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Abstract: The spatial structure of forest stands significantly influences inter-tree competition and
the overall stability of the stand’s ecological dynamics, and a profound understanding of forest
stand spatial structure is essential for both effective forest management and ecological research.
Previous studies on spatial structure have primarily employed single variables, offering only one-
dimensional structural insights and lacking the capacity to interpret multidimensional information.
In light of these limitations, our study introduces a novel approach founded on a six-variable
distribution, aimed at conducting a comprehensive analysis and interpretation of the spatial attributes
of forest stands. Diverging from conventional univariate or bivariate methods, the hexi-variate
approach simultaneously considers six variables, facilitating a more intricate exploration of the
intricate interrelationships within forest ecosystems from six distinct dimensions. We conducted an
in-depth analysis of the spatial structural attributes within the forest stand, encompassing factors
such as species diversity, size variation, spatial distribution patterns, openness, vertical stratification,
and stand competition. To capture a comprehensive view of the trees’ spatial information, we
employed the hexadecimal distribution method, effectively quantifying their characteristics across six
dimensions. Our study unveiled a significant correlation between spatial structure and stand growth,
establishing a connection by integrating the spatial structure with key structural features relevant to
tree size. The outcomes of this study shed light on the effectiveness and superiority of the six-element
distribution method when it comes to the analysis of forest structural characteristics. Our approach
offers valuable insights into the optimization of forest management strategies, encompassing selective
harvesting and biodiversity conservation, thereby establishing a solid footing for sustainable forest
management practices.

Keywords: stand spatial structure; tree size; multivariate distribution; cunninghamia lanceolata; phoebe
bournei; structure optimization

1. Introduction

Forest structure encompasses the arrangement and relationships of individual plants
within a forest ecosystem. It serves as the cornerstone and most fundamental attribute
of forest ecosystems, emerging from the intricate interplay of various natural ecological
processes across spatial and temporal scales [1]. This structure is intricately linked to
the functions and services that forests provide. Forest structure (distribution of trees and
their attributes in space in forests) has significant theoretical and practical implications in

Forests 2023, 14, 2228. https://doi.org/10.3390/f14112228 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14112228
https://doi.org/10.3390/f14112228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-8688-9458
https://doi.org/10.3390/f14112228
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14112228?type=check_update&version=1


Forests 2023, 14, 2228 2 of 17

maintaining biodiversity, promoting ecosystem function, and forest ecosystem manage-
ment [2,3]. Enhancing the diversity and complexity of forest structure is widely recognized
as an effective measure for safeguarding biodiversity within forest ecosystems and enhanc-
ing their overall productivity, as well as an effective means to precisely augment forest
quality [4].

There is a wide range of forest structural elements, which can be classified as either
spatial or non-spatial, also known as distance-dependent and distance-independent indica-
tors, depending on whether they are related to the relative positioning of the stand [5,6].
Non-spatial structural characteristics encompass aspects such as tree species composition,
diameter distribution, tree height distribution, age distribution, and tree density. Spatial
structural characteristics, on the other hand, encompass factors like the degree of tree
species mixing, size diversity, spatial distribution pattern, canopy openness, vertical strati-
fication, and stand-level competition [7,8]. These elements are interconnected and interact
with each other, resulting in complex heterogeneity and diversity within forest structure. A
quantitative description of forest structure plays a pivotal role in unveiling the underlying
structural principles and essential features of forests [9]. This, in turn, facilitates the devel-
opment of targeted strategies for regulating forest structure and the formulation of sound
forest management practices, ultimately contributing to the promotion of the health and
stability of forest ecosystems [10].

Quantitative description methods, complemented by intuitive visual representations,
significantly enhance our understanding and grasp of forest structure, thus providing
valuable insights and guidance for the implementation of effective forest management prac-
tices [11,12]. Currently, a diverse array of indicators and methodologies for characterizing
stand structure can be categorized or subdivided based on spatial and temporal dimensions
of stand structure, as well as the consideration of stand position within the landscape [13].
Among these techniques, spatial structural parameters derived from nearest-neighbor
relationships succinctly capture stand structure [14]. Previous studies predominantly relied
on mean values of these parameters and their one-dimensional distributions to depict the
overall or one-sided spatial structural characteristics of forest stands [15–17]. However,
these approaches can only provide an overall or one-dimensional view of stand structure,
neglecting other vital aspects of spatial structural information. To enhance our understand-
ing of forest structure and harness the potential utility of these structural parameters in
forest management, it is essential to develop a comprehensive and systematic approach for
interpreting the inherent heterogeneity within forest spatial structure.

The currently most utilized spatial structural parameters, including mingling degree,
angular scale, and size ratio number, are employed to elucidate the spatial characteristics of
individual aspects within a stand comprising four nearest neighboring trees, each catego-
rized into five distinct value classes (i.e., 0.00, 0.25, 0.50, 0.75, and 1.00) [18]. Consequently,
these two features, both independent and quantifiably finite, establish the fundamental
prerequisites for satisfying the joint probability distribution of spatial structural parameters
within an N-element distribution. Zhang et al. introduced a quadratic distribution model
to analyze the spatial structural heterogeneity of forest stands [19]. This approach yielded
more direct and valuable insights into forest structure heterogeneity compared to prior
methods, including ternary, binary, monodistribution, zero-distribution (mean), and other
conventional techniques. However, these investigations did not encompass crucial aspects
of spatial structure, such as parameters like forest layer index, degrees of freedom, and
openness ratio. Incorporating these additional parameters into the N-element distribution
of spatial structural parameters and exploring more comprehensive quantitative analysis
methods for forest spatial structure have the potential to significantly enhance our compre-
hension of spatial structural heterogeneity and diversity within small-scale forests. The
N-variate distribution analysis of spatial structural parameters provides a more comprehen-
sive and intuitive dataset in comparison to traditional univariate methods when examining
spatial structural attributes.
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The present study was carried out within nine 20 m × 30 m permanent fixed plots
situated in a mixed forest of cunninghamia lanceolata and phoebe bournei (CLPB) located on
Jindong Forest Farm. The spatial structure characteristics of CLPB and the relationship
between spatial structure and tree size were analyzed using the multivariate distribution
method with sample plot survey data. Our study was driven by three principal objec-
tives: (1) validate the accuracy and effectiveness of the six-variable distribution method
in providing a systematic and comprehensive evaluation of forest spatial structure and
compare its superiority to the univariate distribution method, (2) examine the relationship
between forest spatial structure and forest growth, and (3) demonstrate the applicability of
the six-variable distribution method in forest structure adjustment and thinning operations.

2. Materials and Methods
2.1. Study Area

This study was conducted at Jindong Forestry Farm, located in Yongzhou City, Hunan
Province, China. The farm is situated in the upper reaches of the Xiangjiang River basin,
with geographic coordinates ranging from 26◦2′10′′ to 26◦21′37′′ N and 110◦53′43′′ E to
112◦13′37′′ E. The total area of the farm is 635 square kilometers. The highest point in this
region reaches an elevation of 1435 m, while the lowest point is 108 m above sea level, with
an average slope of 34◦. The soil of the forest farms is mainly yellow-red and yellow. It
belongs to the subtropical southeast monsoon humid climate zone, with an annual average
temperature of 18 ◦C, extreme maximum temperature of 41 ◦C, and extreme minimum
temperature of −8 ◦C. The forest in this area boasts remarkable biodiversity, encompassing
135 families and 972 species of plant resources [20]. The presence of over 200 families of
higher plants, comprising more than 1500 species. Among them, 98 families host 654 species
of woody plants. Cunninghamia lanceolata (CL) is the main timber species in Hunan Province,
and Phoebe bournei (PB) is a precious broadleaf species. Jindong Forestry Farm is the main
planting area of CL and PB in the province, and the management of the CLPB mixed forest
has achieved success. As a result, it has become a national demonstration site for the CLPB
mixed forest model (Figure 1).
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Figure 1. Location of the study site ((a) is the map of China, and (b) is the topographical map of
Jindong Forest Farm).

2.2. Study Design and Sampling

Nine sample plots (20 m × 30 m), including 1028 trees, were surveyed in July 2019,
within a mixed forest of CLPB, and the stands in the nine plots were neatly organized and
nearly uniform in age and stand conditions (Table 1). To mitigate potential edge effects, a
2 m buffer zone was implemented around the sample plot. Trees within this buffer zone
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were considered solely as nearest neighbors (edge woods) and were not used as reference
trees (Figure 2). Trees in the buffer zone were excluded, and the remaining 637 trees were
considered the object. All trees with DBH ≥ 5 cm and height ≥ 2 m in the sample plot were
examined, and their DBH, tree height, X and Y coordinates, as well as the elevation and
slope of the sample plot, were meticulously recorded.

Table 1. Basic information of the sample plots.

Plot
Number

Slope
Aspect Slope/Degree Tree

Number
Mean DBH

/cm

Mean
Height

/m

Mean
East–West

Crown
Diameter/m

Mean
North–South

Crown
Diameter/m

1 southwestern 15 94 16.5 14.9 3.9 3.6
2 south 15 121 15.4 13.8 3.9 3.7
3 south 40 116 13.5 12.4 3.6 3.7
4 southwestern 20 125 12.9 10.1 2.1 2.6
5 south 14 98 13.5 11.8 2.5 2.8
6 south 20 126 9.6 8.5 3.1 3.3
7 southwestern 16 122 14.7 13.9 2.6 2.9
8 southwestern 15 95 10.7 9.1 2.5 2.4
9 south 20 131 13.1 12.7 3.3 3.2

Forests 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

2.2. Study Design and Sampling 
Nine sample plots (20 m × 30 m), including 1028 trees, were surveyed in July 2019, 

within a mixed forest of CLPB, and the stands in the nine plots were neatly organized and 
nearly uniform in age and stand conditions (Table 1). To mitigate potential edge effects, a 
2 m buffer zone was implemented around the sample plot. Trees within this buffer zone 
were considered solely as nearest neighbors (edge woods) and were not used as reference 
trees (Figure 2). Trees in the buffer zone were excluded, and the remaining 637 trees were 
considered the object. All trees with DBH ≥ 5 cm and height ≥ 2 m in the sample plot were 
examined, and their DBH, tree height, X and Y coordinates, as well as the elevation and 
slope of the sample plot, were meticulously recorded.  

 
Figure 2. Weighted Voronoi polygons after edge correction based on tree location point data (the 
points are trees, solid points represent trees within the corrected sample plots, and hollow points 
represent trees in the edge sample plots). 

Table 1. Basic information of the sample plots. 

Plot 
Number 

Slope  
Aspect 

Slope 
/Degree 

Tree 
Number 

Mean 
DBH 
/cm 

Mean 
Height 

/m 

Mean 
East–West 

Crown  
Diameter/m 

Mean 
North–South 

Crown  
Diameter/m 

1 southwestern 15 94 16.5 14.9 3.9 3.6 
2 south 15 121 15.4 13.8 3.9 3.7 
3 south 40 116 13.5 12.4 3.6 3.7 
4 southwestern 20 125 12.9 10.1 2.1 2.6 
5 south 14 98 13.5 11.8 2.5 2.8 
6 south 20 126 9.6 8.5 3.1 3.3 
7 southwestern 16 122 14.7 13.9 2.6 2.9 
8 southwestern 15 95 10.7 9.1 2.5 2.4 
9 south 20 131 13.1 12.7 3.3 3.2 

2.3. Forest Spatial Structure Parameters 

Figure 2. Weighted Voronoi polygons after edge correction based on tree location point data (the
points are trees, solid points represent trees within the corrected sample plots, and hollow points
represent trees in the edge sample plots).

2.3. Forest Spatial Structure Parameters

The spatial structure unit of a forest stand is the basic unit composed of any central
wood in a forest stand and its nearest neighboring woods, which is the basis for calculating
the spatial structure index and analyzing the spatial structure characteristics of a forest
stand. The spatial structure unit serves as the fundamental entity for spatial structure
analysis. Four neighboring trees are the four trees closest in vertical distance to the reference
tree. We selected four neighboring trees proximate to the reference tree to establish this
spatial structure unit [21]. In this study, the mingling degree (Mi), uniform angle index ( Wi),
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dominance index ( Ui), crowdedness index (Ci), openness index (Oi), and story index (Si )
were used to analyze the mingling status, spatial distribution pattern, size distribution,
crowding degree, openness degree, and vertical stratification of the stand [22,23].

The Mi describes the degree of segregation among tree species. The values of Mi were
divided into five intervals of 0, (0, 0.25], (0.25, 0.5], (0.5, 0.75], and (0.75, 1], corresponding
to zero mixing, low mixing, moderate mixing, high mixing, and complete mixing among
the stands, respectively. The Wi serves as a parameter for analyzing the stand’s spatial
distribution pattern, and the criteria for determining the W are that when the uniform angle
mean W is [0, 0.475), the distribution pattern of the stand is uniform; when the W is in the
range of [0.475, 0.517], the distribution pattern of the stand tends to be random; when the W
is (0.517, 1], the distribution pattern of forest trees tends to be clumped. The Ui reflects the
degree of size differentiation among species, with values ranging from 0 to 1. Lower values
indicate that fewer neighboring trees possess a larger DBH compared to the reference tree.
The value of Ui is divided into five intervals of 0, (0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1],
which correspond to the predominant, subdominant, intermediate, disadvantaged, and
absolutely disadvantaged status of trees within the stand, respectively. The Ci quantifies
stand density by measuring the proportion of crown-connected reference trees among
the examined nearest neighboring trees. Canopy connectivity refers to the overlap of the
horizontal projections of the canopies of adjacent trees, including full or partial overlap;
canopies that are just tangential or relatively independent are not considered connected.
Oi reflects the degree of shading experienced by the object tree due to neighboring trees,
Oi∈(0,1], and it takes values of 0, 0.25, 0.50, 0.75, and 1 corresponding to the light transmis-
sion conditions in which the object tree is completely shaded, shaded, moderately open,
open, and very open, respectively. The Si is a parameter that characterizes the vertical
stratification diversity within stands, with values within the range (0, 1]. As the stand index
approaches 1, the vertical stratification within the stand becomes more complex [24,25].

Mi =
1
n

n

∑
j=1

Vij vij =

{
1, if neighbor j is not the same species as reference i

0, otherwise
(1)

Wi =
1
n

n

∑
j=1

Zij Zij =

{
1, if the j angle α is less than the standard angle α0

0, otherwise
(2)

Ui =
1
n

n

∑
j=1

kij Kij =

{
0, if neighbor j DBH is smaller than the DBH of reference tree i

1, otherwise

(3)

Ci =
1
n∑n

j=1 pij pij =


1, if the sum of crown width of reference i and neighbor j

is greater than the spacing between them
0, otherwise

(4)

Oi =
1
n∑n

i=1 tij tij =


1, if the distance of reference i and neighbor j ≥ the height of

neighbor j minus the height of reference i
0, otherwise

(5)

Si =
zi
3
× 1

n∑n
j=1 sij Sij =


1, if reference i with neighbor j belong to different

layer
0, if reference i with neighbor j belong to the same

layer

(6)
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where, in Equations (1)–(6), n is equal to 4. In Equation (6), “zi” represents the number of
canopy layers in the spatial structural unit where the subject tree is located.

2.4. Coupling Method

Mi, Wi, Ui, Oi, Si and Ci are all mutually independent. Each of these indices exhibits
five possible values, with the exception of Si, specifically, 0.00, 0.25, 0.50, 0.75, and 1.00. In
our study, we considered seven possible values for Si (0.00, 0.08, 0.17, 0.25, 0.33, 0.50, 0.67).
The independence and finite nature of each index establish two essential mathematical
conditions for the joint probability distribution of discrete random variables. To compre-
hensively describe structural heterogeneity in all facets of forest stand spatial structure,
we employed multiple distributions simultaneously by combining these six variables in
a flexible and appropriate manner. We calculated the values of six spatial structure in-
dices for a total of 637 trees in nine sample plots and calculated the relative frequency
of trees with the same index value for all trees. This led to the derivation of 15 binary
distributions, 20 ternary distributions, 15 quadratic distributions, 6 quintic distributions,
and 1 hexadecimal distribution.

2.5. Statistical Analysis

We calculate the spatial structure indices (Wi, Mi, Ui, Si, Ci, Oi) for each tree using a
Visual Basic program developed within EXCEL. These six parameters were combined to
construct a multivariate distribution and relative frequencies were subsequently calculated.
Plot boundary correction and construction of a weighted Voronoi diagram are carried out
using ArcGIS 10.4. The figures were generated using R 3.4.3 software.

3. Results
3.1. Multivariate Distribution of Spatial Structure Indices

Based on the results of spatial structure parameter calculations for 9 sample plots, it
can be concluded that the degree of stand mixture was relatively low (M =0.36), stand
distribution pattern was clumped (W = 0.54), stands were at a disadvantage in the stand
(U = 0.51), stand light penetration was moderately open (O = 0.49), stand stratification was
simple in the vertical direction (S = 0.16), and the degree of stand crowding was moderate
to mild (C = 0.61).

The ‘M’ showed a weakly mixed distribution, with Mi = 0.25 being the most prevalent
at 36.17% (Figure 3), followed by zero mixed and medium mixed (Mi = 0.00, Mi = 0.50),
both occupying 22.34%. In contrast, Mi = 0.75 and Mi = 1.00 categories were less common,
representing only 12.77% and 6.38% of the data, respectively. Regarding ‘W’ distribution, it
displayed a random pattern, with Wi = 0.50 being the most dominant at 37.23%, followed
by a uniform distribution and a clumped distribution (Wi = 0.25, Wi = 0.75) with 28.72%
and 22.34%. The remaining category (Wi = 1.00) constituted only 11.70% of the data, while
‘uniform distribution (Wi = 0.00) had no occurrences. The ‘U’ category is characterized
as subdominant and inferior, with ‘Ui = 0.25’ and ‘Ui = 0.75’ being the most prevalent,
both accounting for 21.28%. This is followed by the ‘inferior’ and ‘superior’ categories
(Ui = 1.00 and Ui = 0.00) at 20.21% and 19.15%, respectively, while the ‘moderate’ category
(Ui = 0.50) is less common, representing only 18.09% of the data. In the case of ‘O,’ it exhibits
a moderately open distribution, with ‘Oi = 0.50’ being the most abundant, representing
30.85% of the observations. This is followed by the ‘open’ and ‘shaded’ categories (Oi = 0.75
and Oi = 0.25) at 27.66% and 25.53%, respectively. Conversely, the ‘completely shaded’
and ‘very open’ categories (Oi = 0.00 and Oi = 1.00) are less frequent, accounting for only
9.57% and 6.38%, respectively. The category with a ‘crowded’ level (Ci = 0.75) was the most
prevalent, representing 64.89 % of the data. This was followed by ‘moderate’ and ‘sparse’
categories (Ci = 0.50 and Ci = 0.25), which accounted for 17.02% and 15.96%, respectively.
In contrast, the ‘completely crowded’ category (Ci = 1.00) had no occurrences, while the
‘completely open’ category (Ci = 0.00) was rare, constituting only 2.13%. As for the forest
layer structure (S), the ‘simple structure’ (Si = 0.08) was the most abundant, comprising
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38.30% of the observations. This was followed by categories Si = 0.17, Si = 0.25, Si = 0.33,
and Si = 0.00, which represented 21.28%, 13.83%, 11.70%, and 11.70%, respectively. The
remaining categories (Si = 0.67 and Si = 0.50) were less frequent, accounting for only 2.13%
and 1.06%, respectively.
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story index).

As the angular scale level increases, there is a tendency for frequency values at the
same mixing degree to initially increase and then decrease with the rise in angular scale.
In general, these values exhibit a normal distribution, with an angular scale of Wi = 0.5
serving as the median axis. Trees sharing the same mixing degree are predominantly
randomly distributed, particularly those with a light mixing pattern (Mi = 0.00, 0.25).
Notably, trees with random distribution and weak mixing with other species (Wi = 0.50,
Mi = 0.00) constitute 13.83% of the total tree population (Figure 4a). As the mingling degree
(Mi) varies from 0.00 to 1.00, the frequency of subdominant trees (Ui) experiences an initial
increase followed by a decrease, peaking near Ui= 0.25. This suggests that a majority of
trees sharing the same mixing degree are subdominant (Ui = 0.25), with frequency values
ranging from 3.19% to 10.64%. Furthermore, the frequency values among trees with the
same mixing degree are similar across various size differentiation classes (Figure 4b). The
‘M-O’ bivariate distribution was predominantly concentrated in the range of Mi = 0.00 to
Mi = 0.50, along with Oi = 0.25 to Oi = 0.75 (Figure 4c). The highest frequency within the
‘C-M’ bivariate distribution reached 22.34% and was centered at Mi = 0.25 and Ci = 0.75,
indicating that neighboring trees exhibited mild intermixing, with overlapping crowns
as the most common structural unit (Figure 4d). As the angular scale increased, the
distribution frequency of trees within the same stand size differentiation class exhibited a
trend of initial increase followed by a decrease (Figure 4e). Similarly, as the angular scale
increased, the distribution frequency of trees within the same level of openness displayed
a pattern of initial increase followed by a decrease, with Wi = 0.5 serving as the central
axis (Figure 4f). The highest frequency in the ‘W-C’ bivariate distribution reached 26.60%
at Wi = 0.5 and Ci = 0.75 (Figure 4g). The ‘U-C’ bivariate was concentrated at Ci = 0.75,
and there were no significant differences in the frequency of trees with varying degrees of
hairline differentiation (Figure 4h). Evidently, there were no significant differences in the
frequency of trees with varying degrees of size differentiation within the same openness
levels. Moreover, the majority of trees sharing the same size differentiation exhibited
intermediate openness levels, including Mi = 0.25, 0.50, and 0.75 (Figure 4i). Within the
‘W-S’ bivariate distribution, the highest frequency, at 14.89%, was observed at Wi = 0.5
and Si = 0.08 (Figure 4j). However, there was no discernible pattern in the trend of
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the ‘U-S’ bivariate distribution (Figure 4k). The ‘M-S’ bivariate distribution reached its
highest frequency, 19.15%, at Wi = 0.25 and Si = 0.08 (Figure 4l). When the forest index
decreased, there was a gradual increase in frequency values within the same openness class
as the forest index decreased (Figure 4m). For the ‘C-S’ bivariate distribution, the highest
frequency, at 28.72%, was observed at Ci = 0.75 and Si = 0.08 (Figure 4n). As the openness
index increased, frequency values within the same density class exhibited an initial increase
followed by a decrease, primarily concentrated at Ci = 0.75 and Ci = 0~0.75 (Figure 4o).
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Within CLPB mixed forests, trees sharing the same spatial pattern and degree of
dominance were typically surrounded by a larger proportion of the same species or one or
two different species (Mi = 0.00–0.50). Notably, the most significant occurrence of identical
species (Ui = 0.75, Wi = 0.50, Mi = 0.00) was observed in a random distribution around
smaller trees, accounting for 5.32 % of the total (Figure 5a). The ternary distribution of
M-W-O exhibited a trend similar to that of M-W-U (Figure 5b). The quadratic distribution
pattern (Figure 5c, d) revealed a significant proportion of trees sharing the same distribution
pattern, characterized by moderate openness and mingling (Mi = 0.25, 0.50). Among the
various combinations, Mi = 0.00, Wi = 0.50, Ci = 0.75, Ui = 0.75 (Figure 5c) exhibited a
notably high frequency, accounting for 5.32% of the total. Similarly, Mi = 0.25, Wi = 0.25,
Ci = 0.75, Oi = 0.75 (Figure 5d) also represented 5.32% of the total frequency. This
observation suggests that the stand exhibited a light mixing of tree species, had a more
open canopy, and featured random tree distribution, particularly with trees of below-
average diameter at breast height and a continuous dense canopy. The quintic distribution
(Figure 5e) revealed that the combination Wi = 0.25, Ci = 0.75, Si = 0.08, Oi = 0.75, Ui = 0.25
had the highest percentage at 4.26%. This indicates that trees within the stand, featuring
a stand diameter at breast height (DBH) lower than the mean, a simple stand structure,
and a continuous dense canopy, exhibited a light mixing pattern. Additionally, they were
more open, arranged in a regular or random distribution. For most of the five-dimensional
variables of forest trees within the stand, frequencies ranged from 0% to 2.13%, with a few
extending from 2.13% to 3.19%.
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Figure 5. The N-variable distributions of spatial structure parameters ((a,b): ternary distribution,
(c,d): quadratic distribution, (e): quintic distribution, (f): hexadecimal distribution. M is the mingling
degree, W is uniform angle index, U is dominance index, C is crowdedness index, O is openness
index, and S is story index).

The hexadecimal distribution characterizes the stand structure in six simultaneous
ways, and within the combination presented in Figure 5f, the joint distribution of hex-
adecimal variables attains the highest frequency at 2.13%. In particular, this frequency
is associated with the following combinations: Ui = 0.00, Ci = 0.75, Mi = 0.25, Oi = 0.75,
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Wi = 0.25, Si = 0.00; Ui = 0.00, Ci = 0.75, Mi = 0.50, Oi = 0.50, Wi = 0.25, Si = 0.17; Ui = 0.25,
Ci = 0.75, Mi = 0.25, Oi = 0.75, Wi = 0.25, Si = 0.08; Ui = 0.75, Ci = 0.75, Mi = 0.00, Oi = 0.75,
Wi = 0.50, Si = 0.00. In stands characterized by object trees with a diameter at breast height
(DBH) smaller than neighboring trees and featuring simple canopy structures that touch
each other but are relatively open, a light mingling pattern prevails, with trees arranged in
a regular or random distribution. The next most significant distribution occurs at 1.06 %
and represents the highest frequency in this context.

3.2. Coupling of Spatial Structure Indices and Tree Size

In CLPB mixed forests, we selected 2 cm as the step size for DBH and 1 m for tree
height length, which were then rectified using the upper exclusion method. The DBH and
tree height data were combined with the spatial indices M, W, U, C, O, and S, resulting in
the generation of DBH-H-spatial structure indices (Figure 6). The highest joint frequency
observed between M, DBH, and tree height reached 4.26%, occurring at a DBH of 14 cm
and a tree height of 13 m (Mi = 0.25). The relative frequency values were predominantly
distributed within the DBH range of 6–20 cm and a tree height range of 7–13 m. For W, the
highest joint frequency with DBH and tree height reached 3.19% at a DBH of 12 cm and a
tree height of 11 m (Wi = 0.25). The primary range of distribution for relative frequency
values was similar to that of M. In the case of U, the main range of distribution for joint
relative frequency values was similar to that of M and W. The highest joint frequency was
observed between C and DBH, and the tree height reached 4.26% and was distributed at
DBH = 12, H = 10m; DBH = 16, H = 12m; and DBH = 20, H = 13m, characterizing more
crowded stands (Ci = 0.75). The ‘O’ displayed the highest joint frequency with DBH and
tree height at 3.19%, distributed at DBH = 6, H = 9m and DBH = 16, H = 12m and stands
with shaded or moderately open conditions (Oi = 0.25, 0.50). The ‘S’ achieved the highest
joint frequency with DBH and tree height at 4.26%, occurring at DBH = 14, H = 10 m, where
the stand structure was simpler (Si = 0.08). This was followed by 3.19% at DBH = 6, H = 7 m
and at DBH = 20, H = 12 and 13 m, where the stand structure was simpler (Si = 0.25).
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4. Discussion
4.1. The Superiority of the Six-Variable Distribution Method Compared to the Univariate Method

The zero-variate distribution characterizes the overall forest structure by employing a
single mean value, while the univariate distribution assesses individual structural attributes
in isolation, examining the relative proportions of trees across various possible values for
each spatial attribute. Analyzing a single spatial structural parameter of a forest stand
in isolation can result in one-sided conclusions [26]. For example, when assessing tree
distribution patterns without considering factors such as mingling degree and size differ-
entiation among trees, challenges related to species allocation and inter-tree competitive
growth may emerge [27]. Therefore, it is crucial to analyze specific structural parameters
while concurrently considering other relevant structural attributes.

Multivariate distributions encompass various facets of forest structure by simulta-
neously depicting the relative frequencies of N combinations of structural parameters,
enabling a precise quantification of diverse structural characteristics [28]. Transition-
ing from univariate distribution to N-variate distribution, this spatial analytic geometry
progressively interprets structures, advancing from points to lines, surfaces, cubes, and
hyperloids [29–31]. Consequently, multivariate distribution adeptly integrates multiple
spatial structural parameters to construct an N-variate distribution, addressing the need for
a comprehensive structural interpretation of real forest stands [32]. This multivariate distri-
bution of spatial structural parameters for forest stands offers an intuitive representation of
distribution patterns and quantitative attributes of joint structural parameters [33–35].

The hexadecimal distribution of the M-W-U-C-O-S spatial structural parameters, as
introduced in this study, encompasses 5 × 5 × 5 × 5 × 5 × 5 = 15,625 distinctive structural
combinations. This comprehensive framework facilitates a simultaneous and intricate
representation of forest spatial structure from six distinct perspectives. In contrast to
univariate and null-variate distributions, the hexadecadal distribution provides 5, 25, 125,
625, 3125, and 15,625 times more detailed information, respectively. These multivariate
distributions offer a comprehensive and systematic quantitative portrayal of forest structure
across multiple levels of resolution [36,37]. Traditionally, previous investigations have often
examined forest spatial characteristics from singular viewpoints [38,39] or, at most, from
four aspects [19], thereby lacking a comprehensive and systematic understanding of forest
structural attributes. The six-dimensional distribution concurrently elucidates spatial
patterns, species diversity, size differentiation, forest stratification, crowding, and openness.
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This advances our comprehension of structural characteristics, surpassing earlier studies
that relied on other distributions or conventional methods, which could only reveal forest
structure at limited levels of resolution.

4.2. Relationship between Forest Spatial Structure and Tree Size

Good spatial structure is often associated with higher tree growth rates; in contrast,
forests with poor structures exhibit lower growth performances. There is a close and
intricate relationship between forest spatial structure and tree growth. Trees in the forest
rely on resources such as light, water, nutrients, and space, and the spatial structure
directly influences the distribution and availability of these resources. In densely packed
forest stands, tree competition for limited resources can intensify, restricting the growth
of individual trees. Conversely, in more open forest stands, resources are more abundant,
and competition among trees is reduced, thereby promoting their growth [40]. The canopy
structure and arrangement of trees in a forest play a crucial role in the distribution and
utilization of light. Tall and dense canopies may restrict the penetration of light to the
understory vegetation and lower trees, which can affect their photosynthesis and growth.
Reduced light levels lead to a slowdown in tree growth [41]. The relationship between the
spatial structural parameters of forests and tree growth is a critical research topic in the fields
of ecology and forestry. Different spatial structures can influence tree growth. Studies have
shown that high levels of tree species diversity contribute to enhanced forest growth. Mixed
tree species can share resources, reduce competition, improve light utilization efficiency, and
provide more ecological niches, thereby promoting tree growth [42]. Lower size ratios may
favor the growth of smaller trees as they are not obstructed by larger ones [43]. Research has
indicated a positive correlation between openness and tree growth [44]. Higher density can
lead to increased competition among larger trees for limited resources; therefore, moderate
tree density is often more favorable for tree growth [45]. Investigating these parameters
is essential for the effective management and conservation of forest ecosystems, enabling
sustainable forest management and the maintenance of ecological balance.

4.3. The Role of the N-Variable Distribution Method in Forest Structure Adjustment

These six spatial variables serve as valuable tools for describing, comparing, and
assessing forest structure, including its transformations resulting from harvesting activi-
ties [46]. Consequently, the flexible combinations of structural parameters, exemplified by
N-variable distributions, hold significant promise for guiding forest management [47]. This
approach is especially pertinent in the context of directing forest thinning [48,49] and opti-
mizing forest utilization. Multivariate distributions offer insights across varying resolution
levels and from diverse perspectives [50]. By analyzing the frequency distribution of tree
attributes pre-harvest, forestry professionals gain enhanced abilities to assess neighborhood
competition, make informed decisions regarding tree selection for harvesting, and eval-
uate alterations in forest structure by comparing structural distributions before and after
harvests. In finer detail, forest structuring often thrives when it involves mixed, randomly
distributed trees featuring reasonable degrees of dominance and crowding—a concept
that has garnered recognition in recent studies [51,52]. The multivariate distribution of
forest structure serves as an effective guide for forest selection [53]. In cases where all
six indicators exhibit poor values, prioritizing the felling of the stand is the initial course
of action, followed by the removal of trees with five poor indicators, and so forth. Trees
exhibiting inadequacy in only one variable are the last to be considered for felling. This
multivariate distribution empowers us to fine-tune forest structure with precision.

Forest structure is a central concern in forestry, as a well-structured forest offers optimal
space and growth conditions for individual trees within a stand [54]. Conversely, suboptimal
structures, such as clustered distributions, can lead to incremental losses [55]. There is a
growing recognition that the spatial arrangements of tree locations and sizes within a stand
can significantly impact the overall value generated via the forest [56–58]. Effective forest
management should revolve around the harmonious relationship between stand structure
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and function, aiming to optimize stand structure by adjusting its parameters to fully harness
the manifold functions of the forest [59,60]. The six-element distribution introduced in
this study provides comprehensive insights into horizontal forest structure, facilitating
the reduction in disparities between simulated and ideal forest structures. Informed by
the insights gleaned from multivariate distribution analyses of spatial structure, structural
adjustments can be implemented for the CLPB mixed forest. These adjustments involve
adopting management strategies that prioritize the removal of inferior specimens while
preserving superior ones, promoting the retention of broadleaved trees over needled ones,
and introducing high-quality native broadleaf species [61]. This approach aims to enhance
the stand mixture while considering the stand’s distribution pattern, ultimately aligning
the forest stand’s structure with a state of random distribution. Such efforts bridge the
gap between the actual forest structure and the ideal one, ultimately promoting the health,
stability, and sustainable development of forest stands.

4.4. Limitations

The primary achievement of this study lies in the development of a novel spatial
structure analysis approach known as the hexadecimal distribution method. This method
was applied to analyze the spatial structure of mixed coniferous and broadleaf forests in
the southern regions of the country, specifically at the sample plot scale. There is significant
potential for expanding the scope of this study to encompass larger geographical areas.
Future research can delve into hexadecimal distribution characteristics at a regional scale,
offering a broader examination of spatial structures in forest stands.

While this study primarily focused on mixed coniferous and broadleaf forests, it sets
the stage for the analysis of other forest stand types in subsequent research. Moreover,
comparisons and in-depth analyses can be conducted between similar forest stands in both
northern and southern regions. These endeavors hold the promise of providing valuable
theoretical insights into the structural analysis of forests across diverse regions and forest
stand types.

5. Conclusions

This study highlights the comprehensive potential of the six-variable distribution
method in assessing forest spatial structure. In comparison to univariate distributions, the
six-variable distribution offers a more extensive multidimensional perspective, encompass-
ing a staggering 15,625 distinct structural combinations (5× 5× 5× 5× 5× 5), enabling an
in-depth analysis of forest spatial structure from multiple angles. Furthermore, we found
that forest structures characterized by a slight tree mixing (Mi = 0.25), random distribution
(Wi = 0.5), simple canopy structure (Si = 0.08, 0.25), substantial tree contact (Ci = 0.75), but
relatively open (Oi = 0.5) and moderate suitability (Ui = 0.5) exert a positive influence on
tree growth. Furthermore, the six-variable distribution method can serve as an effective
guiding approach for optimizing forest structure. If all six indicator values are poor, the
priority should be to first fall the trees with the lowest values in all indicators, followed by
trees with poor values in five indicators, and so on. The N-variable distribution analysis
method is a potent tool for assessing forest structure and guiding the optimization of forest
structural elements.
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