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Abstract: Chinese fir (Cunninghamia lanceolata) is a major timber species in China, and obtaining and
monitoring the parameters of Chinese fir plantations is of great practical significance. With the help
of the K-means algorithm and UAV-LiDAR data, the efficiency of forestry surveys can be greatly
improved. Considering that the traditional K-means algorithm is susceptible to the influence of
initial cluster centers and outliers during the process of individual tree segmentation, it may result in
incorrect segmentation. Therefore, this study proposes an improved K-means algorithm that uses the
methods of local maxima and height weighting to optimize and improve the algorithm. The research
results are as follows: (1) Compared to the traditional K-means algorithm, the producer accuracy
and user accuracy of this research algorithm have imsproved by 10.72% and 11.46%, respectively,
with significant differences (p < 0.05). (2) The research algorithm proposed in this study can adapt to
Chinese fir plantations of different age groups, with average producer accuracy and user accuracy
reaching 78.48% and 83.72%, respectively. In summary, this algorithm can be effectively applied to
the forest parameter estimation of Chinese fir plantations and is of great significance for sustainable
forest management.

Keywords: single tree segmentation; LiDAR; K-means; point cloud; local maximum

1. Introduction

Forest resources are important supports for terrestrial ecosystems and play a cru-
cial role in ecological environment governance and protection [1,2]. Periodic, large-scale
monitoring and investigation of forest resources can contribute to their protection and
management. Compared to traditional forestry surveys, unmanned aerial vehicle (UAV)
remote sensing technology can be used to monitor forest resources over short periods,
over large areas, and with a high level of accuracy. The recent development of unmanned
aerial vehicle light detection and ranging (UAV-LiDAR) has brought about new changes
in forest resource surveys. Although LiDAR does not provide rich spectral information,
compared with traditional optical remote sensing, it can obtain three-dimensional struc-
tural information on the detected target. This is conducted by relying on the Differential
Global Positioning System (DGPS) and the Inertial Navigation System (INS) carried by
the LiDAR. This means that it can provide single-tree structural parameters, such as tree
height and crown width, for forest resource surveys without damaging the forest stand.
The single-tree segmentation method can be used to separate several pieces of individual
tree information within a large-scale LiDAR dataset, which is a prerequisite for obtaining
single-tree structural parameters.
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Current research on airborne LiDAR-based single-tree segmentation can be divided
into single-tree segmentation based on the Canopy Height Model (CHM), and single-
tree segmentation based on point clouds and voxel [3–7]. Most single-tree segmentation
methods based on CHM use watershed algorithms, multiscale segmentation, region seed
growing algorithms, and their derivative algorithms to achieve segmentation [8–10]. This
method does not operate directly on point-cloud data. Although this reduces the complexity
of data processing, part of the three-dimensional structural information is lost.

The single-tree segmentation method that directly acts on point clouds and voxels
typically uses the spatial aggregation of a point cloud and relies on clustering methods
such as Density-Based Spatial Clustering of Applications with Noise(DBSCAN), Point
cloud segmentation(PCS),K-means, Mean-shift, and Gaussian mixture models to realize
the segmentation of a single-tree point cloud. Clustering is a data analysis method that
automatically divides samples into several categories by measuring feature similarities
or distances [11]. It belongs to unsupervised classification learning, that is, unsupervised
learning. The model is not affected by data, data volume, or other information for au-
tonomous learning. The dataset is then divided to obtain the clustering result. A classic
clustering algorithm is the K-means algorithm. Following its proposal by Steinhaus [12]
in 1955, K-means has been widely used in various research fields owing to its strong ap-
plicability. Among these, the K-means algorithm is a classic clustering method. Since its
proposal by Steinhaus in 1955, the K-means algorithm has been widely used in various
research fields because of its strong applicability. The K-means algorithm has strong ap-
plicability and high relative scalability when handling large amounts of data [13]. When
the boundaries of various types of data are clear, the K-means algorithm usually obtains
strong classification results. Although K-means has strong applicability and stability, it
also exposes the following defects in the application process. (1) The K-means algorithm
randomly selects the initial cluster center positions, which can easily cause the computation
results to converge to a local optimal solution. (2) The K-means algorithm requires setting
the number of clustering categories K manually, which has a high degree of subjectivity. (3)
The K-means algorithm is sensitive to outliers, and outliers in the dataset affect the position
of the cluster center during the clustering process. To some extent, this can lead to biased
clustering results. To address these issues, this study proposed a highly weighted K-means
algorithm to optimize the traditional method. In this study, an algorithm was applied to
perform individual tree segmentation on different age groups of Chinese fir (Cunninghamia
lanceolata) plantations on the Yangkou state-owned forest farm in Shunchang County. The
segmentation results were compared with those obtained using the traditional K-means
method to verify the impact of the improved algorithm on the results of individual tree
segmentation.

2. Materials and Methods
2.1. Study Area

The study area is located in the Yangkou state-owned forest farm in Shunchang County,
Fujian Province (117◦29′–118◦14′ E, 26◦38′–27◦121′ N), with an average annual temperature
of 18.5 ◦C, an average annual rainfall of 1880 mm, and a frost-free period of 305 days per
year. Ten sample plots were set up for different age groups in the study area, and Chinese
fir was the dominant tree species in all sample plots. The study area and sample plot
locations are shown in Figure 1.
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Figure 1. Location of the study area.

2.2. Data
2.2.1. Ground Survey Data Acquisition

Within the Chinese fir plantation survey area, 10 plots (25.82 m × 25.82 m) were
divided according to age group. Each tree was measured to obtain information including
the diameter at breast height, crown width, and tree height. The specific plot survey
contents are presented in Table 1. The plots included Chinese fir plantations from five age
groups, ranging from young to overmature, with canopy closure ranging from 0.6–0.9. By
combining UAV LiDAR and ground survey data, visual interpretation was performed to
determine the number and location of individual trees and their crown width ranges in the
plots as validation data for the algorithm. The total number of reference trees measured in
Plots 1–10, which served as validation data for the algorithm, is listed in Table 2.
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Table 1. Survey information from the 10 plots surveyed during the study.

No. Average
Tree Age Age Group Average

DBH (cm)
Average
TH (m)

Average
CW (m)

Canopy
Closure Slope (◦) Aspect Altitude

(m)

1 7 Young forest 13.0 8.50 2.60 0.7 26.00 WN 217
2 7 Young forest 12.6 9.00 2.50 0.9 26.00 W 230
3 12 Middle-aged forest 16.9 12.00 3.10 0.7 26.00 WN 202
4 12 Middle-aged forest 15.2 14.00 2.90 0.7 34.00 W 189
5 21 Near-ripe forest 18.8 17.00 3.30 0.9 28.00 EN 227
6 25 Near-ripe forest 19.5 17.00 3.20 0.6 30.00 W 255
7 29 Mature forest 19.3 16.00 3.40 0.7 28.00 W 210
8 29 Mature forest 18.6 16.30 3.20 0.8 34.00 WN 211
9 56 Overripe forest 28.9 22.00 6.80 0.6 32.00 N 202

10 56 Overripe forest 29.1 19.00 7.00 0.6 28.00 EN 196

Table 2. The total number of reference single trees in 10 plots.

No. Reference Total Number of Single Wood

1 167
2 190
3 89
4 90
5 78
6 59
7 85
8 61
9 23
10 24

2.2.2. UAV-LiDAR Data

In the study area, a FEIMA Lidar UAV D500 equipped with a HESAI XT32 (Shenzhen
FEIMA Robot Co., Ltd., Shenzhen, China) sensor was used to collect UAV LiDAR point-
cloud data from 31 July to 8 August 2022. Owing to the numerous hills and substantial
terrain fluctuations in the study area, a terrain-following flight method was used with the
terrain-following height set to 150 m, scan overlap rate set at 80%, three-echo echo mode,
laser level of CLASS1, and average point-cloud density of 180–230 pts/m2. The LiDAR and
multispectral image data are shown in Figure 2.

2.3. Methods
2.3.1. LiDAR Point Cloud Data Preprocessing

The LiDAR data collected were corrected and stitched to obtain raw point-cloud data
within the study area. Raw point cloud data collected by airborne LiDAR are affected by
the surrounding environment and the characteristics of the measured targets, resulting
in noise points. Denoising methods were applied to the raw point-cloud data to obtain
standard point-cloud data.
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Figure 2. LiDAR data collected by the HESAI XT32 sensor. Note: The color from purple to red
represents a rise in height.
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2.3.2. Point Cloud Filtering

To obtain high-precision terrain data and canopy height models, it is necessary to
divide airborne LiDAR point cloud data into ground and non-ground points, that is, point
cloud filtering [14], which is a prerequisite for the application of LiDAR data in forest
resource management. Commonly used point-cloud filtering methods include slope-based,
morphology-based, and cloth filtering algorithms. Among them, the slope-based cloth
filtering algorithm has a more effective performance in flat and open streets and densely
built urban areas. Its performance was relatively poor in hilly areas, with substantial
terrain changes and steep terrain. However, the steps of a filtering algorithm based on
morphology are relatively complex, and the overall efficiency was relatively low. Given
the large amount of information and data obtained by LiDAR, considerable time and
storage resources are required to process them using this method. The cloth simulation
filter (CSF) is a fast point-cloud filtering algorithm proposed by Zhang [15]. The core idea
is to invert the collected LiDAR point-cloud data, simulate the process of a piece of cloth
naturally falling from above, and cover the surface of the inverted point cloud under the
influence of gravity. A fallen cloth surface is used to represent the current terrain. The cloth
filtering algorithm has a high accuracy, short processing time, and requires fewer input
parameters. Considering these factors, this study used a cloth filtering algorithm for point
cloud filtering, dividing the ground and vegetation point clouds.

2.3.3. Canopy Height Model Construction

Based on the ground point cloud obtained by CSF, a digital elevation model (DEM)
with a spatial resolution of 0.1 m was obtained using the Kriging interpolation method.
The purpose of point cloud height normalization was to remove the influence of terrain
fluctuations on the height value of the forest vegetation point cloud so that the height of
the vegetation point cloud was consistent with the real vegetation height [16]. Based on the
DEM and pre-processed standard point cloud, the standard point cloud was normalized
by relying on the positional relationship between the standard point cloud and the DEM
pixels [17], resulting in the normalized point cloud. Then, using the LAS Dataset to Raster
tool in ArcGIS Pro 3.1, the normalized point cloud was rasterized to obtain the canopy
height model (CHM). The parameter settings for the LAS Dataset to Raster tool were as
follows: the interpolation type chose “Triangulation”, the interpolation method chose
“Natural Neighbor”, the point thinning type chose “Window Size”, the selection method
chose “Maximum”, the resolution chose 0.25 m, the sampling value chose 0.1 m, and other
parameters were set to default values.

Owing to the high density of the original point cloud, the resolution of the CHM was
relatively high. This can lead to the presence of noisy pixels with abnormal height values.
This phenomenon can cause substantial differences in pixel values within the same tree
crown in the CHM, thereby affecting the detection of treetop points [18]. In this study,
a mean filtering method was used to smooth the CHM and eliminate the influence of
abnormal points [19]. The filtering window was circular with a radius of 0.4 m.

2.3.4. Local Maximum Algorithm

The local maximum algorithm is commonly used for single-tree detection and location.
Based on the CHM image constructed from LiDAR point cloud data, the algorithm relies
on determining the maximum grayscale value within the tree crown. This corresponds to
the location of the tree top point to determine the center position of the tree crown [20,21].
The local maximum algorithm used a moving window to search for the local maximum
values. In this study, ArcGIS Pro 3.1 software was used to extract Chinese fir tree points. A
Focal Statistics tool was used to extract the local maximum values from the filtered CHM
image, with a circular attribute window shape and search radius set to half the minimum
crown width of the trees in the plot. Given that low shrubs and herbs within the forest
window may also be detected during the search for maximum value points, points with
height values less than 0.3 m were removed to eliminate these interferences. The process of
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obtaining treetop point data using the local maximum algorithm is shown in Figure 3. The
red squares in the figure represent the identified treetop positions, the range formed by the
green squares represents the tree crown, the yellow squares represent the search window
for local maximum values, and the length of the blue arrow represents the moving step
size of the window.
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2.3.5. Improved K-Means Clustering Algorithm

The traditional K-means algorithm requires the pre-specification of the number of
partitions n, which can divide the input samples into n groups. The K-means algorithm can
be divided into three steps. Firstly, select the initial cluster center by randomly selecting the
sample coordinates of the dataset as the initial cluster center, and then classify each sample
to the nearest cluster center. Secondly, calculate the average value of all sample points
assigned to each previous cluster center to create a new cluster center. Thirdly, determine
whether there was a difference between the new and old cluster centers. If there was a
difference, repeat the last two steps until the cluster center no longer moves.

Although the traditional K-means method can adapt to large sample datasets, such as
LiDAR point clouds, and has been used in many different fields, the K-means algorithm
faces three challenges when applied to single-tree segmentation. Firstly, the position of
the initial cluster center was randomly selected, which can lead to the segmentation result
being trapped in a local optimal solution. Secondly, the number of cluster centers needs to
be manually determined, which is subjective. Thirdly, the traditional K-means algorithm
was sensitive to outliers. When calculating the cluster center using the mean value, outliers
in the dataset will affect the position of the cluster center.

To address the issues of randomly selecting the initial cluster center positions and
manually setting the number of clusters in the K-means method, the following approach
was proposed. A retrieval window was defined with a size equal to the average canopy
radius of the study area. Single-tree detection was performed within the study area to
obtain the coordinate positions of the highest points of all individual trees within the
window range. This provides the locations and quantities of trees in the sample plot, which
correspond to the coordinate positions of the initial cluster centers and the number of
clusters n in the K-means algorithm.
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Secondly, to address the sensitivity of cluster center calculation to outliers, this study
adopted a weighted average method that incorporates point cloud height as a clustering
weight in cluster center position calculation. This method makes the cluster center calcula-
tion more sensitive to tree height, with point clouds near the treetop being assigned higher
weights. As a result, the new cluster center will be closer to the treetop position, and it can
also avoid the situation where the cluster center is affected by outliers and drifts towards
the edge of the canopy. The equation for calculating the weighted cluster center coordinates
xw was as follows:

xw =
∑n

i xihi

∑n
i hi

(1)

where n is the total number of point clouds in the current clustering category, i is the current
point cloud sequence number, xi is the coordinates of the i-th point cloud, and hi is the
height of the i-th point cloud.

To summarize the previous improvement methods, the improved K-means method
could also be divided into three steps. Firstly, the local maximum method was used to
obtain the number and coordinate positions of trees in the sample plot, which were used as
the number of partitions n and the coordinates of the initial cluster centers for the point
cloud dataset. Secondly, the weighted average value of all sample points assigned to each
previous cluster center was calculated to create a new cluster center. Thirdly, it was still
necessary to determine whether there was a difference between the new and old cluster
centers, repeating steps 2 and 3 until the cluster center coordinates no longer changed.

2.3.6. Tree Canopy Boundary Sketching

The results of point cloud segmentation are usually presented in the form of individual
tree point clouds, which leads to reliance on visual interpretation to confirm segmentation
accuracy when verifying individual tree segmentation. The alpha-shape algorithm is a
relatively simple and rapid method proposed by Edelsbrunner H to obtain the boundary of
a point set [22]. The algorithm assumes a circle with a radius of a set on the point cloud
set S, which rolls around the specified point cloud set S. When the value of radius a is
sufficiently small, each point in the point-cloud set is considered a boundary point. When it
has been adjusted to an appropriate threshold, the trajectory of the rolling circle is regarded
as the boundary of the point cloud. Using the alpha-shaped algorithm, the 2D boundary of
the single-wood point cloud can be drawn rapidly, as shown in Figure 4.

2.3.7. Accuracy Verification

The tree crown matching method proposed by Zhen [23] was used to verify the results
of single tree segmentation. Single-tree boundary information was manually drawn based
on multispectral and CHM images. The single-tree boundary obtained by the alpha-shape
algorithm was regarded as the detected canopy boundary, and the manually drawn single-
tree boundary was regarded as the reference canopy boundary. According to the matching
rules, when the proportion of the crown area of the detected single tree and the area of
the reference single tree exceeds 50%, the single-tree segmentation result matches the real
result 1:1. The calculation process is shown in Figure 5.

The single-tree segmentation accuracy detection index uses user accuracy (UA) and
producer accuracy (PA). The equations for user and producer precision are as follows:

UA =

(
N1:1

Nd

)
× 100% (2)

PA =

(
N1:1

Nr

)
× 100% (3)

where N1:1 is the number of individual trees that match the segmentation and ground truth
results, Nd is the total number of individual trees detected, and Nr is the total amount of
single wood for reference.
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2.3.8. Statistical Analysis

The accuracy of all single tree segmentation results was statistically analyzed using
SPSS 22.0. One-way ANOVA was used to analyze the statistical significance differences in
producer accuracy and user accuracy among different segmentation algorithms to examine
the significant difference between the improved K-means algorithm and the traditional
K-means algorithm. The coefficient of variation was calculated for the producer accuracy
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and user accuracy of different single tree segmentation algorithms to analyze the stability
of segmentation accuracy among different age groups.

3. Results

After processing the CHM of the 10 sample plots, a smoothing process was first
applied to them using a window size of 0.4 m. Next, the local maximum method was used
to extract the positions of the treetops in the 10 sample plots, with the search radius of the
local maximum set to half of the minimum canopy width in the study area. The results of
extracting treetops in the 10 sample plots are shown in Table 3.

Table 3. Tree points detection result information.

No. Detected Tree Points

1 147
2 167
3 80
4 84
5 71
6 56
7 83
8 59
9 23
10 24

Based on the results from the local maximum, the K value and coordinate information
of the initial cluster position were obtained, which provided the basis for the operational
parameters of the improved K-means algorithm. The weighted K-means algorithm was
applied to the results of the local maximum values and height-normalized point cloud
data. This resulted in a single-tree segmentation of the ten sample plots. The segmentation
results are shown in Figure 6. To verify the improvement of the K-means algorithm in
single-tree segmentation compared to traditional single-tree segmentation algorithms, we
also used the traditional K-means algorithm, watershed algorithm, and PCS algorithm to
segment the individual trees in the 10 sample plots. During the calculation process, the
K value of the traditional K-means algorithm was consistent with that of the improved
K-means algorithm, and the seed points of the watershed algorithm were consistent with
those of the improved K-means algorithm to ensure that the calculation conditions of each
algorithm were consistent.

Given that the results of point-cloud segmentation were presented in the form of a set
of points, it was difficult to compare and calculate the results of single-tree segmentation.
Therefore, in this study, the alpha-shape algorithm was used to process the results of point
cloud segmentation to obtain the concave boundary of a single-tree point cloud. The
processing results are shown in Figure 7.

Based on the single-tree boundary outlined by the alpha-shape algorithm, the over-
lapping relationship between the detected tree crown and the real tree crown could be
quantified to more effectively verify the accuracy of single-tree segmentation, calculate the
user accuracy and producer accuracy of the traditional K-means algorithm, and improve
the K-means algorithm, marker watershed algorithm, and PCS algorithm for single-tree
segmentation results of 10 sample plots. The specific segmentation results are shown in
Table 4.



Forests 2023, 14, 2130 11 of 19

Forests 2023, 14, x FOR PEER REVIEW 11 of 20 
 

 

9 23 
10 24 

Based on the results from the local maximum, the K value and coordinate information 
of the initial cluster position were obtained, which provided the basis for the operational 
parameters of the improved K-means algorithm. The weighted K-means algorithm was 
applied to the results of the local maximum values and height-normalized point cloud 
data. This resulted in a single-tree segmentation of the ten sample plots. The segmentation 
results are shown in Figure 6. To verify the improvement of the K-means algorithm in 
single-tree segmentation compared to traditional single-tree segmentation algorithms, we 
also used the traditional K-means algorithm, watershed algorithm, and PCS algorithm to 
segment the individual trees in the 10 sample plots. During the calculation process, the K 
value of the traditional K-means algorithm was consistent with that of the improved K-
means algorithm, and the seed points of the watershed algorithm were consistent with 
those of the improved K-means algorithm to ensure that the calculation conditions of each 
algorithm were consistent. 

  

  

Forests 2023, 14, x FOR PEER REVIEW 12 of 20 
 

 

  

 
Figure 6. Improved K-means segmentation results. 

Given that the results of point-cloud segmentation were presented in the form of a 
set of points, it was difficult to compare and calculate the results of single-tree segmenta-
tion. Therefore, in this study, the alpha-shape algorithm was used to process the results 
of point cloud segmentation to obtain the concave boundary of a single-tree point cloud. 
The processing results are shown in Figure 7. 

 
Figure 7. The forest boundaries obtained using an alpha-shape algorithm. 

Figure 6. Improved K-means segmentation results.



Forests 2023, 14, 2130 12 of 19

Forests 2023, 14, x FOR PEER REVIEW 12 of 20 
 

 

  

 
Figure 6. Improved K-means segmentation results. 

Given that the results of point-cloud segmentation were presented in the form of a 
set of points, it was difficult to compare and calculate the results of single-tree segmenta-
tion. Therefore, in this study, the alpha-shape algorithm was used to process the results 
of point cloud segmentation to obtain the concave boundary of a single-tree point cloud. 
The processing results are shown in Figure 7. 

 
Figure 7. The forest boundaries obtained using an alpha-shape algorithm. Figure 7. The forest boundaries obtained using an alpha-shape algorithm.

Table 4. Comparison of single tree segmentation accuracy.

Segmentation
Algorithm

Plot
Number

Number of
Single Trees

with a 1:1 Cor-
responding

Relationship

Reference
Total Number

of Single
Wood

The Total
Number of

Single Trees
Detected

Producer
Accuracy (%)

User Accuracy
(%)

Age Group
Producer
Accuracy

(%)

Age Group
User

Accuracy(%)

Marked
watershed
Algorithm

1 132 167 147 79.04 89.80
74.79 85.022 134 190 167 70.53 80.24

3 51 89 80 57.3 63.75
62.54 68.194 61 90 84 67.78 72.62

5 65 78 71 83.33 91.55
77.26 83.286 42 59 56 71.19 75.00

7 35 85 83 41.18 42.17
46.00 47.368 31 61 59 50.82 52.54

9 17 23 23 73.91 73.91
72.37 72.3710 17 24 24 70.83 70.83

Average Value 66.59 71.24

Point cloud
segmentation

Algorithm

1 122 167 137 73.05 89.05
74.42 92.532 144 190 150 75.79 96.00

3 64 89 79 71.91 81.01
77.07 86.764 74 90 80 82.22 92.50

5 53 78 70 67.95 75.71
71.27 75.156 44 59 59 74.58 74.58

7 60 85 79 70.59 75.95
68.90 72.728 41 61 59 67.21 69.49

9 20 23 22 86.96 90.91
85.15 90.9110 20 24 22 83.33 90.91

Average Value 75.36 83.61

Traditional
K-means

Algorithm

1 109 167 147 65.27 74.15
69.74 79.292 141 190 167 74.21 84.43

3 49 89 80 55.06 61.25
65.31 71.104 68 90 84 75.56 80.95

5 48 78 71 61.54 67.61
68.91 73.996 45 59 56 76.27 80.36

7 66 85 83 77.65 79.52
73.25 75.368 42 61 59 68.85 71.19

9 13 23 23 56.52 56.52
61.60 61.6010 16 24 24 66.67 66.67

Average Value 67.76 72.27

Improved
K-means

Algorithm

1 137 167 147 82.04 93.20
79.44 90.322 146 190 167 76.84 87.43

3 68 89 80 76.4 85.00
82.09 89.534 79 90 84 87.78 94.05

5 57 78 71 73.08 80.28
77.22 83.006 48 59 56 81.36 85.71

7 69 85 83 81.18 83.13
75.02 77.168 42 61 59 68.85 71.19

9 17 23 23 73.91 73.91
78.62 78.6210 20 24 24 83.33 83.33

Average Value 78.48 83.72

The 10 sample plots were divided into 5 age groups: young forest, middle-aged forest,
near-mature forest, mature forest, and over-mature forest. The research results showed
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that the average producer accuracy of the traditional K-means algorithm improved, and
the K-means algorithm, watershed algorithm, and PCS algorithm were 67.76%, 78.48%,
66.59%, and 75.36%, respectively. The average user accuracy of these algorithms were
72.27%, 83.72%, 71.24%, and 83.61%, respectively. The ratio of the number of single trees
with a 1:1 corresponding relationship to the reference single tree reflects the completeness
of single-tree segmentation, while user accuracy represents the ratio of the number of
detected single trees with a 1:1 corresponding relationship to the actual number of single
trees, reflecting the correctness of single-tree segmentation. Compared with other single-
tree segmentation algorithms, the improved K-means algorithm had the highest accuracy
in both producer accuracy and user accuracy. Compared with the traditional K-means
algorithm, its producer accuracy increased by an average of 10.72% and its user accuracy
increased by an average of 11.45%. This indicates that the improved K-means algorithm
was superior to traditional algorithms in both the completeness and accuracy of single-tree
segmentation.

By comparing the accuracy of different single-tree segmentation methods in different
age groups, it could be seen that when the research sample plot was in the young forest
group, the improved K-means algorithm had the highest producer accuracy at 79.44%, and
the PCS algorithm had the highest user accuracy at 92.53%. When the research sample plot
was in the middle-aged forest group, the improved K-means algorithm had the highest
producer accuracy and user accuracy at 82.09% and 89.53%, respectively. When the research
sample plot was in the near-mature forest group, the watershed algorithm had the highest
producer accuracy and user accuracy, which was slightly higher than the improved K-
means method, at 77.26% and 83.28%, respectively. When the research sample plot was
in the mature forest group, the improved K-means algorithm had the highest producer
accuracy and user accuracy at 75.02% and 77.16%, respectively. When the research sample
plot was in the over-mature forest group, the PCS algorithm had the highest producer
accuracy and user accuracy at 75.36% and 83.61%, respectively.

To more clearly demonstrate the improvement of the improved K-means algorithm
compared to the traditional K-means algorithm, this study used a one-way ANOVA to
compare whether there were differences in the segmentation results of different single-tree
segmentation algorithms in terms of producer accuracy and user accuracy. In the segmen-
tation results of different single-tree segmentation algorithms, both producer accuracy and
user accuracy show significant differences (p < 0.05). According to Table 5, the average
values of producer accuracy and user accuracy for the improved K-means algorithm were
the highest, at 78.47% and 83.72%, respectively. This indicates that the improved K-means
algorithm achieves the highest segmentation accuracy compared to the other single-tree
segmentation algorithms. In Table 5, the standard deviation and coefficient of variation of
producer accuracy and user accuracy for the improved K-means algorithm are the smallest,
indicating that the segmentation accuracy of the improved K-means algorithm was more
stable under different age conditions compared to the other algorithms. The different
lowercase letters in Table 5 indicate significant differences in segmentation accuracy among
different single-tree segmentation algorithms (p < 0.05), and there were significant differ-
ences between the traditional K-means method and the improved K-means method in
terms of both producer accuracy and user accuracy. In summary, the improved K-means
method showed a significant improvement in single-tree segmentation accuracy compared
to the traditional K-means algorithm.
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Table 5. Descriptive Statistics of Segmentation Accuracy for Different Single-Tree Segmentation
Algorithms.

Segmentation
Algorithm

Producer Accuracy (%) User Accuracy (%)

Average ± S.D. Variation
Coefficient Average ± S.D. Variation

Coefficient

Marked
watershed
Algorithm

66.59 ± 13.02 a 19.55 71.24 ± 15.32 a 21.50

Point cloud
segmentation

Algorithm
75.36 ± 6.73 b 8.93 83.61 ± 9.29 b 11.12

Traditional
K-means

Algorithm
67.76 ± 8.22 a 12.13 72.27 ± 9.24 ab 12.79

Improved
K-means

Algorithm
78.47 ± 5.66 a,b 7.21 83.72 ± 7.31 b 8.74

Note: Different lowercase letters indicate significant differences between different single-tree segmentation
algorithms (one-way ANOVA, p < 0.05).

4. Discussion

In this study, we proposed an improved K-means algorithm to address the shortcom-
ings inherent in the traditional K-means algorithm. Combining the results of single-tree
segmentation (Table 4) and the results of one-way ANOVA (Table 5), it can be inferred that
there was a significant difference (p < 0.05) in single-tree segmentation accuracy between
the improved K-means algorithm and the traditional K-means algorithm. Compared to
the traditional K-means algorithm, the improved K-means algorithm demonstrates better
segmentation performance in the single-tree segmentation process of Chinese fir plan-
tations. The main advantages of the method used in this study are as follows: (1) The
algorithm used the method of local maximum values to obtain the number and location of
trees within the plot range, thereby providing the K value and seed points for the K-means
method. The role of the seed points was similar to that of the watershed segmentation
algorithm [24] in that it provides an initial position for the algorithm and avoids the im-
pacts of the number and position of initial clustering centers on the segmentation results.
(2) Using the height values of the point cloud as weights in the calculation of cluster center
positions can promote the movement of cluster centers toward the top of the tree, and in
this way avoids the influence of outliers and shifts toward the edges of the tree crown.
This contributes to significant improvements in the accuracy and efficiency of single-tree
segmentation. However, despite these enhanced features, the improved K-means algorithm
also has certain shortcomings. Firstly, in this study, we used the local maximum method
to obtain seed points in the digital canopy model, which requires the initial conversion of
LiDAR data to depth images. This process is typically cumbersome and can lead to the loss
of positional information for some point clouds. Secondly, LiDAR data is classed as a type
of big data, and processing dense LiDAR data necessitates considerable time and storage
resources, which is not conducive to processing data obtained from large study areas.

According to the results of single-tree segmentation (Table 4), it can be found that
the improved K-means method has better performance than other traditional methods in
the sample plots of young forest, middle-aged forest, and mature forest. However, in the
sample plots of near-mature forest and over-mature forest, its accuracy is inferior to that of
the watershed algorithm and PCS algorithm, especially in sample plot 5 of the near-mature
forest and sample plot 9 of the over-mature forest. The reason for this may be that sample
plot 5 of the near-mature forest had a high degree of canopy closure, and the connection
between tree crowns in the sample plot was relatively close. The improved algorithm was
difficult to accurately find the edge of the canopy, resulting in a decrease in segmentation
accuracy. The watershed algorithm can segment the tree crown according to the gradient
change and accurately find the edge of the tree crown, so it has a better segmentation effect.
In sample plot 9 of the over-mature forest, there was a large difference in the size of the
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single-tree crowns. The improved K-means algorithm will result in over-segmentation
when segmenting single trees with larger crown widths, resulting in a decrease in accuracy.
The PCS algorithm can perform segmentation based on the distance threshold between tree
crowns and was not affected by differences in crown width between trees in the sample
plot, so it had a better segmentation effect. According to Table 5, the improved K-means
algorithm had the smallest standard deviation and coefficient of variation for both producer
accuracy and user accuracy. This indicates that the segmentation accuracy of the improved
K-means algorithm was the most stable compared to other segmentation algorithms, and
there won’t be significant variations in single-tree segmentation accuracy across different
age groups. Overall, the improved K-means algorithm can achieve high accuracy in
single-tree segmentation results for Chinese fir plantations of different age groups.

In this study, we also found that the insensitivity of the traditional K-means method
to point cloud height made it difficult for the algorithm to identify suitable clustering
positions, ultimately leading to frequent over-segmentation (Figure 8) [25]. As shown
in the figure, the single-tree segmentation result (circled in white) includes part of the
crowns of the other trees. By applying the improved K-means algorithm, we were able
to significantly improve the accuracy of single-tree segmentation. We suspect that this
effect may be due to the local maximum method, which allows the improved K-means
algorithm to identify appropriate initial clustering centers. In addition, height weighting
sensitivity helps to maintain clustering near the tree top, reducing the occurrence of over-
segmentation. This phenomenon is similar to the watershed method, which often suffers
from over-segmentation, resulting in the same target being divided into multiple objects
and losing the original features of the segmentation target. The marker watershed method
adds marker points to avoid over-segmentation of a target [26]. The initial clustering
points and height weighting added in this study have a similar effect to marker points,
avoiding the occurrence of over-segmentation in classification results. In addition, this
phenomenon often occurs in the PCS algorithm, which performs clustering segmentation
on all point clouds below the tree top by setting a distance threshold without setting fixed
clustering centers and point cloud weights, relying only on distance threshold judgment,
resulting in frequent under-segmentation or over-segmentation. Adding marker points
to the PCS algorithm may reduce its over-segmentation or under-segmentation. Figure 9
shows a comparison of the segmentation results of the traditional and improved K-means
algorithms. From the position circled in white, it can be seen that using the improved K-
means algorithm can correctly segment single trees in this area, while using the traditional
K-means algorithm cannot. Comparing the performance of the two algorithms shows that
although the optimized K-means algorithm is significantly better in segmentation accuracy
for young and middle-aged forest groups, its performance improvement is not significant
when applied to mature forest groups, where we did not see an improvement in single-tree
segmentation accuracy. This may be because in mature forests, trees are densely arranged,
and differences in tree height are usually relatively small. In summary, the improved
K-means method can effectively improve the accuracy of single-tree segmentation.

On the basis of our study of cloth filtering, we found that under the same flight param-
eters, canopy density has a considerable influence on the efficacy of LiDAR penetration.
Under conditions of high canopy density, LiDAR penetration is poor, thereby resulting
in a reduction of the number of points radiating to the ground and, consequently, in the
displacement of tree top positions and errors in tree height determinations. This phe-
nomenon has similarly been observed by other researchers, such as Liu [27]. Accordingly,
in future studies, UAV-LiDAR and TLS (Terrestrial Laser Scanning) point cloud data could
be combined to extract tree top points. Given that UAV-LiDAR provides a complete canopy
structure, whereas TLS provides complete ground height information, a combination of
these two approaches could be applied to achieve higher-precision normalized point cloud
data. This would thereby further improve the accuracy of tree top position and tree height
determinations, and thus enhance the overall accuracy of single-tree segmentation.
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This study algorithm mainly focused on Chinese fir plantations and did not attempt
to segment other types of tree species. In the future, the segmentation accuracy of this
algorithm can be compared when applied to different tree crown shapes. In addition,
this algorithm currently only focuses on pure forests and has not considered the use of
mixed forests, which also places higher demands and challenges on the algorithm. In
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future research, more consideration can be given to these complex situations to increase the
algorithm’s general applicability.

5. Conclusions

This study proposed an improved K-means algorithm for single-tree segmentation
based on high-density LiDAR point-cloud data obtained by unmanned aerial vehicles.
Compared with the traditional K-means algorithm, PCS algorithm, and marked watershed
algorithm, the segmentation accuracy of single tree in different age groups of Chinese fir
plantations significantly improved. This research showed that the improvement effect of
the improved K-means algorithm compared to the traditional K-means algorithm varied
among different age groups. The greatest improvement effect was observed in young and
middle-aged forests, followed by over-mature forests, whereas the improvement effect in
near-mature and mature forests was less pronounced. The segmentation accuracy of the
improved K-means algorithm was more stable compared to other segmentation algorithms
across different age groups and could achieve high accuracy in single-tree segmentation
results for Chinese fir plantations of different age groups.

This research showed that the improved K-means algorithm needed to use LiDAR
point cloud data to construct a CHM image and then use the local maximum method to
obtain the local maximum of the CHM to determine the position of the initial clustering
center and the clustering K value for the K-means algorithm. Although this step can
accurately obtain the parameters required for the improved K-means algorithm, the process
is cumbersome and is likely to cause data loss during the conversion of LiDAR data into
2D data. This can affect the recognition accuracy of the maximum value point. Therefore,
it is worth exploring whether it is possible to directly extract the initial clustering center
and K value from height-normalized point-cloud data. Given that the traditional K-means
algorithm and its derivative algorithms need to iterate over the entire sample dataset
several times until the clustering result converges or reaches the maximum iteration set,
such methods require a substantial amount of computational resources and storage space
when dealing with large-sample data. LiDAR point-cloud data collected by laser radar
fall within the category of big data. Therefore, using the K-means algorithm to process
point-cloud data can be time consuming. Therefore, future research can reduce the amount
of computation by diluting and voxelizing point-cloud data and improving the efficiency
of point-cloud segmentation.

The results of the cloth filtering algorithm have shown that under the same flight
parameters, forest canopy density has a significant impact on the penetration effect of
LiDAR. The penetration ability of LiDAR is poor in high forest canopy density conditions.
Simultaneously, in the simulated terrain flight mode, the energy consumption of small,
unmanned aerial vehicles is relatively fast, and the research area that can be covered in
a single flight mission is limited. Compared with traditional aircraft, their operational
efficiency is relatively low. Its performance and industry suitability need to be further
improved when applied to southern hilly areas with large terrain changes.

In summary, the emergence of UAV LiDAR point-cloud data has provided a new
direction for forestry remote-sensing research. Based on LiDAR point-cloud data, the
single-tree segmentation algorithm proposed in this study overcomes the shortcomings of
the traditional K-means algorithm and can obtain high-precision single-tree segmentation
results. This can provide rich spatial structure information at the single-tree scale and
improve the efficiency of forest structure parameter estimation.
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