partial positive correlation with the seasonal variations observed in the RVI values. To
illustrate, the RVI values for the summers of 2014, 2015, and 2019 exceeded the GVI values
for the other summers, recording values of 255, 141, and 457, respectively. The maximum
GVI values for the remaining summers fell within the range of 11.405 to 35.549. In contrast,
the GVI values during winter demonstrated an increasing pattern over time. The highest
GVI value was observed in the winter of 2013, reaching 7.388, while in the winter of 2020, it
reached 24, presenting a 53% increase. Comparatively, the GVI values were higher during
summer than in winter, and the central area exhibited lower GVI values in contrast to the
surrounding areas with higher values.
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Figure 8. Comparison of summer and winter GVI data from 2013 to 2021. (A) GVI in August 2013;
(B) GVI in December 2013; (C) GVI in June 2014; (D) GVI in November 2014; (E) GVI in September
2015; (F) GVI in January 2016; (G) GVI in September 2016; (H) GVI in January 2017; (I) GVI in July
2017; (J) GVI in December 2017; (K) GVI in June 2018; (L) GVI in November 2018; (M) GVI in August
2019; (N) GVI in December 2019; (O) GVI in April 2020; (P) GVI in December 2020; (Q) GVI in
August 2021.

3.4. Effects of Vegetation Indices on Air Pollutants

Given the intricate spatiotemporal interactions between urban landscape patterns
and atmospheric effects [58], urban planning must be formulated and implemented while
considering the interconnectedness of all ecosystem components. Similarly, the complexity
lies in the multitude of factors and their interactions within the urban landscape, influencing
its capacity to mitigate air pollutants. The vegetation index serves as a means to assess
the association between vegetation cover and plant growth vitality, with consideration
for multiple aspects related to air pollution. Through data processing with ArcGIS 10.8
software, it was observed that external factors exerted a more substantial influence on
the spatial distributions of GVI. RVI demonstrated a weaker sensitivity to areas with
limited vegetation cover. Conversely, NDVI exhibited a closer relationship with vegetation
distribution and dynamics compared to the other indices. Consequently, this study focused
on exploring the correlations between NDVI and air pollutants.

3.4.1. Correlation Analysis of NDVI and Air Pollutants

Based on the findings from the linear regression model, which was selected as the best
fit for all three buffer zones and the six air pollutants (refer to Table 3), the relationships
between NDVI and the minimum and average concentrations of the six pollutants were
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characterized by relatively low R2 values. However, within the 500 m distance range, the
maximum NDVI values demonstrated stronger correlations with the concentrations of SO2,
PM10, and PM2.5, with respective R2 values of 0.6280, 0.6350, and 0.6881. These findings
suggest that these three pollutants exhibit a strong alignment with the NDVI values. In the
1 km distance range, while the correlation between NDVI and CO concentration was low,
the R2 values for the remaining five pollutants were all above 0.5. Notably, the correlation
between PM2.5 and NDVI exceeded 0.8. Furthermore, in the 2 km buffer zone, the R2 values
between each air pollutant and NDVI were consistent with those observed in the 1 km
range. Overall, the expansion of the buffer zone resulted in an increasing trend in both
NDVI values and the fitting results for the six pollutants.

Table 3. R2 values of the best-fit linear regression models between NDVI and six air pollutants at
various radii.

Pollutant

NDVI-500 m NDVI-1 km NDVI-2 km

Minimum
Value

Average
Value

Maximum
Value

Minimum
Value

Average
Value

Maximum
Value

Minimum
Value

Average
Value

Maximum
Value

SO2 0.017 0.0751 0.628 0.0038 0.1187 0.7404 0.0018 0.126 0.8409
NO2 0.046 0.0683 0.4695 0.0175 0.1113 0.5241 0.0185 0.1601 0.6269
CO 0.0787 0.0462 0.2008 0.0775 0.0713 0.2652 0.1306 0.136 0.3514
O3 3.45 × 10−4 0.1137 0.4557 0.0307 0.1445 0.5905 0.0266 0.1268 0.5206

PM10 9.16 × 10−5 0.0508 0.635 0.006 0.068 0.729 0.0042 0.08 0.8365
PM2.5 5.55 × 10−6 0.0761 0.6881 0.0067 0.1036 0.8086 0.0016 0.1119 0.8627

3.4.2. Effects of NDVI on Air Pollutants

Within the range of 500 m to 2 km from the monitoring sites, significant correlations
between NDVI and SO2, PM2.5, and PM10 were observed. Given the relatively stable
relationships between NDVI and each air pollutant in the 2 km range, our analysis focused
on this specific range. As depicted in Figure 9, a decreasing trend in SO2, NO2, CO, PM10,
and PM2.5 concentrations, particularly the latter two, was evident as NDVI levels increased.
This pattern can be attributed to the implementation of the “Air Pollution Prevention and
Control Action Plan,” which has contributed to reducing air pollutants, notably PM2.5, in
Nanjing. Figure 10 displays small statistical dispersions for PM2.5, PM10, and NDVI, with
respective R2 values of 0.83 and 0.86. Consistent with Zang et al. (2021), who explored
Henan Province, PM2.5 and PM10 demonstrated significant negative correlations with NDVI
and precipitation [59]. In our study, the relationship between CO and NDVI exhibited
a large statistical dispersion, with an R2 value of only 0.33. This discrepancy may be
attributed to the lower concentrations of CO itself, making it more susceptible to other
factors not extensively examined in this study, such as land management practices [60] and
dust emissions [61]. Notably, among all pollutants, O3 displayed a positive correlation with
NDVI (R2 = 0.5). This finding aligns with the results reported by Miao et al. [62]. However,
their study indicates that the relationship between O3 pollution levels and vegetation
growth was insignificant. Distinct from other pollutants, the increased concentrations of
O3 noted in our study emphasize its potential as a primary factor influencing air quality.

3.5. Correlation Analysis of NDVI, Air Pollutants and Socio-Economic Data

Currently, numerous scholars employ NDVI values as indicators to assess vegetation
growth, development, environmental and ecological changes, as well as to analyze their
correlation with atmospheric pollutants and socio-economic factors [63–65]. In light of
this, the present study aims to delve deeper into the correlation between NDVI values
and atmospheric pollutants alongside local socio-economic data, specifically in the context
of Nanjing.
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3.5.1. Heatmap Analysis of Correlation between NDVI and Socio-Economic Data

The socioeconomic state of Nanjing was assessed using indicators such as Industrial
Gross Value Added, population, GDP, and urban population density. The relationships
between NDVI and these socioeconomic indicators, as well as air pollution data, were
analyzed through best-fit linear regression models. As depicted in Figure 10, NDVI val-
ues within all three buffer zones displayed negative correlations with the socioeconomic
indicators, although these correlations were not statistically significant. Notably, a sig-
nificant correlation between NDVI and economic growth was observed within the 1 km
buffer zone, while urban population density exhibited the strongest correlation with NDVI.
In essence, increased urban population density and economic growth had a detrimental
impact on vegetation.
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3.5.2. Heatmap Analysis of Correlation between Air Pollutants and Socio-Economic Data

Figure 11 demonstrates a highly significant positive correlation between O3 concentra-
tion and socioeconomic indicators. Both R2 values exceed 0.8, with the primary industry
value surpassing 0.9. This indicates that O3 concentrations increase alongside rapid eco-
nomic growth. Conversely, the other five pollutants exhibit negative correlations with
economic growth. Correlations between SO2, NO2, PM10, and PM2.5 concentrations and the
socioeconomic indicators all exceed 0.8, with some surpassing 0.9. However, the correlation
between CO concentrations and socioeconomic indicators is only around 0.5. Overall, aside
from O3 concentration, negative correlations were observed between the concentrations of
other pollutants and social and economic indicators. Additionally, gross domestic product
and population density in Nanjing are positively correlated with O3 concentrations. The
release of nitrogen oxides and volatile organic compounds, combined with sunlight, con-
tributes to the production of O3 and its increased atmospheric concentration. This implies
that as industrialization levels rise and energy consumption demands increase, emissions
of O3 precursor substances from industrial production also increase. However, the concen-
trations of the other five pollutants have exhibited a decreasing trend over the study period.
This trend can be attributed to the implementation of various environmental protection
measures in Nanjing, including the “Nanjing Ecological Civilization Construction Plan
(2013–2020),” which has positively contributed to the improved environmental quality of
the city. In conclusion, the implementation of environmentally preventive and mitigative
measures, combined with ongoing economic growth, greatly promotes the harmonious
coexistence and development of both the economy and the urban environment.
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4. Conclusions

Based on data processing and subsequent discussion of the results, the following
conclusions have been drawn. Firstly, the spatial distribution of the six air pollutants in
Nanjing showcases a gradual decrease from the city center to peripheral areas. Overall, the
main urban area experiences the poorest air quality, while the Pukou and Qixia Districts
exhibit the best air quality. Secondly, there has been a moderate decline in air quality in
Nanjing from 2013 to 2021, particularly for PM2.5 and PM10. The temporal pattern of the
concentrations of SO2, NO2, CO, PM2.5, and PM10 indicates higher levels during winter
compared to summer. Notably, increasing O3 concentrations signify its emergence as a
potential future contributor to air pollution. Moreover, through correlation analysis of the
three vegetation indices and air pollutants, a strong alignment is observed between the
spatial distributions of vegetation indices and air pollutants. A favorable linear relationship
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exists between NDVI and all air pollutants except for CO. As NDVI values increase, the con-
centrations of the five pollutants decrease, whereas CO concentration remains unaffected
by NDVI. Lastly, NDVI demonstrates a weak negative correlation with socioeconomic
factors in general. As population density and economic levels continue to rise, vegetation
coverage experiences a negative impact. The air pollutants exhibit a robust correlation with
socioeconomic factors, primarily influenced by industrial production and human-induced
disturbances. In the context of Nanjing’s future urban development, it is imperative to
persist in the execution of existing ecological conservation projects, bolster urban green
space planning, and promote a gradual augmentation in vegetation coverage. Additionally,
harnessing cutting-edge achievements in modern science and technology, optimizing in-
dustrial structures, and facilitating the transition and upgrading of traditional industries
toward sustainable, environmentally-conscious practices are of paramount importance.
These findings hold significant implications for enhancing regional air quality and provide
a scientific foundation, along with technical support, for subsequent prevention, control,
and management of air pollution in Nanjing.
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