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Abstract: In this study, to comprehensively investigate the impact of garden plants on air quality,
we measured the leaves of 18 common garden plants in three different areas, namely, Suzhou
industrial parks (clean air area (CAA)), Xiangcheng district parks (lightly polluted area (LPA)),
and Huqiu district parks (highly polluted area (HPA)). We also measured the leaf functional traits
of different life-types of plants. To explore the trade-off strategies of the leaf traits of common
garden plants in response to air pollution and to assess the adaptive capacity of different life types
of plants to air pollution. The results show that plants in the polluted area had higher leaf dry
matter content (LDMC) and leaf nitrogen content per unit mass (Nmass), and a lower specific leaf
area (SLA), maximum net photosynthetic rate per unit area (Aarea), transpiration rate (Tr), stomatal
conductance (Gs), and chlorophyll value (SPAD). Pearson correlation analysis showed that SLA
was significantly positively correlated with Nmass, Tr, photosynthetic use efficiency (PNUE), and
SPAD, and significantly negatively correlated with LDMC, while Aarea was significantly positively
correlated with chlorophyll value. Redundancy analysis revealed that the correlation between each
leaf functional trait and atmospheric pollution factors was as follows: LDMC > Nmass > SLA > LA
> Aarea > Tr > PNUE > SPAD. The results suggest that different plant types have varying levels of
adaptability to environmental conditions. Trees were found to be the most adaptable, followed by
shrubs, herbs, and lianas. Additionally, under the stress of air pollution, herbs and lianas exhibited
characteristics of “fast investment-return” on the leaf economic spectrum, meaning they were able
to quickly allocate resources to maximize their return. However, trees and shrubs displayed traits
of “slow investment-return”, indicating a more conservative approach to resource allocation. These
results provide valuable insights into the leaf trade-off strategies of plants in Suzhou Park under air
pollution stress and can guide the selection of suitable plant species in similar environments.

Keywords: garden plants; leaf economic spectrum; air pollution; leaf functional traits; trade-off
strategies

1. Introduction

Since 1978, China has undergone rapid development, resulting in the significant emis-
sion of air pollutants that pose a threat to human respiratory health and physiological
function, hinder urban ecological construction, and impede the healthy development of
cities [1]. According to air pollution data from 2018, only one-third of the 338 monitored
cities in China met the air quality standards [2,3]. Landscape plants play a crucial role
in urban vegetation communities, providing diverse forms and species that facilitate the
creation of aesthetically pleasing urban environments [4]. In addition to their ornamen-
tal function, plants have ecological functions, including carbon sequestration, oxygen
release [5–7], dust retention, and noise reduction [8–10]. The leaves of plants serve as the
primary site for energy conversion and material exchange with the external environment,
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and their functional traits can respond sensitively to environmental changes. Wright’s
Leaf economics spectrum (LES) theory, first proposed in 2004 [11], suggests that plants
adopt a strategy of acquisition or conservatism, depending on the availability of resources,
and trade-off resource allocation to enhance their adaptive capacity under environmental
stress [12,13]. The LES theory offers a quantitative framework for predicting plant resource
utilization efficiency and trade-off strategies [14]. However, it is crucial to validate the
accuracy of the LES theory at the local scale [15]. Extensive research has demonstrated
that leaf economic spectra are primarily influenced by environmental factors such as light,
temperature, moisture, and notably, atmospheric pollutants including CO2, CO, SO2, NO2,
and O3. Atmospheric pollution emerges as a significant factor impacting plant growth and
its application in landscaping. The response of the leaf economic spectrum to atmospheric
pollution predominantly centers on leaf structural and chemical traits. Osnas et al. have
highlighted that specific leaf area (SLA) represents one of the trade-offs adopted by plants
when faced with limited environmental resources [16]. In the presence of atmospheric
pollution, plants may modify their resource allocation strategy, directing more resources
towards growth and production capacity. This adjustment aims to fortify defensive tis-
sues and structures, thereby enhancing vitality and resistance [17,18]. Chen and his team
conducted a study on the leaf functional traits of 89 plant species in the eastern part of
Guangdong Province, China [19]. Their findings revealed significant differences in specific
leaf area (SLA) and leaf dry matter content (LDMC) among the different species. Under
the stress of atmospheric pollution, the plants exhibited a tendency towards low SLA and
high LDMC [20]. The response of herbaceous plants to O3 was studied by Evans et al., who
found no significant differences in leaf thickness, fenestrated tissue thickness, and spongy
tissue thickness [21]. Other studies have reported an increase in the thickness of epidermal
tissues and a decrease in the thickness of chloroplastic tissues in acacia leaves contaminated
with NO2 and SO2 [22]. Hang and other scholars demonstrated that environmental stresses,
such as vehicle exhaust and soot, resulted in a decreasing trend in leaf nitrogen content
of garden shrubs in South China [23]. Additionally, Lai conducted a study on the leaf
functional traits of garden plants under different concentrations of NO2 fumigation, and
the results showed significant differences in the nitrogen and phosphorus contents of the
leaves of different plants in response to varying concentrations of NO2.

Chlorophyll is an important pigment for photosynthesis in green plants, which not
only absorbs and converts light energy, but also its content directly affects the photosyn-
thetic capacity of green plants [24]. At the same time, chlorophyll is also one of the most
important indicators of the degree of external stress on plants [25,26]. Different types of pol-
lution in the ecological environment will affect the chlorophyll content of green plants, thus
reflecting the level of plant resistance and sensitivity. Therefore, the change of chlorophyll
content can be used as one of the important indicators to assess the ecological adaptability
of plants. Gao Chuanyou et al. [27] showed that when plants are exposed to pollution stress
for a long period of time, their photosynthetic efficiency decreases, resulting in a lack of
basic substances required for growth and development. This is due to the effect of pollution
on plants, resulting in the decomposition of chlorophyll a and b, which leads to a decrease
in the total chlorophyll content [28]. Plant photosynthesis is also extremely sensitive to
air pollution, and studies have shown that the exposure of plants to bursts of high SO2
concentrations in the vicinity of plants can lead to a cessation of photosynthesis. Different
species of plants respond differently to SO2 concentrations. In a study by Samuel B M
et al. [29], pine, spruce, larch and lime were fumigated with SO2 for one hour. The results
showed that photosynthesis was reduced in all four species. For crops such as soybean,
wheat, rice and potato, Wu Liying et al. [30] conducted SO2 fumigation tests and found
that their photosynthesis was inhibited to different degrees.

In addition, there are many studies focusing on the effect of plant photosynthetic traits
on NO2. Okano K [31] showed that the net photosynthetic rate of gerbera increased after
two weeks of NO2 fumigation at a concentration of 0.2 µL/L, but NO2 at concentrations
of 0.5 µL/L and 1.0 µL/L inhibited the net photosynthetic rate of the plant to varying
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degrees. Sabaratnam and Gupta [32,33] found that the net photosynthetic rate of soybean
was significantly reduced at 0.4 µL/L of NO2 and increased at 0.2 µL/L of NO2. The
current study mainly focuses on the effects of atmospheric pollutants on the photosynthetic
characteristics of plants, mainly related to SO2, NO2 and other aspects, but the study of the
comprehensive effects of atmospheric pollutants is still limited. These studies highlight
the sensitivity of leaf functional traits to atmospheric pollution and the potential for plants
to adapt to environmental stress through adjustments in their leaf anatomy and nutrient
allocation strategies [34].

In recent years, Chinese scholars have conducted extensive research on the Leaf
economics spectrum (LES) theory, investigating various factors such as altitude [35], thermal
environment [36], light intensity [37], and moisture gradients [38]. Specifically, studies
conducted in China have explored the response of leaf functional traits to atmospheric
pollution. Zhu [39] and Li [40] conducted experiments on greening tree species in Beijing
and street trees in Suzhou, respectively, and observed the presence of a global leaf economic
spectrum even in the presence of atmospheric pollution.

The Leaf economic spectrum (LES) theory posits that plants employ diverse resource
allocation strategies in response to resource availability, thereby enhancing their ability
to adapt to environmental stress. Leaf functional traits, including leaf dry matter content
(LDMC), specific leaf area (SLA), leaf nitrogen content per unit mass (Nmass), and maximum
net photosynthetic rate per unit area (Aarea), play a vital role in this trade-off strategy. In
this paper, the following leaf functional traits were selected as indicators for analysis: leaf
dry matter content (LDMC); specific leaf area (SLA); the net photosynthetic rate per unit
area (Aarea); stomatal conductance (Gs); transpiration rate (Tr); the nitrogen content of
leaves per unit mass (Nmass); the calculation of photosynthetic nitrogen utilization (PNUE);
and chlorophyll values (SPAD).

This study aims to investigate the key issues in the planning and design of urban park
plant landscapes. Based on the leaf economic spectrum traits, the study aims to scientifically
evaluate the resource trade-off strategies of different life types and species of plants under
atmospheric changes, and to investigate the responses of common garden plants under
different environmental gradients, so as to provide new ideas and reference bases for the
design of landscape plants.

2. Materials and Methods
2.1. Study Area

Suzhou, Jiangsu Province (119◦55′~121◦20′ E, 30◦47′~32◦02′ N) is located on the
eastern coast of mainland China, with a subtropical monsoon maritime climate, four distinct
seasons, and an annual rainfall of about 1100 mm. The average annual temperature is
15.7 ◦C. Suzhou is located in the intersection of northern subtropical and central subtropical
zones. The bioclimatic characteristics, affected by the southeast monsoon, presenting a
warm and humid climate. The natural vegetation belongs to the northern subtropical
deciduous, evergreen broad-leaved mixed forest zone. Suzhou, located in the Yangtze
River Delta city cluster, boasts a warm and humid climate along with abundant rainfall.
It is renowned for its historical and cultural significance, showcasing precious classical
gardens and landscapes. The city has a rich tradition of carefully selecting and matching
landscape vegetation.

The city’s economic structure is dominated by industry, and the industrial structure is
dominated by heavy industry and mostly located in the upwind direction of the city. The
number of key industrial enterprises in Suzhou reaches 10,233, contributing to 96.7% of the
SO2, 59.9% of the NOx, and 49.7% of the PM2.5.

In terms of time distribution, the PM2.5 exceedance pollution is most serious in autumn
and winter, and the PM2.5 exceedance pollution is least serious in July to September. PM2.5
mainly comes from the local area of Suzhou, mainly from motor vehicle exhaust, which
reaches 33.6%, followed by coal combustion with 26.0%, industrial process with 12.8%,
dust with 12.7%, biomass combustion with 5.9%, and other emission sources with 8.1%.The
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emissions of other pollutant are as follows: SO2—98,400 tonnes; Nox—21,200 tonnes;
PM2.5—72,700 tonnes; and PM10—156,600 tonnes. The main sources of SO2 are electricity,
iron and steel, and textile; the main sources of Nox are electricity, iron and steel, and motor
vehicles; and the main sources of PM2.5 and PM10 are iron and steel, road dust, construction
dust, and electricity.

According to monitoring data requested by the research team from the Meteorological
Service of the City, three administrative districts in Suzhou with different air pollution
levels were selected (Figure 1), namely, Xiangcheng district (lightly polluted area (LPA)),
Hi-tech district (highly polluted area (HPA)) in the heavily polluted area and Suzhou
Industrial Park (clean air area (CAA)) in the clean air area as the control, and three parks
in each area were selected for sampling experiments. The air quality data in this study
were obtained submitting a request to the official website of Suzhou Bureau of Ecology and
Environment (suzhou.gov.cn), and the data included the daily average values of SO2, NO2,
PM10, PM2.5, and the daily average value of the air quality index (AQI) from 1 October to
30 November 2021.
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2.2. Collection and Measurement of Samples

The sampling areas in this paper are all urban parks and green spaces with good soil
homogeneity, which ensures the relative consistency of tree species and management condi-
tions. Sampling selected 18 species of similar age, good growth, and that are representative
of the common garden tree species in Suzhou City according to the life type and are divided
into four categories: trees, shrubs, herbs and lianas. The study of the sub-four categories
of tree species life types in the different air quality environment, response, and trade-off
mechanisms is shown in Table 1.

2.3. Sample Collection and Measurement

Plants with high rainfall in spring and summer have a higher capacity to settle and
adsorb pollutants due to their high metabolic activity [41], and the pollutants accumulated
by the plants reach their peak in autumn [42,43].

Therefore, the present study was conducted in autumn (early October to late Novem-
ber), with a total of 32 days of sampling, from 9:00 a.m. to 15:00 p.m., and no less than
30 plants of each tree species were collected, with 20 leaves per plant. The sampling sites
were clusters of trees, and the park management office was consulted before sampling
to ensure that the plants were of similar age and in good condition. We selected trees of
similar diameter at breast height for sampling. Mature fresh leaves were collected to reflect
the growth of the plant, free from pests and diseases, and then placed in Ziplock bags and
refrigerated in the laboratory for later use.

suzhou.gov.cn
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Table 1. Eighteen experimental plant species in Suzhou.

Number Plant-Life Species Familia Genus

1 Tree Cinnamomum camphora (L.) J.Pres Lauraceae Camphora
2 Osmanthus fragrans (Thunb.) Lour Oleaceae Osmanthus
3 Magnolia grandiflora L. Magnoliaceae Magnolia
4 Koelreuteria paniculata Laxm. Sapindaceae Koelreuteria
5 Ginkgo biloba L. Ginkgoaceae Ginkgo
6 Sapindus saponaria L. Sapindaceae Sapindus
7 Shrub Loropetalum chinense (R. Br.) Oliver Hamamelidaceae Loropetalum
8 Viburnum odoratissimum Ker Gawl. Viburnaceae Viburnum
9 Pittosporum tobira (Thunb.) W. T. Aiton Pittosporaceae Pittosporum

10 Hibiscus mutabilis L. Malvaceae Hibiscus
11 Buxus sinica (Rehder & E. H. Wilson) M. Cheng Buxaceae Buxus
12 Lagerstroemia indica L. Lythraceae Lagerstroemia
13 Herb Ophiopogon bodinieri H. Lév. Asparagaceae Ophiopogon
14 Oxalis corniculata L. Oxalidaceae Oxalis
15 Ophiopogon japonicus (L. f.) Ker Gawl. Asparagaceae Ophiopogon
16 Liane Jasminum mesnyi Hance Oleaceae Jasminum
17 Parthenocissus tricuspidata (Siebold & Zucc.) Planch. Vitaceae Parthenocissus
18 Trachelospermum jasminoides (Lindl.) Lem. Apocynaceae Trachelospermum

2.3.1. Measurement of Leaf Structural Traits

The cleaned leaves were placed on an analytical balance to weigh the leaf fresh weight
(LFW) and vernier calipers to measure the leaf thickness (LT), with 30 slices measured for
each species. The leaves were first placed in an oven at 80 ◦C for 3 h and then set to dry
at 55 ◦C for 48 h to a constant weight. After removal, the leaves corresponding to the leaf
fresh weight number were weighed again for leaf dry weight (LDW), and leaf dry matter
content (LDMC) was calculated with the following Formula (1):

LDMC
(

g·g−1
)
= LDW(g)/LFW(g) (1)

Leaf area measurement (LA), leaf length (LL), and leaf width (LW) were determined
using a leaf area scanner (MICROTEK ScanMaker i800plus). Leaf mass per area (LMA) was
calculated according to Formula (2), and specific leaf area (SLA) was calculated according
to Formula (3).

LMA
(

g·cm−2
)
= LDW(g)/LA

(
cm2

)
(2)

SLA
(

cm2·g−1
)
= LA

(
cm2

)
/LDW(g) (3)

Dried samples were ground and crushed through a sieve, and 1.0–15.0 mg of each
sample was weighed using an analytical balance (XPE105, METTLER TOLEDO). Samples
were wrapped in tin capsules and placed in an elemental analyzer (EURO EA3000) for the
determination of the nitrogen content of leaves per unit mass (Nmass), and the mean value
of the same species was taken as the value of the assay.

2.3.2. Measurement of Leaf Physiological Traits

Chlorophyll values (SPAD) of mature and undamaged plant leaves were determined
using a portable chlorophyll meter (TYS-B) in an outdoor environment with natural light.
The 3rd to 5th mature leaves of the plant at the front of the branches in the mid-height
part of the sunny side were measured using a photosynthesizer (PPsystem, Li-Cor6400XT,
Beijing, China), and the values were obtained in a standard leaf chamber. The instrument
was set with LED red and blue light sources, light intensity of 1500 µmol m−2·s−1, CO2
concentration of 400 µmol L−1, and leaf chamber temperature of 30 ◦C, and the average
value was taken after three repetitions of measurement. The net photosynthetic rate per
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unit area (Aarea), transpiration rate (Tr), and stomatal conductance (Gs) were measured. The
calculation of photosynthetic nitrogen utilization (PNUE) was performed using Formula (4):

PNUE
(
µmol·g−1N·s−1

)
= Aarea

(
µmolCO2m2·s−1

)
/Narea

(
g·cm−2

)
(4)

2.4. Data Processing and Statistics

For leaf functional traits, SPSS 22.0 software was used, and the degree of variation in
each of the leaf economic spectrum traits was assessed using the coefficient of variation.
The calculation of the coefficient of variation (C.V) was performed using Formula (5):

C.V = (SD/MN)·100% (5)

where SD is the standard deviation, and MN is the mean.
One-way analysis of variance (ANOVA) was adopted to investigate the response of

structural and physiological traits to different gradients of atmospheric pollution; Pearson
correlation analysis (PCA) was used to investigate the correlation of leaf traits between
different types of landscape plants and different gradients of atmospheric pollution; Canoco
5.0 software was used to carry out the redundancy analysis (RDA) was performed using
Canoco 5.0 software to investigate the correlation between leaf traits of different landscape
plants and atmospheric pollutants, and to screen the leaf traits related to air pollution.

To calculate the value of fuzzy membership function analysis (FMFA), when leaf traits
are positively correlated with thermal environment, Formula (6) was used and is as follows:

R(Xi) = (Xi − Xmin)/(Xmax − Xmin) (6)

If negatively correlated, Formula (6) is as follows:

R(Xi)inverse = 1 − (Xi − Xmin)/(Xmax − Xmin) (7)

where Xi is the measured value of the i-th indicator, Xmax indicates the maximum value of
the measured indicator, and Xmin is the minimum value of the measured indicator.

3. Results
3.1. Air Pollution Gradient Analysis

From the data of the Suzhou Eco-Environmental Bureau, the air pollution level in the
three gradient zones follows the trend HPA > LPA > CAA. Figure 2 shows that compared
to CAA, the content of SO2, NO2, PM2.5, and PM10 in HPA and LPA increased significantly,
and that the urban air quality composite index AQI was the most distinctive among the
three zones. The degree of air quality differentiation among the three gradient zones was
significant. The range of contaminants is shown in Table 2.

Table 2. Atmospheric pollution concentration.

Area SO2 (µg/m3) NO2 (µg/m3) PM10 (µg/m3) PM2.5 (µg/m3) AQI

CAA Average value 4.87 27.00 54.00 11.00 46.00
Min 1.00 5.00 8.00 3.00 18.00
Max 17.00 84.00 94.00 63.00 170.00

LPA Average value 7.93 28.90 62.20 25.00 79.00
Min 3.00 4.00 10.00 4.00 18.00
Max 15.00 105.00 99.00 66.00 169.00

HPA Average value 9.37 43.80 65.53 27.37 126.00
Min 6.00 6.00 7.00 5.00 15.00
Max 32.00 70.00 164.00 77.00 500.00

Note: The pollutant values in the table are 24 h average concentrations.



Forests 2023, 14, 2253 7 of 18
Forests 2023, 14, x FOR PEER REVIEW  7  of  17 
 

 

 

Figure 2. Air pollution. 

Table 2. Atmospheric pollution concentration. 

Area  SO2 (µg/m3)  NO2 (µg/m3)  PM10 (µg/m3)  PM2.5 (µg/m3)  AQI 

CAA  Average value  4.87  27.00  54.00  11.00  46.00 

  Min  1.00  5.00  8.00  3.00  18.00 

  Max  17.00  84.00  94.00  63.00  170.00 

LPA  Average value  7.93  28.90  62.20  25.00  79.00 

  Min  3.00  4.00  10.00  4.00  18.00 

  Max  15.00  105.00  99.00  66.00  169.00 

HPA  Average value  9.37  43.80  65.53  27.37  126.00 

  Min  6.00  6.00  7.00  5.00  15.00 

  Max  32.00  70.00  164.00  77.00  500.00 

Note: The pollutant values in the table are 24 h average concentrations. 

3.2. Relationships between Air Pollutants and Leaf Functional Traits 

In this study, redundancy analysis was used in order to investigate the relationship 

between air pollution factors and different leaf functional traits of 18 garden plants in Su-

zhou. Redundancy analyses were performed with plant  leaf functional traits as species 

variable  groups  and  each pollutant  in  the  air  environment  as  environmental  variable 

groups. Each arrow points to the direction of the sharpest increase in the value of the cor-

responding environmental variable. The angle between the arrows indicates the correla-

tion between the environmental variable and the leaf trait: a positive correlation is present 

when the angle is less than 90°, and a negative correlation is present when the angle is 

greater than 90°. The length of the arrows indicates the fit of the environmental variables. 

The environmental correlations between each trait and air pollution were as follows: 

LDMC > Nmass > SLA > LA > Aarea > TR > PNUE > SPAD. Each pollutant was positively 

correlated with the LDMC and Nmass of trees, and negatively correlated with SLA, Gs, Tr, 

SPAD, Aarea, and PNUE, with Axis 1 and Axis 2 explaining 76.17% and 4.82% of all the 

information, respectively, cumulatively explaining 80.99% of the information (Figure 3a). 

Each pollution factor was positively correlated with shrub LDMC, Nmass, and SLA, and 

negatively correlated with Gs, Tr, SPAD, Aarea, and PNUE, with Axis 1 explaining 61.02% 

of all the information and Axis 2 explaining 1.48%, cumulatively explaining 62.5% of the 

information (Figure 3b). Vine LDMC, Nmass, and LA were positively correlated with each 

pollutant, and other leaf functional traits were negatively correlated with each pollutant 

factor, with Axis 1 explaining 82.96% of all the information and Axis 2 explaining 6.19%, 

with a cumulative total of 89.15% (Figure 3c). Herbaceous LDMC, Nmass, and LA were pos-

itively correlated with each air pollutant, and all other functional traits were negatively 

correlated, with Axis  1  and Axis  2  explaining  79.44%  and  3%  of  all  the  information, 

Figure 2. Air pollution.

3.2. Relationships between Air Pollutants and Leaf Functional Traits

In this study, redundancy analysis was used in order to investigate the relationship
between air pollution factors and different leaf functional traits of 18 garden plants in
Suzhou. Redundancy analyses were performed with plant leaf functional traits as species
variable groups and each pollutant in the air environment as environmental variable groups.
Each arrow points to the direction of the sharpest increase in the value of the corresponding
environmental variable. The angle between the arrows indicates the correlation between
the environmental variable and the leaf trait: a positive correlation is present when the
angle is less than 90◦, and a negative correlation is present when the angle is greater than
90◦. The length of the arrows indicates the fit of the environmental variables.

The environmental correlations between each trait and air pollution were as follows:
LDMC > Nmass > SLA > LA > Aarea > TR > PNUE > SPAD. Each pollutant was positively
correlated with the LDMC and Nmass of trees, and negatively correlated with SLA, Gs, Tr,
SPAD, Aarea, and PNUE, with Axis 1 and Axis 2 explaining 76.17% and 4.82% of all the
information, respectively, cumulatively explaining 80.99% of the information (Figure 3a).
Each pollution factor was positively correlated with shrub LDMC, Nmass, and SLA, and
negatively correlated with Gs, Tr, SPAD, Aarea, and PNUE, with Axis 1 explaining 61.02%
of all the information and Axis 2 explaining 1.48%, cumulatively explaining 62.5% of the
information (Figure 3b). Vine LDMC, Nmass, and LA were positively correlated with each
pollutant, and other leaf functional traits were negatively correlated with each pollutant
factor, with Axis 1 explaining 82.96% of all the information and Axis 2 explaining 6.19%,
with a cumulative total of 89.15% (Figure 3c). Herbaceous LDMC, Nmass, and LA were
positively correlated with each air pollutant, and all other functional traits were negatively
correlated, with Axis 1 and Axis 2 explaining 79.44% and 3% of all the information, respec-
tively, and cumulatively explaining 82.44% of the information (Figure 3d). It can be seen
that the first two axes clearly reflect the relationship between plant leaf functional traits and
air pollutants, and are mainly determined by Axis 1, indicating that the degree of linear
combination between the sorting axes and atmospheric environmental factors can better
reflect the correlation between the environment and plant leaf functional traits, and the
sorting results are reliable.

3.3. Leaf Functional Traits

ANOVA analysis was conducted on 18 garden tree species in Suzhou City, and it was
concluded that the differences between the traits of different garden plant life type in the
three air quality gradient zones in Suzhou City were significant (Table 3).
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Figure 3. (a) Trees. (b) Shrubs. (c) Lianas. (d) Herbs.

In CAA and LPA, the LDMC was trees > shrubs > lianas > herbs, and in HPA, lianas >
trees > shrubs > herbs; herb SLA was the largest in the three gradient zones, which was
herbs > lianas > trees > shrubs in CAA and LPA, and herbs > lianas > shrubs > trees in
HPA, and herbs were significantly different from trees, shrubs, and lianas. The Aarea of
shrubs were the largest in all three gradient zones and differed significantly from other life
types; Gs of different life types showed herbs > shrubs > lianas > trees in the clean zone
and LPA, and shrubs > herbs > lianas > trees in the HPA; shrub Tr was the highest in all
three gradient zones, and showed shrubs > trees > herbs > lianas in the CAA, shrubs >
herbs > lianas > trees in the LPA, and shrubs > herbs > lianas > trees in the HPA. Nmass
was herbs > lianas > trees > shrubs in the CAA, lianas > herbs > trees > shrubs in the LPA,
and lianas > herbs > shrubs > trees in the HPA; herb PNUE was the highest in all the three
gradient zones, herbs > lianas > shrubs > trees in the CAA, and herbs > shrubs > lianas >
trees in the remaining two zones; the SPAD of each plant life type was the highest in the
CAA. In the CAA, the SPAD of each life type was lianas > shrubs > herbs > trees; in the
LPA, it was lianas > shrubs > trees > herbs; and in the HPA, it was lianas > shrubs > tree s>
herbs, and it formed a significant difference among the four life types.
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Table 3. Plant leaf functional traits in gradient zones.

Area Plant-Life LDMC SLA Aarea Gs Tr Nmass PNUE SPAD

CAA Tree 0.433 ± 0.071 a 10,013.975 ± 2606.067 b 16.48 ± 3.705 b 0.006 ± 0.004 a 0.62 ± 0.952 a 2.586 ± 0.395 b 2.437 ± 1.148 b 47.023 ± 9.302 a
Shrub 0.375 ± 0.047 a 6659.786 ± 2683.895 b 20.669 ± 2.898 a 0.013 ± 0.008 ab 0.762 ± 0.86 a 2.058 ± 0.583 c 8.012 ± 6.319 b 51.42 ± 12.868 a
Herb 0.296 ± 0.092 b 12,045.93 ± 7313.533 b 18.767 ± 3.335 ab 0.008 ± 0.002 bc 0.27 ± 0.104 a 2.68 ± 0.449 b 17.039 ± 3.079 b 52.994 ± 8.389 a
Vine 0.248 ± 0.103 b 41,495.877 ± 45,318.948 a 17.148 ± 4.436 b 0.015 ± 0.014 a 0.443 ± 0.329 a 3.105 ± 0.251 a 35.425 ± 41.661 a 51.068 ± 8.449 a

LPA Tree 0.512 ± 0.105 a 7254.972 ± 1575.539 b 14.734 ± 2.957 b 0.005 ± 0.003 b 0.162 ± 0.056 b 2.293 ± 0.239 c 1.918 ± 1.084 c 45.018 ± 6.056 bc
Shrub 0.385 ± 0.053 b 5740.056 ± 3100.166 b 17.884 ± 2.592 a 0.009 ± 0.005 ab 0.577 ± 0.614 a 2.111 ± 0.476 c 8.562 ± 8.643 b 48.891 ± 11.567 ab
Herb 0.381 ± 0.038 b 8010.565 ± 5156.448 b 12.901 ± 1.469 b 0.006 ± 0.003 b 0.177 ± 0.076 b 3.361 ± 0.106 a 6.29 ± 3.896 bc 53.133 ± 2.204 a
Vine 0.253 ± 0.084 c 27,374.194 ± 27,628.919 a 12.934 ± 1.397 b 0.011 ± 0.01 a 0.201 ± 0.089 b 2.781 ± 0.781 b 17.138 ± 11.502 a 40.67 ± 4.988 c

HPA Tree 0.491 ± 0.151 a 6822.454 ± 2559.228 b 12.926 ± 3.033 b 0.006 ± 0.003 b 0.113 ± 0.067 b 2.466 ± 0.227 c 1.896 ± 1.17 c 42.611 ± 9.565 ab
Shrub 0.381 ± 0.136 b 7111.725 ± 8816.375 b 18.764 ± 5.07 a 0.013 ± 0.013 a 0.449 ± 0.425 a 2.697 ± 1.01 bc 9.002 ± 12.428 a 47.066 ± 12.162 a
Herb 0.495 ± 0.092 a 7959.507 ± 4706.202 b 13.042 ± 2.754 b 0.008 ± 0.005 ab 0.123 ± 0.047 b 3.868 ± 0.749 a 4.121 ± 3.28 ab 49.276 ± 1.217 a
Vine 0.279 ± 0.109 b 20,180.6 ± 14,521.167 a 12.046 ± 1.263 b 0.008 ± 0.005 ab 0.179 ± 0.135 b 3.222 ± 0.825 b 10.265 ± 7.399 a 35.589 ± 6.299 b

(a–c) indicate significant differences in functional traits (p < 0.05). Note: leaf dry matter content (LDMC); specific leaf area (SLA); the net photosynthetic rate per unit area (Aarea); stomatal
conductance (Gs); transpiration rate (Tr); the nitrogen content of leaves per unit mass (Nmass); calculation of photosynthetic nitrogen utilization (PNUE); chlorophyll values (SPAD).
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3.4. Characteristics of Variation in Plant Leaf Traits in Different Gradient Zones

There were interspecific differences in leaf traits among trees, shrubs, lianas, and
herbs under different air pollution environment, and the variation of each trait among
the 18 garden plants ranged from 8.1% to 153.5% for CAA, 4.1% to 106.5% for LPA, and
2.5% to 138.1% for HPA. The leaf trait with the highest coefficient of variation for both
CAA and LPA was Tr, and the leaf trait with the highest coefficient of variation for HPA
was PNUE. The coefficients of variation for LDMC, Nmass, and SPAD were all smaller in
the three different air environments. The smallest coefficients of variation for trees in the
three different gradients were 15.3%, 10.4%, and 9.2% for Nmass, respectively. The smallest
coefficients of variation for shrubs in CAA and LPA were LDMC, and the largest was Tr.
The smallest coefficient of variation for shrubs in HPA was SPAD, and the largest was
PNUE. The smallest coefficient of variation for lianas in the three different gradients was
SPAD, and the largest coefficient of variation for lianas was PNUE. The minimum value
was SPAD in all three groups; the maximum values were SLA in CAA and LPA, and PNUE
in HPA. The minimum value of the coefficient of variation for herbs was Nmass in CAA,
and the minimum value was Aarea in both contaminated areas (Table 4).

Table 4. Characteristics of variation in plant leaf functional traits in different gradient zones.

Area Plant-Life LDMC SLA Aarea Gs Tr Nmass PNUE SPAD

CAA Tree 0.164 0.260 0.225 0.667 1.535 0.153 0.471 0.198
Shrub 0.125 0.403 0.140 0.615 1.129 0.283 0.789 0.250
Herb 0.311 0.607 0.178 0.250 0.385 0.168 0.181 0.158
Liane 0.415 1.092 0.259 0.933 0.743 0.081 1.176 0.165

LPA Tree 0.206 0.217 0.201 0.620 0.344 0.104 0.565 0.135
Shrub 0.137 0.540 0.145 0.604 1.065 0.225 1.009 0.237
Herb 0.099 0.644 0.114 0.417 0.431 0.032 0.619 0.041
Liane 0.332 1.009 0.108 0.853 0.444 0.281 0.671 0.123

HPA Tree 0.308 0.375 0.235 0.500 0.593 0.092 0.617 0.224
Shrub 0.357 1.240 0.270 1.000 0.947 0.374 1.381 0.258
Herb 0.186 0.591 0.211 0.625 0.382 0.194 0.796 0.025
Liane 0.391 0.720 0.105 0.625 0.754 0.256 0.721 0.177

Note: leaf dry matter content (LDMC); specific leaf area (SLA); the net photosynthetic rate per unit area (Aarea);
stomatal conductance (Gs); transpiration rate (Tr); the nitrogen content of leaves per unit mass (Nmass); calculation
of photosynthetic nitrogen utilization (PNUE); chlorophyll values (SPAD).

3.5. Correlation Analysis between Leaf Functional Traits
3.5.1. Leaf Traits of Plants

As can be seen in Figure 4, among leaf structural traits, LDMC was highly significantly
negatively correlated with SLA (p < 0.01). Among leaf physiological traits, Nmass was
highly significantly negatively correlated with Aarea and significantly negatively correlated
with Tr (p < 0.05). Aarea was highly significantly positively correlated with Gs and Tr,
and significantly positively correlated with PNUE and SPAD. Gs was highly significantly
positively correlated with PNUE, and significantly negatively correlated with SPAD. SPAD
was highly significantly negatively correlated with both Tr and PNUE.
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Figure 4. Comprehensive correlation analysis of plant leaf functional traits. * ≤ 0.05; ** ≤ 0.01.

Among the structural and physiological traits of leaves, LDMC was significantly
negatively correlated with Aarea and Gs, and highly significantly negatively correlated
with PNUE; SLA was significantly positively correlated with Nmass, highly significantly
positively correlated with Gs and PNUE, and significantly negatively correlated with SPAD.

3.5.2. Leaf Traits of Plants of Different Life Forms

As can be seen from Figure 5, between leaf structural traits, LDMC and SLA were
significantly negatively correlated in tree plant leaves. Between leaf structural and physi-
ological traits, LDMC was highly significantly negatively correlated with Aarea, and SLA
was significantly positively correlated with Gs and PNUE. Between leaf physiological
traits, Nmass was highly significantly positively correlated with Tr, Aarea was significantly
positively correlated with Tr, and Gs was significantly positively correlated with PNUE.
SPAD was highly significantly negatively correlated with PNUE and Tr.
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Between leaf structural traits, shrub plant leaf LDMC was highly significantly nega-
tively correlated with SLA. Between leaf structural traits and physiological traits, LDMC
was significantly positively correlated with Nmass and Aarea, highly significantly negatively
correlated with SPAD, and highly significantly negatively correlated with SLA and PNUE.
Between leaf physiological traits, Nmass was significantly negatively correlated with Tr,
and Aarea was highly significantly positively correlated with Gs.Gs was highly significant
positively correlated with PNUE, Gs was highly significant negatively correlated with
PNUE, and PNUE was highly significant negatively correlated with SPAD.

Between the structural traits of leaves, LDMC of lianas was significantly negatively
correlated with SLA. between the structural and physiological traits of leaves, LDMC
was highly significantly positively correlated with Nmass, highly significantly negatively
correlated with Aarea, highly significantly negatively correlated with Tr and PNUE, and
significantly positively correlated with Gs and Tr. Between the physiological traits of leaves,
Nmass was highly significantly negatively correlated with Aarea, Tr and PNUE were highly
significant negatively correlated, Aarea was highly significant positively correlated with Tr,
PNUE and SPAD, Tr was highly significant positively correlated with PNUE, and PNUE
was significantly positively correlated with SPAD.

In herbaceous plants, the structural trait LDMC was highly significantly negatively
correlated with SLA; between structural shape and physiological traits, LDMC was highly
significantly negatively correlated with Aarea, Gs, and PNUE, highly significantly nega-
tively correlated with Tr, and highly significantly positively correlated with SPAD, and SLA
was highly significantly positively correlated with Aarea, Gs, Tr, and PNUE, and highly
significantly negatively correlated with SPAD; and among the leaf physiological traits, Aarea
was significantly positively correlated with Gs, Tr, and PNUE; Gs was significantly posi-
tively correlated with Tr and PNUE and significantly negatively correlated with SPAD; Tr
was significantly positively correlated with PNUE; and PNUE was significantly negatively
correlated with SPAD.

3.6. Fuzzy Affiliation Function Analysis

Among the four life types, the order of adaptability to the environment was trees
(0.480) > shrubs (0.418) > herbs (0.374) > lianas (0.367) (Figure 6). Among the trees, the
order of adaptability from strong to weak was Magnolia grandiflora, Koelreuteria paniculata,
Camphora officinarum, Osmanthus fragrans, Ginkgo biloba, and Sapindus saponaria, respectively.
Shrubs were ranked from strongest to weakest in order of adaptability as Hibiscus mutabilis,
Pittosporum tobira, Loropetalum chinense, Viburnum odoratissimum, Buxus sinica, and Lager-
stroemia indica. The adaptability of herbaceous plants was ranked as Oxalis corniculata >
Ophiopogon japonicus > Ophiopogon bodinieri, and that of lianas was ranked as Parthenocissus
tricuspidata > Jasminum mesnyi > Trachelospermum jasminoides. The adaptability of plants
with different life types in CAA was greater than that in HPA, except for Buxus sinica. In
HPA, the most adaptable tree was Magnolia grandiflora (0.538), and the weakest was Sapindus
Saponaria (0.359); the most adaptable shrub was Hibiscus mutabilis (0.447), and the weakest
was Lagerstroemia indica (0.339). The strongest herb was Oxalis corniculata (0.423), and the
weakest was Ophiopogon bodinieri (0.316); among lianas, the strongest was Parthenocissus
tricuspidata (0.405), and the weakest was Trachelospermum jasminoides (0.320).



Forests 2023, 14, 2253 13 of 18

Forests 2023, 14, x FOR PEER REVIEW  12  of  17 
 

 

(0.423), and the weakest was Ophiopogon bodinieri (0.316); among lianas, the strongest was 

Parthenocissus tricuspidata (0.405), and the weakest was Trachelospermum jasminoides (0.320). 

 

Figure 6. Fuzzy affiliation function analysis of plant environmental adaptation. 

4. Discussion 

4.1. Leaf Functional Traits in Relation to Air Quality 

In  this study, we observed a positive correlation between  the  leaf  functional  traits 

specific leaf area (SLA) and leaf nitrogen content (Nmass), which aligns with the findings of 

previous research conducted on Jinhua Beishan plants [44]. Furthermore, Nmass exhibited 

a highly significant positive correlation with leaf net assimilation rate (Aarea), which in turn 

showed positive correlations with stomatal conductance (Gs), transpiration rate (Tr), pho-

tosynthetic nitrogen use efficiency (PNUE), and chlorophyll content (SPAD). The positive 

correlation between SLA and Nmass suggests that plants have the ability to modify their 

leaf structure to enhance nitrogen accumulation, thereby improving photosynthetic effi-

ciency per unit area and enhancing leaf transpiration rate. This adaptive response aids in 

Figure 6. Fuzzy affiliation function analysis of plant environmental adaptation.

4. Discussion
4.1. Leaf Functional Traits in Relation to Air Quality

In this study, we observed a positive correlation between the leaf functional traits
specific leaf area (SLA) and leaf nitrogen content (Nmass), which aligns with the findings
of previous research conducted on Jinhua Beishan plants [44]. Furthermore, Nmass exhib-
ited a highly significant positive correlation with leaf net assimilation rate (Aarea), which
in turn showed positive correlations with stomatal conductance (Gs), transpiration rate
(Tr), photosynthetic nitrogen use efficiency (PNUE), and chlorophyll content (SPAD). The
positive correlation between SLA and Nmass suggests that plants have the ability to modify
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their leaf structure to enhance nitrogen accumulation, thereby improving photosynthetic
efficiency per unit area and enhancing leaf transpiration rate. This adaptive response
aids in mitigating the detrimental effects of air pollution. However, under high-pollution
conditions (HPA), we observed a decrease in Tr across all plant life types. This decline
may be attributed to the plants’ regulation of stomatal [45,46] closure or contraction upon
reaching a certain threshold of air pollution. This adaptive mechanism serves to prevent
the intrusion of pollutants, consequently reducing transpiration rates.

The size of the SPAD value reflects the chlorophyll content in leaves, and it can be
considered an indicator of leaf development. The correlation between Aarea and SPAD
revealed a decrease in both variables under HPA conditions. This decline can be attributed
to the inadequate accumulation of organic matter in plant leaves under environmental
stress, leading to premature leaf senescence and chlorophyll decomposition, ultimately
resulting in a decrease in SPAD values. Du’s research presents the same results, with his
team finding that chlorophyll a and b are damaged to varying degrees in atmospheric
pollution environments, and that total chlorophyll content decreases [47].

The results of redundancy analyses showed that LDMC and Nmass were leaf functional
traits with consistent and strong correlation with the direction of change of each pollution
factor among all plant types, which indicated that LDMC and Nmass could be used as good
leaf traits to reflect urban air quality. In the face of air pollution stress, plants improved their
physiology by increasing LDMC and at the same time regulated the rate of leaf nitrogen
building to potentially affect their photosynthetic utilization efficiency and chlorophyll
value, improving their adaptability to air pollution environments. This is consistent with
the findings of Juanxia Li [48] and Jiyou Zhu [39].

4.2. Relationships between Leaf Traits of Different Life Types

Differences in functional traits among species serve as the foundation for species
coexistence in natural ecosystems, while intraspecific trait variation also contributes signifi-
cantly to species coexistence and distribution [49]. Only by considering both intraspecific
and interspecific trait variations can we accurately assess the response of species to envi-
ronmental changes and resource competition during community development [50]. Leaf
dry matter content (LDMC) serves as a critical indicator of nutrient resource conservation
in plants [51]. High LDMC values indicate the ability of plants to thrive in resource-limited
environments, enabling them to develop growth responses and maintain nutrient conser-
vation efficiency [52]. In this study, the mean LDMC value for trees, shrubs, lianas, and
herbs in Suzhou were found to be 0.479 g·g−1, 0.380 g·g−1, 0.371 g·g−1, and 0.26 g·g−1,
respectively. The higher LDMC values observed in trees and shrubs suggest their enhanced
resistance to physical damage. Moreover, the significant increase in LDMC among all plant
types in areas with higher pollution levels reflects the leaf’s efficient nutrient stabilization
mechanism, enabling survival in more polluted air environments.

Research has demonstrated that plants with lower specific leaf area (SLA) values
exhibit efficient nutrient conservation, while those with higher SLA values are better at
capturing light and have relatively higher growth rates [53]. We investigated the variations
in SLA among plant life forms in different air pollution gradients. The results show
significant differences in SLA between herbaceous plants and other plant types across
the air quality gradients. Additionally, SLA values for all plant types were negatively
correlated with air pollution levels. Trees and shrubs exhibited lower SLA values compared
to herbs and lianas, which occupy the middle and upper layers of the community and
are influenced by factors such as strong light. These tree and shrub species allocate more
biomass and nitrogen to build cell walls, enabling them to accumulate photosynthesis
products necessary for overwintering and enhancing leaf toughness [54]. In contrast,
herbaceous plants tend to allocate more nitrogen to thylakoids and carboxylases involved
in respiration, resulting in higher photosynthetic capacity, as evidenced by their larger leaf
area [55], lower leaf thickness, and higher SLA values [56].
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We aimed to investigate the variations in Aarea, Tr, and Gs among different plant life
forms. The mean Aarea values were 14.713 µmolm−2·s−1 for trees, 19.116 µmolm−2·s−1

for shrubs, 14.903 µmolm−2·s−1 for lianas, and 14.043 µmolm−2·s−1 for herbs. The Aarea
of shrubs was significantly higher than that of other plant types, indicating their greater
ability to absorb CO2 and nitrogen from the air and use them for photosynthesis, ultimately
improving plant growth efficiency and productivity. Furthermore, Aarea was significantly
correlated with the Tr and Gs of different plant types, which is consistent with the findings
of Shao et al.’s study on the main greening tree species in Shanghai [57].

We also examined the SLA, Nmass, and PNUE of different plant types. The results
reveal that herbaceous plants had significantly higher SLA, Nmass, and PNUE values
compared to trees, shrubs, and lianas. This finding is similar to the results of Song He et al.’s
study on the leaf economic spectrum of Beijing Botanical Gardens, which suggests that the
specific combination of structural and physiological traits of herbaceous plants, such as
thin leaf blades and high photosynthetic capacity, gives them a competitive advantage in
their habitat [58].

4.3. Analysis of Plants in the Leaf Economic Spectrum

The leaf economic spectrum represents a quantitative manifestation of the variation
in plant leaf functional traits, as assessed through a series of trait indicators (Figure 7).
In this study, we observed significantly higher values of SLA, Nmass, and PNUE in herbs
and lianas compared to shrubs and trees, with the lowest values found in trees. This
suggests that herbs and lianas occupy the “fast investment-return” end of the leaf economic
spectrum, characterized by high nutrient concentrations, rapid photosynthetic rates, fast
respiration rates, and short lifespans. On the other hand, shrubs and trees occupy the “slow
investment-return” end of the spectrum, characterized by low nutrient concentrations, high
photosynthetic rates, slow respiration rates, and long lifespans.
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However, the position of different life types on the leaf economic spectrum is also
shifted under different atmospheric pollution environments. We observed that trees under
LPA and HPA were biased towards the “fast investment-return” end of the spectrum,
whereas plants in CAA were biased towards the “slow investment-return end”; however,
we did not observe any significant positional differences for shrubs. The largest deviation
in the leaf economic spectrum was for lianas, with very significant shifts to both ends of
the spectrum for both plants in CAA and HPA; herbs were second only to lianas, but there
was not much difference between the shifts for plants in the CAA and LPA environments.
Overall, plants in CAA were more oriented towards the “slow investment-return end”,
while plants in LPA and HPA were more oriented towards the “fast investment-return”
end, which confirms that plants will make different levels of resource This confirms that
plants make different levels of resource trade-offs in air pollution environments.
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4.4. Research Limitations

In this study, the relationship between leaf economic spectral traits and the effect
of air pollution on 18 plant species in Suzhou City was analyzed only in a single season
of a single year, while environmental factors such as temperature, wind speed, potential
evapotranspiration, and water [62,63] have seasonal differences and may lead to variations
in the trade-off strategies of the plants and cause bias in the experimental results. In
addition, this may also introduce a bias in the relationship between leaves to air pollutants
and the overall plant response to the environment are different. In future studies, we can
continue to expand the research level by combining the functional traits of the whole plant,
or set up experimental sample plots by considering the effects of leaf litter and roots on
air pollution, and conduct research from a community perspective by combining leaf area
index, plant height and crown size, and try to monitor the experiments for many years in
order to ensure a more comprehensive experiment.

5. Conclusions

The results of this study on garden plants in Suzhou City show correlations among
leaf economic spectrum traits that are consistent with global patterns. In this study, we
investigated the response of plant leaf traits under urban air pollution, enriched the small-
scale study of leaf economic spectrum theory, and proposed a plant-screening model under
different air pollution environments so as to make the plant configuration more in line with
the objective quantitative standards, and to provide a model reference for the construction
of scientific, reasonable and ecologically balanced urban parks and green spaces under the
air pollution environment.
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