
Citation: Xie, C.; Chen, L.; Li, M.; Jim,

C.Y.; Liu, D. BIOCLIM Modeling for

Predicting Suitable Habitat for

Endangered Tree Tapiscia sinensis

(Tapisciaceae) in China. Forests 2023,

14, 2275. https://doi.org/10.3390/

f14112275

Academic Editor: Peter A. Bieniek

Received: 23 October 2023

Revised: 16 November 2023

Accepted: 18 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

BIOCLIM Modeling for Predicting Suitable Habitat for
Endangered Tree Tapiscia sinensis (Tapisciaceae) in China
Chunping Xie 1,† , Lin Chen 2,† , Meng Li 2 , Chi Yung Jim 3,* and Dawei Liu 4

1 Tropical Biodiversity and Bioresource Utilization Laboratory, Qiongtai Normal University,
Haikou 571127, China; xcp@mail.qtnu.edu.cn

2 Co-Innovation Center for the Sustainable Forestry in Southern China, College of Life Sciences,
Nanjing Forestry University, Nanjing 210037, China; clinechen@njfu.edu.cn (L.C.); limeng@njfu.edu.cn (M.L.)

3 Department of Social Sciences and Policy Studies, Education University of Hong Kong,
Tai Po, Hong Kong, China

4 Key Laboratory of State Forest and Grassland Administration Wildlife Evidence Technology, Nanjing Police
College, Nanjing 210023, China; dwliu@nfpc.edu.cn

* Correspondence: cyjim@eduhk.hk
† These authors contributed equally to this work.

Abstract: Climate change jeopardizes species survival, particularly for endangered species. This
risk extends to the endangered Chinese endemic tree Tapiscia sinensis. The factors underpinning
T. sinensis’s habitat distribution are poorly understood, and its potential response to future climate
scenarios remains unclear. With six shortlisted climate factors and 117 occurrence records, we mod-
eled T. sinensis’s potential distribution across China using the BIOCLIM model. We applied principal
component analysis to examine the primary climate factors restricting its geographical range. The
findings indicate that T. sinensis’ range is principally located in China’s middle subtropical climatic
zone at low–mid altitudes. The principal component analysis identified two critical factors repre-
senting temperature and precipitation. Temperature was the most critical factor limiting T. sinensis
distribution, especially the effect of temperature seasonality and isothermality. The habitat suitability
model generated by BIOCLIM under current climate conditions demonstrated strong concordance
between the predicted suitable areas and the present actual distribution range. These results verify
that the model can reliably identify habitats conducive to T. sinensis growth and survival. However,
under a hypothetical future climate scenario of doubled atmospheric CO2 concentrations for 2100,
the model indicates a precipitous reduction and fragmentation in the areas with excellent suitability
conditions. This predicted decline highlights the considerable threats posed by climate change to the
long-term survival of this endangered species in China. Our habitat modeling yields critical insights
that inform the development of science-based strategies and best practices to improve conservation
management plans for research, protection, nursery cultivation, and sustainable planting in China.
Habitat suitability knowledge could aid introduction and cultivation efforts for T. sinensis globally in
places with analogous climates.

Keywords: Tapiscia sinensis; endangered species; geographical range; bioclimatic factor; suitable
habitat; climate change scenario

1. Introduction

Climate is the primary factor shaping the geographical distribution of species and
one of the key factors that limit species reproduction and growth [1]. Understanding the
correlation between species geographical distribution and climate can help us in grasping
the macro patterns of threatened status, endemism, diversity, evolution, and development,
and provide valuable clues for predicting future distribution patterns [2]. Global warming
has led to the fragmentation of plant habitats and a sharp decrease in suitable habitats,
which has driven some species to the brink of extinction [3]. Some species have responded
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to environmental changes by migration to modify distribution areas [4]. Therefore, studying
the impacts of current and future climate conditions on species geographical patterns is
crucial to ensure timely planning and implementing effective conservation strategies [5].

Species distribution models (SDMs) have been developed to analyze the evolution of
species distribution patterns. SDMs have been widely applied in quantitative ecology to
evaluate species patterns, which has become a research hotspot [6]. They have been used to
formulate practical problem solutions and scientific hypotheses [7]. SDMs are also known
as habitat or niche models, bioclimatic envelopes, and resource selection functions. They
describe the observed distribution patterns of specific species using environmental and
geographical data [8]. Their ability to process diverse data, including occurrence records in
museums and herbaria, has permitted widespread applications [9].

In assessing climate change’s effects on species distribution evolution, SDM predictions
can extend beyond the regions supplying the original training samples [10]. For example,
the MaxEnt model can explore the suitable distribution range of Mentha pulegium L. in
Tunisia and identify the main ecological factors limiting its distribution. The findings pro-
vide critical information that will help us to develop management strategies to protect and
conserve the species [11]. The coupling of geographic information system (GIS) technology
and data analysis has promoted new modeling methods and applications [12]. These
range from simple environmental matching techniques, to complex nonlinear relationships
between environment and species occurrence, and maximum entropy modeling [13]. The
currently used SDMs include MaxEnt, GLM, GAM, BRT, BIOCLIM, DOMAIN, GARSP, etc.,
each with advantages and disadvantages [14–16]. For example, the popular MaxEnt model
shows good predictive performance for small levels of sample data [17], but queries have
been raised regarding the credibility of its predictive results [18].

The BIOCLIM model, created by Nix and Busby late in the last century, is characterized
by its early development, simple algorithm, ease of operation, and good generality. It is still
widely used for predicting species distribution and studying the impacts of environmental
factors on species distribution [16]. BIOCLIM is based on the principle of generating a series
of climate parameters that are biologically significant to describe a species’ distribution
area [19,20]. They include general climate, extreme climate, and seasonal climate variables
in relation to the species’ known distribution area. A bioclimatic envelope (file or profile) is
then calculated using a digital elevation model (DEM) for the studied species [21]. In each
grid, the variables of the study area are compared with those of the bioclimatic envelope to
predict suitable habitats for the species [22]. If all climate variables in the area fall within
the species’ bioclimatic envelope, that area is rated suitable for its survival [23].

Generally, a species’ marginal and core bioclimatic envelopes are classified into levels
0 (100%) to 5 (95%) [24]. However, this definition has a pitfall in assuming the maintenance
of stable populations even under extreme environmental conditions [25]. While a species
may survive such stressful conditions, it cannot sustain a continuous population. To reduce
the impact of extreme values on model performance and improve its predictive ability,
samples with extreme values (e.g., the highest 5%) are selected from all variables in all
samples before defining the boundaries of multidimensional hyperrectangles [14]. The
extreme values of these environmental variables are averaged to obtain the boundary of
the hyperrectangle and estimate the species’ potential distribution area [15]. For example,
using the BIOCLIM to predict the distribution of Garcinia indica in India indicated that it
could grow in Maharashtra, Goa, and Karnataka. The results are useful for the large-scale
planting and sustainable utilization of this species [26].

Tapiscia sinensis Oliver, within the Tapisciaceae family, is a unique Tertiary relict plant in
China [27]. It is an ecologically and evolutionarily important species that plays a significant
role in maintaining biodiversity in China’s forests [28]. This species is important in studying
subtropical flora and the evolution of angiosperm breeding systems in China [29,30].
T. sinensis is sparsely distributed in the broad subtropical regions of China, ranging from
Sichuan, Shaanxi, and Guizhou provinces in the west to Zhejiang, Fujian, and Guangdong
provinces in the east. Due to its poor breeding performance and natural regeneration ability,
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as well as its widespread damage by deforestation and reclamation [31], the species’ small
and widely scattered wild population demands enhanced protection [32]. The decline in the
population of T. sinensis due to habitat loss and fragmentation has significantly degraded
forest ecosystems, making it an important species to study from a conservation perspective.
The extensive collection of specimen occurrence data can improve our understanding of
the geographical distribution and biogeographical dynamics of T. sinensis.

The species was included in the IUCN Red List of Threatened Species in 1998 as
vulnerable, raising its threat status from the rare category (https://www.iucnredlist.org/
species/32455/9708341, accessed on 6 May 2013). It is described as showing “continuing
decline in area, extent and/or quality of habitat”. The population is described as severely
fragmented, beset with the continuing decline of mature individuals. T. sinensis has re-
ceived much research attention due to its unique functionally androdioecious breeding
system, thus presenting an important case for studying the evolution of the angiosperm
reproduction mechanism [27,29]. It was listed as a third-class key protected plant in China
in the 1990s [33]. Furthermore, the species is an important genetic resource for developing
new drugs and bioproducts [34]. However, due to recent changes in China’s evaluation cri-
teria for rare and endangered plants, this species was not listed in the latest list of national
key protected plants [35]. Whether this treatment is appropriate remains to be assessed
and debated.

This study aimed to systematically collect data on the natural distribution and bio-
climatic factors of T. sinensis in order to explore the key climatic variables influencing its
geographical occurrences. We applied principal component analysis to identify the most
important bioclimatic predictors of T. sinensis distribution. We then developed a species
distribution model using BIOCLIM to predict its potential range in China and examined
how future climate change might modify its distribution pattern. The findings could pro-
vide a scientific foundation that will inform the conservation of wild T. sinensis populations,
guide introduction and breeding programs, and sustainably develop its resource base.

2. Materials and Methods
2.1. Data Collection

Occurrence records for T. sinensis wild populations stretching from southwest to
south and east China were compiled from extensive field surveys conducted in Anhui,
Jiangxi, Zhejiang, and other provinces over several years. Additional occurrence data were
gathered through a literature review of publications on flora, as well as checklists, articles,
monographs, and reports. Online specimen databases were also consulted, including the
Chinese Virtual Herbarium (CVH, http://www.cvh.ac.cn/, accessed on 10 May 2023),
National Specimen Information Infrastructure (NSII, NSII; http://www.nsii.org.cn/20
17/home.php, accessed on 12 May 2023), and Global Biodiversity Information Facility
(GBIF, http://www.gbif.org/, accessed on 15 May 2023). Records lacking geographical
coordinates or representing cultivated specimens were excluded. The initial compilation
logged 1062 occurrence points for the species. After removing incomplete, incorrect and
duplicated records, the spatial rarefication occurrence data tool SDMtoolbox 2.0 was used to
filter the points, retaining only one record per 5 × 5 km grid cell based on the resolution of
bioclimatic data [36]. This method reduced spatial autocorrelation in the dataset. The final
spatially filtered dataset contained 117 T. sinensis occurrence records suitable for BIOCLIM
species distribution modeling, covering primarily from Zhejiang to Sichuan and Yunnan
(Figure 1).

https://www.iucnredlist.org/species/32455/9708341
https://www.iucnredlist.org/species/32455/9708341
http://www.cvh.ac.cn/
http://www.nsii.org.cn/2017/home.php
http://www.nsii.org.cn/2017/home.php
http://www.gbif.org/
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Figure 1. Locations of 117 spatially filtered occurrence records (shown by white circles) of T. sinensis
in southwest to south and east China in relation to elevation.

2.2. Environmental Factors

The current climate data used in this study were downloaded from the Worldclim
(http://www.worldclim.org, accessed on 15 May 2023) [37,38], containing a total of 19 bio-
climatic variables, recorded as bio1~bio19 (Table 1). It is a set of global climate raster
data generated by interpolating monthly meteorological information recorded by weather
stations around the world from 1950 to 2000 [39]. The bioclimatic variables were selected
based on their biological relevance and inclusion in similar studies. Specifically, the analy-
sis focused on variables related to annual trends (e.g., annual mean temperature, annual
precipitation), seasonality (e.g., precipitation in the warmest/coldest quarters), and extreme
conditions (e.g., extreme high and low temperatures). Derived from monthly temperature
and precipitation measurements, these factors broadly characterize the annual, seasonal,
and extreme climatic conditions relevant to species distributions [40]. Future climate projec-
tions were generated by the National Center for Atmospheric Research’s CCM3 model [41],
which simulates the 2100 climate scenario with a doubling of atmospheric carbon dioxide
concentrations. Both current and future climate data sets adopted a spatial resolution of
2.5 arcminutes.

Multicollinearity among predictor variables can lead to overfitting and reduced ac-
curacy in ecological niche models [4,42]. To avoid introducing redundant information in
model development, preliminary screening was conducted using principal component
analysis (PCA) and the Spearman correlation coefficient (r) to identify the bioclimatic vari-
ables contributing the most to model gain [43,44]. The r values were calculated between all
pairs of bioclimatic variables using PAST 4.12b to quantify collinearity [45]. If the absolute r
value between two variables exceeded 0.8, indicating a strong correlation, only the variable
with a greater contribution (higher PCA loading) was retained for further analysis, while
the remaining one was removed. This selection process kept 11 uncorrelated bioclimatic
variables (included in Figure 2) to maximize the unique informational content for the
ensuing data processing. We conducted a second PCA using the 11 shortlisted variables.
We then selected the factors that ranked in the top three for the simulation using the first
and second axes of the principal components as the environmental variables [46]. A final
set of six bioclimatic variables was selected for inclusion in the final ecological niche model
(Table 1, shown in bold).

http://www.worldclim.org
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Table 1. Nineteen environmental variables were selected to predict the geographical distribution of
T. sinensis. After screening to eliminate multicollinearity and factor selection by principal component
analysis, the six variables shown in bold font were retained for BIOCLIM modeling. The bioclimatic
variables are divided into three categories: (1) interannual variation factors, including bio1, bio3, bio
7 and bio12; (2) seasonal variation factors, including bio2, bio4, bio 8, bio9, bio10, bio 11, bio15, bio16,
bio 17, bio18, and bio 19; and (3) extreme climate factors, including bio5, bio6, bio13, and bio 14.

Code Bioclimatic Variable Unit Code Bioclimatic Variable Unit

bio1 Annual mean temperature ◦C bio11 Mean temperature of coldest quarter ◦C
bio2 Mean diurnal range ◦C bio12 Annual precipitation mm
bio3 Isothermality (Bio2/Bio7) (×100) Index bio13 Precipitation of wettest month mm
bio4 Temperature seasonality Index bio14 Precipitation of driest month mm
bio5 Max temperature of warmest month ◦C bio15 Precipitation seasonality Index
bio6 Min temperature of coldest month ◦C bio16 Precipitation of wettest quarter mm
bio7 Temperature annual range ◦C bio17 Precipitation of driest quarter mm
bio8 Mean temperature of wettest quarter ◦C bio18 Precipitation of warmest quarter mm
bio9 Mean temperature of driest quarter ◦C bio19 Precipitation of coldest quarter mm

bio10 Mean temperature of warmest quarter ◦C
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Figure 2. Principal component analysis (PCA) of 11 bioclimatic variables for the 117 occurrence
records of T. sinensis. The first PCA axis accounts for 40.67% of the total variance, and the second PCA
axis accounts for 28.95% of the total variance. The meanings of bioclimatic variables can be found
in Table 1.

2.3. Models Analysis

BIOCLIM is one of the earliest and most widely used species distribution models
developed for conservation applications [47]. It enlists the environmental envelope concept
to define a species’ climatic requirements, taking species occurrence locations and extract-
ing the range of climatic values to delineate the climatic niche space [16]. This climatic
envelope is then used to map habitat suitability across a landscape, relying only on climatic
variables like annual means, extremes, and seasonality derived from temperature and
rainfall data [21]. BIOCLIM is relatively simple and transparent, but relies on equilibrium
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assumptions and unlimited dispersal. It pioneered the most easily interpretable climate
envelope models, providing a foundation for more complex methods [16,47]. It is still
considered to perform reasonably well, especially in ensembles, for mapping potential
species distributions. However, it may overpredict compared to models incorporating
additional predictors and species interactions [19].

Species distribution models for T. sinensis were developed using the BIOCLIM al-
gorithms in the Modeling-Bioclim/Domain module of DIVA-GIS 7.5 software [38]. The
generated habitat suitability maps were imported into QGIS 3.28.3 for analysis [48]. Suit-
able habitats were classified as excellent, very high, high, medium, low, or unsuitable based
on different thresholds in each model. BIOCLIM defined thresholds from unsuitable to
excellent as 0%–2.5%, 2.5%–5%, 5%–10%, 10%–20%, and 20%–46% habitat suitability [46].
Occurrence data were split, with 75% for model training and 25% for testing. Model accu-
racy was evaluated using the area under the receiver operating characteristic curve (AUC).
AUC values near 1 indicate a higher prediction accuracy. Values of 0.5–0.6, 0.6–0.7, 0.7–0.8,
and >0.9 represent fair, good, very good, and excellent predictions, respectively. AUC < 0.5
signifies a failed prediction [11,18].

3. Results
3.1. Geographical Distribution Pattern

The 117 valid natural occurrences of T. sinensis in China cover a horizontal range
between circa 97◦56′ E–120◦15′ E and 21◦57′ N–33◦18′ N (Figure 1). Guizhou has the
highest frequency (23), followed by Hunan (18), Jiangxi (14), Guangxi (14), and Sichuan (13).
The frequency is less than 10 in Anhui, Fujian, Gansu, Guangdong, Hubei, Shaanxi, and
Chongqing. The southernmost distribution is in Menghai (Yunnan), the northernmost
is in Ningshan (Shaanxi), the easternmost is in Zhuji (Zhejiang), and the westernmost is
in Wenshan (Yunnan). Therefore, the horizontal distribution of T. sinensis is focused on
China’s middle subtropical zone.

The elevational distribution of T. sinensis (Figure 1) shows a wide vertical range, from
low elevations to above 2000 m. Based on specimen records, the highest occurrence is in
Daocheng (>2000 m) in Sichuan, and the lowest is in Guangde (about 200 m) in Anhui. By
altitudinal classes, the spreads at low (<500 m), mid (500–1000 m), mid–high (1000–2000 m),
and high (≥2000 m) elevations are 57.26%, 25.64%, 17.09% and 0.01%, respectively. The low
to mid elevations account for over 80%. Therefore, T. sinensis is a subtropical tree species
distributed predominantly at low–mid elevations with a certain cold tolerance.

3.2. Restrictive Climatic Factors

Principal component analysis was performed on the 11 selected bioclimatic factors.
The first four principal components had eigenvalues greater than 1.0, contributing 40.67%,
28.95%, 11.85% and 10.16%, respectively (Figure 2). The cumulative contribution of the first
three principal components reached 81.47% (>75%), indicating that most of the original
information was preserved in the reduced dimensional space [49]. The top four factors in
the first principal component were the coefficient of variation of temperature seasonality
(bio4, −0.44), isothermality (bio3, 0.43), precipitation seasonality (bio15, 0.39), and precipi-
tation of warmest quarter (bio18, 0.31). This order indicates that excessive fluctuations in
temperature have a greater impact on T. sinensis, which may be more suitable in areas with
less annual temperature variation. The main factors in the second principal component
were the maximum temperature of the warmest month (bio5, 0.44), the mean temperature
of the driest quarter (bio9, 0.45), the mean temperature of the coldest quarter (bio11, 0.37)
and precipitation of the wettest quarter (bio17, 0.33). This axis mainly reflects the influence
of extreme seasonal temperatures and precipitation on T. sinensis, signifying the impact
of extreme ecological conditions on species growth. The remaining principal components
contained progressively less information, denoting the effects of minor factors.

Table 2 presents the descriptive statistics of the key bioclimatic parameters in the
distribution areas of T. sinensis in China. The isothermality (bio3) range varied from 23.54



Forests 2023, 14, 2275 7 of 15

to 53.22, with a mean of 29.58 ± 5.89 and a coefficient of variation of 19.92. The 95% confi-
dence interval for bio3 was 28.50 to 30.66. Temperature seasonality (bio4) showed greater
variability, ranging from 341.12 to 916.92 and averaging 749.93 ± 117.73. Its coefficient
of variation was relatively high at 15.70, and the 95% confidence interval was 728.38 to
771.49. For the maximum temperature of the warmest month (bio5), the minimum and
maximum values were 18.20 and 34.40 ◦C, respectively, with a mean of 31.21 ± 2.53 ◦C
and a coefficient of variation of 8.10, which has a key influence on the distribution of T.
sinensis [49]. The 95% confidence interval for bio5 was tight at 30.75 to 31.68 ◦C. The mean
temperature of the driest quarter (bio9) had the widest range, from −3.43 to 16.28 ◦C, and
the highest coefficient of variation at 40.62. The average bio9 was 8.43 ± 3.43 ◦C, with a
95% confidence interval of 7.81 to 9.06 ◦C. Similar patterns were observed for the mean
temperature of the coldest quarter (bio11), which varied from −3.43 to 15.72 ◦C, with an
average of 7.37 ± 2.95 ◦C and a coefficient of variation of 40.00. Its 95% confidence interval
was 6.83 to 7.91 ◦C. For precipitation seasonality (bio15), the range was 44.71 to 122.97,
with an average of 66.42 ± 15.11 and a coefficient of variation of 22.75. The 95% confidence
interval for bio15 was 63.65 to 69.19. Overall, the data show considerable variability in key
bioclimatic factors across the distribution areas of T. sinensis in China.

Table 2. Descriptive statistics of the main bioclimatic parameters in the distribution areas of T. sinensis
in China.

Bioclimatic Variable Minimum Maximum Mean ± SD Coefficient of
Variation

95% Confidence
Interval

bio3 Isothermality 23.54 53.22 29.58 ± 5.89 19.92 28.50–30.66
bio4 Temperature seasonality 341.12 916.92 749.93 ± 117.73 15.70 728.38–771.49
bio5 Max. temperature of
warmest month 18.20 34.40 31.21 ± 2.53 8.10 30.75–31.68

bio9 Mean temperature of
driest quarter −3.43 16.28 8.43 ± 3.43 40.62 7.81–9.06

bio11 Mean temperature of
coldest quarter −3.43 15.72 7.37 ± 2.95 40.00 6.83–7.91

bio15 Precipitation seasonality 44.71 122.97 66.42 ± 15.11 22.75 63.65–69.19

3.3. Current and Future Potential Distribution

The BIOCLIM model predicted current and future suitable habitat areas for T. sinensis
in China. Six suitability categories were defined, ranging from excellent to unsuitable
(Table 3). Under current climate conditions, the excellent suitability habitat was predicted
to be 12,440 km2, while very high, high, medium, low, and unsuitable habitats covered
34,710 km2, 37,910 km2, 42,310 km2, 66,640 km2, and 235,210 km2, respectively (Figure 3).
The total area of suitable habitat (excellent to low suitability) was estimated at 193,005 km2.
Under future climate projections, the excellent suitability habitat is predicted to decrease
substantially to 6370 km2, representing a 48.77% reduction compared to current patterns
(Figure 4). The very high and high suitability areas are expected to decrease slightly to
34,620 km2 (−0.27%) and 34,800 km2 (−8.22%), respectively. However, the medium and
low suitability habitats are forecasted to increase to 50,110 km2 (+18.42%) and 72,320 km2

(+8.52%), respectively. The unsuitable habitat area will change little, with a−1.78% decrease
to 231,010 km2. Overall, the total suitable habitat for T. sinensis is projected to decline to
198,220 km2 in future climate conditions, a 2.47% reduction compared to the current suitable
habitat. The results suggest T. sinensis may face habitat losses in current excellent suitability
areas, but gain habitat in medium and low suitability areas. Adaptation measures may be
needed to facilitate T. sinensis persistence as climate shifts.

Under current climatic conditions, the excellent suitability habitat (20%–45%) for
T. sinensis shows a semi-elliptical distribution pattern, covering circa 25 ◦N–32 ◦N and
104 ◦E–120 ◦E (Figure 3). Starting from northern Fujian, it runs through southeastern
Jiangxi, northern Guangdong, southern and western Hunan, northern Guangxi, southeast-
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ern Guizhou, and southwestern and eastern Sichuan. Taking excellent habitat suitability
as the center of the species range, very high, high, medium, and low habitat suitability
and unsuitable areas are distributed toward the periphery in approximately contiguous
sequential belts. These sites are mainly found in provinces and regions besides those
mentioned above, such as Yunnan, Hainan, Anhui, Jiangsu, and Taiwan. In addition, most
areas south of the Tropic of Cancer (23◦26′), mainly covering the coastal and low-elevation
zones of south and east China, are unsuitable or have lower suitability levels.

Table 3. Predicted suitable areas (km2) for T. sinensis under the current and future climate scenarios
are classified into six suitability categories generated by the BIOCLIM model.

Suitability Category Current (104 km2) Future (104 km2)
Area Change Ratio

(%)

Excellent 12.44 6.37 −48.77
Very high 34.71 34.62 −0.27
High 37.91 34.80 −8.22
Medium 42.31 50.11 18.42
Low 66.64 72.32 8.52
Unsuitable 235.21 231.01 −1.78

Under the climate scenario of doubled CO2 concentration in 2100, the area of suitable
habitat of T. sinensis will change significantly (Figures 4 and 5). The optimal habitat will
decrease sharply by nearly 50% (Table 3). Firstly, the current excellent habitat with an
obvious semi-elliptical shape will fragment and contract notably in 2100. Pronounced area
reductions will occur, especially in Fujian, Guangdong, Guangxi, and Sichuan provinces.
Secondly, the excellent habitat areas in southeastern Zhejiang and western Hunan will
show increasing trends. The fragmentation and shrinkage of suitable habitats for T. sinensis
will become more acute in the future (Figure 5). Therefore, against the general back-
ground of climate warming, the suitable habitats of T. sinensis will demonstrate pronounced
area losses.
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3.4. Model Accuracy

Habitat suitability models for T. sinensis in China were developed using BIOCLIM un-
der current and future climate scenarios. The models demonstrate high predictive accuracy
based on area under the receiver operating characteristic curve (AUC) values (Figure 6).
The AUC was 0.893 for the current climate and 0.881 for future climate projections. The
AUC values were significantly higher than the null model value of 0.5, indicating excellent
prediction performance. The high AUC values suggest a close correspondence between
the predicted potential distribution and the empirically observed distribution of T. sinensis
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in China. The habitat suitability maps are considered valid representations of this species’
distribution under present and future climate conditions. The modeling approach and
interpretations demonstrate the scientifically sound methodology and reasoning.
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Figure 6. Prediction validation with receiver operating characteristic (ROC) curve in BIOCLIM.

4. Discussion

The species distribution model simulation can reveal the distribution of suitable habi-
tats for species from a macro perspective, which will inform species occurrence mapping
and conservation [50]. However, the accuracy of simulation results depends on model
construction and algorithms, as well as the quality of geographical distribution data [6,8].
The predictive performance of species distribution models typically decreases with reduced
sample size [17,20]. First, the level of uncertainty associated with parameter estimation
(e.g., means, modal, median, predicted probability of occurrence) decreases with increasing
sample size [51]. With a small sample size, outliers have a higher weight in the analysis
than they would with a large sample size, which would provide more data to buffer the
anomalous effects of outliers [17]. In addition, due to the high dimensionality and complex-
ity of species’ ecological niches, a large sample size can embrace a wider range of conditions
under which a species can develop.

Empirical research shows that species’ responses to environmental gradients can be
skewed or multi-modal [52]. Interactions between environmental variables are important
in assessing “species–environment” relationships. The number of interaction–effect param-
eters to be estimated increases exponentially with the number of predictor variables [53].
Therefore, a large amount of data can better describe complex relationships and interac-
tions. In some cases, models performing well with a large sample size do not necessarily
perform well with a small sample size [18]. This issue requires investigations into the
possible trade-offs between sample size and model complexity. The sample size in this
study exceeded 100 valid distribution records, and the AUC values reached a good level
(Figure 6), indicating that our potential distribution predictions for T. sinensis based on the
BIOCLIM model are reliable.

Climate is the primary factor limiting the natural distribution of species [49]. The
growth and reproduction of plants not only require a certain amount of water, but more im-
portantly, they have demands related to thermal conditions. Only when the heat reaches a
certain level can species complete a series of reproductive activities such as flowering, polli-
nation, and fruiting [54]. The PCA results show that the temperature seasonality coefficient
of variation (bio4) and isothermality (bio3) had the greatest impact on the first principal
component (Figure 2). Bio4 refers to the standard deviation of temperature seasonality, with
a negative value. It indicates that wider seasonal temperature differences, and thus larger
standard deviations, were detrimental to the distribution of T. sinensis. In contrast, bio3 is
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the ratio of the mean diurnal temperature range (monthly mean) to the annual temperature
range, with a positive value. It shows that a stable temperature environment was conducive
to T. sinensis growth. The current and predicted distribution areas of T. sinensis were both
located within the subtropical monsoon climate zone (Figures 3 and 4), indicating that
its distribution was greatly influenced by subtropical monsoon climate. The subtropical
monsoon climate has obvious monsoon characteristics, with significant changes in water
and thermal condition [55]. Therefore, the two important factors reflect that temperature
variability was a key limiting factor for T. sinensis distribution. Based on occurrence data,
T. sinensis was mainly distributed south of the Qinling Mountains–Huai River and north
of Lingnan (Figure 1). Besides a few occurrences in southwest Yunnan and Sichuan, most
were found east of the Sichuan Basin. This pattern was found within China’s subtropical
range, indicating an environment with predominantly “no severe coldness in winter, no
intense heat in summer” [56]. No natural distribution points of T. sinensis were found
outside this range.

The introduction experiments of T. sinensis showed that tree height growth was neg-
atively correlated with temperature [28]. Height growth began around 12 ◦C in spring,
entered a fast growth period above 15 ◦C, and slowed when the average temperature
exceeded 25 ◦C [57]. This result indicates that T. sinensis seedlings preferred cool climates,
with high temperatures being detrimental to height growth. Therefore, the year-round high
temperatures in regions south of the Nanling Mountains in China are not conducive to
T. sinensis growth, resulting in species absence in this area (Figure 1). This critical ecological
trait illustrates that the numbers of excellent suitable habitats for T. sinensis will sharply
decrease under future global warming (Table 3).

The dramatic climate changes over the past century have profoundly impacted species
distribution patterns [58]. Climate change negatively affects plant species, especially those
with a narrow ecological niche and a limited distribution range. For example, Rosa arabica,
an endemic and protected plant in Egypt, has experienced severe population decline,
becoming extremely endangered in recent decades. Species distribution models predict that
its range may shift to higher elevations [4]. Similar changes have occurred in other species
like Adansonia digitata [59] and Melaleuca cajuputi [37]. Additionally, to adapt to climate
warming, some species have migrated westward and upward to higher elevations [4,36].
Comparing the changes in potential suitable habitat patterns of T. sinensis under current and
future climate change scenarios, the fragmentation and loss of optimal potential suitable
habitats are particularly obvious, trending toward concentration in mountainous areas in
central and western China. These results should attract ongoing conservation efforts.

T. sinensis’ response to future climate change is characterized by the significant shrink-
age and fragmentation of highly suitable habitats (Figures 4 and 5). Climate warming has
caused remarkable ecological changes across the globe, threatening the fragmentation and
loss of many plants’ habitats [3,37]. Such habitat waning will have widespread impacts
on plant distribution and survival. First, endemic species dependent on specific climate
conditions will suffer from the drastic shrinkage of their suitable habitats, precipitating
endangerment and extinction risks [58]. Second, the pace of climate change far exceeds
many plants’ migration and adaptation capacities, preventing them from successfully
dispersing to more suitable environments via seed propagation, thus causing in situ extinc-
tion [60]. Third, habitat fragmentation will break up plant populations, hindering gene flow
between disjointed subpopulations and reducing species genetic diversity, making them
more vulnerable to extinction [3]. Fourth, climate change will give rise to new contacts
and competitions between originally allopatrically distributed plant species, with some
invasive species occupying dominant positions due to their greater adaptability, displacing
or eliminating native species [61]. Finally, mutually beneficial relationships between plants
and pollinator insects, seed disperser animals, and other species will be disrupted, destabi-
lizing the critical interdependent relationships [62]. Although T. sinensis was once listed
as a nationally key protected tree species [28,29], it is absent from the latest conservation
list, even though its wild populations still face considerable threats. Therefore, future
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conservation efforts should pay attention to protected areas and habitat losses, to be tackled
by corresponding conservation measures.

The endangered status of T. sinensis results from interactions between intrinsic and
extrinsic factors, including its inherent reproductive weaknesses and long sexual repro-
duction cycle [27,32,63], external disturbances, and climate change [33]. Thus, conserving
this endangered species requires a multi-faceted approach. Some practical measures are
suggested: (1) Strengthen ex situ conservation and promote the ornamental use of T. sinensis
in horticulture. Its attractive form, large and fragrant inflorescences, and yellow autumn
foliage offer excellent qualities for ornamental landscaping applications. The planting areas
can be identified based on the most suitable areas predicted by our model, especially in
highly suitable habitats. (2) Enhance in situ conservation by establishing protected areas
for existing natural T. sinensis populations. Currently, T. sinensis is overlooked by relevant
agencies and often mistakenly logged by local farmers for firewood. Many populations
are small in number and area, fail to achieve dominance within the community, and are
unable to nurture and sustain a minimum number of strong mother trees, making natural
regeneration difficult [64]. Therefore, appropriate human intervention is an important
means to facilitate population recovery. (3) Raise awareness about the scientific, ecological,
and other types of importance of T. sinensis. It is an important species for studying the
evolution of angiosperm reproductive systems. It has significant medicinal and economic
value [29]. Public awareness about the species could be lifted by diverse means, such as
the media and public education, bringing more attention to the species and enhancing its
conservation.

Some limitations of this study could be assessed. The environmental factors influenc-
ing the geographical distribution of T. sinensis include not only climatic conditions, but also
non-biotic factors such as soil, vegetation, topography, and human activities, as well as
social factors like socioeconomic structure and production technology level [33]. Our model
did not include these factors. The latitudes and longitudes of many T. sinensis distribution
points used in the research were obtained by checking place name databases. The envi-
ronmental conditions at these locations may not adequately represent detailed conditions
at the actual distribution sites, especially for factors with drastic spatial variations like
slope and aspect [65]. Sometimes, contradictory situations may even develop, limiting the
use of some environmental factors with important influences on species distributions [66].
The interpolated environmental data may not fully represent the actual environmental
conditions of the interpolated locations [23]. This study did not consider the effects of
interspecific interactions. Explaining distribution patterns based on general ecological
principles may include subjective judgments. Due to data constraints, this study only
considered the impacts of two master climate variables, temperature and precipitation,
on habitat suitability. Future work could model interactions between factors to improve
the prediction.

Species distribution models offer valuable tools for identifying rare and endangered
species habitats to inform conservation efforts [36,37,43]. The judicious application of
these models can help us to effectively predict potential species distribution areas, facili-
tating policymaking to manage or protect them [18,50]. Additionally, forecasting future
distributions based on environmental changes can allow the development of proactive
conservation plans to preempt unnecessary habitat degradation and maximize species
preservation [14,52]. However, practical limitations should be considered. Some models
are overly reliant on algorithms lacking ecological grounding, while others depend heavily
on subjective expert opinions [67]. Sample quality and size also strongly influence the
prediction accuracy of some models [17,20]. Therefore, model selection should carefully
match the underpinning algorithms and theories to the studied species. While species
distribution models are useful for conservation, their limitations highlight the need for an
informed modeling approach tailored to the species traits.
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5. Conclusions

The known distribution of T. sinensis is concentrated primarily in China’s middle
subtropical climatic zone, exhibiting a geographical range typical of tree species native
to the humid subtropical climate region of Central Asia. Our modeling results indicate
that temperature factors have a greater influence than precipitation variables in delim-
iting T. sinensis distribution across China. In particular, temperature seasonality (bio4)
and isothermality (bio3) emerged as the key climatic limitations restricting habitat range.
Precipitation parameters reflected T. sinensis’ preference for warm and humid conditions,
though precipitation was not the primary limiting factor defining range boundaries. Species
distribution modeling under current climate scenarios showed strong agreement between
predicted potentially suitable areas and actual present-day distribution, validating the
model’s reliability. However, projections of future habitat suitability under climate change
scenarios indicated sharp declines in areas classified as excellent habitats, along with the
increasing fragmentation of remaining suitable areas. These findings underscore the ur-
gent need for tailored conservation initiatives to reinforce protection and expand planting
programs for T. sinensis in China. Given its ecological importance and endangered status,
we recommend that T. sinensis be reclassified as a nationally protected plant species under
Chinese law. Overall, proactive science-based management strategies are imperative to
safeguard the long-term survival of this rare tree against mounting threats of climate change
in its native range.
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