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Abstract: Wildfires, a recurring and persistent natural disaster, present direct threats to both ecological
balance and human safety. Despite the northeastern region of China boasting abundant forest
resources, it grapples with a significant wildfire issue. This study, focused on China’s northeastern
region, employs sophisticated methodologies, including the Mann–Kendall (MK) mutation test,
sliding t-test, and geographical heat maps, to unveil the spatial distribution and temporal trends of
wildfires. Furthermore, a random forest model is utilized to develop a wildfire susceptibility map,
enabling an in-depth analysis of the relationships between various potential factors and wildfires,
along with an assessment of the significance of these driving factors. The research findings indicate
that wildfires in the northeastern region exhibit distinct seasonality, with the highest occurrences
in the autumn and spring and fewer incidents in the summer and winter. Apart from the spring
season, historical wildfires show a decreasing trend during other seasons. Geographically, wildfires
tend to cluster, with over half of the high-risk areas concentrated at the junction of the Greater
Khingan Mountains and Lesser Khingan Mountains in the northeastern region. The random forest
model assumes a pivotal role in the analysis, accurately identifying both natural and human-induced
factors, including topography, climate, vegetation, and anthropogenic elements. This research further
discloses that climate factors predominantly influence wildfires in the northeastern region, with
sunshine duration being the most influential factor. In summary, this study highlights the variation in
various wildfire-driving factors, providing the basis for tailored management strategies and region-
specific fire prevention. Through a comprehensive analysis of the spatiotemporal patterns of wildfires
and associated risk factors, this research offers valuable insights for mitigating wildfire risks and
preserving the region’s ecological integrity.

Keywords: northeastern region; wildfires; spatiotemporal patterns; geographic heat maps; random
forest

1. Introduction

As global climate change continues, the area affected by wildfires is expanding, and
the intensity of wildfires within the entire forest ecosystem is increasing [1,2]. Repeated
burning can occur in areas that have previously experienced wildfires, and in some cases,
these wildfires may burn for longer durations. Unpredictable wildfires can also emerge
in thawing permafrost areas [3] and peatlands [3,4]. From Australia [5] to Canada, from
Russia to China, and across the United States [6], wildfires have caused significant damage
to the ecological environment [7], wildlife, human health and safety, and infrastructure [8].
However, completely preventing wildfires is impossible; instead, the focus is on managing
and reducing the likelihood of wildfire occurrences, which implies coexisting with residual
risks [9]. The northeastern region of China is endowed with abundant forest resources [10],
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with extensive areas covered by natural forests. Monitoring and managing these com-
plex environments in real time poses significant challenges [11]. Additionally, the region
predominantly experiences a continental climate, characterized by diverse and sensitive
climate changes. Under the dual influence of the climate and unique environmental condi-
tions, wildfires frequently occur in this area [12]. One significant historical event took place
on May 6, 1987, in the Greater Khingan Mountains of Heilongjiang Province, where several
forest areas simultaneously caught fire, resulting in a severe and massive wildfire [13]. The
absolute zone that was influenced by the wildfire was 17,000 square kilometers, including
areas beyond China’s borders. Within China, approximately 1.01 million hectares of forest
was damaged, impacting over 10,000 households and more than 50,000 people. Tragically,
the wildfire led to the loss of 211 lives. Given these events, understanding wildfire ignition’s
spatiotemporal patterns points in the northeastern region and the relative significance of
human and environmental factors that trigger wildfires is of paramount importance. This
understanding can contribute to enhancing wildfire prevention strategies’ rationality and
improving wildfire prevention resource allocation’s effectiveness, ultimately reducing the
environmental, social, and economic impacts that are associated with wildfire risks [14].

Currently, numerous related studies have been conducted to determine the spatiotem-
poral patterns and driving factors behind wildfire occurrences. These studies employ
mathematical statistics and spatial analysis methods using historical wildfire data, as well
as remote sensing wildfire data [15–17]. They cover a wide range of time and spatial scales,
from short-term to long-term and from local to national and global levels, focusing on
various aspects, such as the total number of wildfires, total burned area, and average
burned area [18–20]. Moreover, wildfires’ spatiotemporal patterns are highly dynamic and
result from numerous factors’ combined effects, including climate, vegetation, topography,
and human activities [21,22]. Among these factors, biophysical factors such as climate,
vegetation, and topography directly influence the flammability, moisture content, and
direction and speed of wildfire spread. Human activities can have a two-way impact on
wildfires, potentially reducing or triggering their occurrence [22–24]. Various statistical and
regression modeling methods have been used to assess different factors’ contributions to
wildfires’ occurrence [19,25]. With the advancement of GIS technology, methods like the An-
alytic Hierarchy Process (AHP) and Geographic Weighted Regression (GTWR) are widely
employed in wildfire risk assessment [26]. In the artificial intelligence development context,
a machine that learns algorithms is currently increasingly being optimized, leading to a
growing preference for a machine that learns algorithms in wildfire analysis [27]. Among
these algorithms, random forest, a decision tree-based ensemble method, has demonstrated
its unique advantages in the field of wildfire analysis.

The objectives of this study are to address the following key questions: Firstly, to
analyze the differences in spatial distribution patterns and temporal trends of wildfires
in the northeastern region. Secondly, to utilize a machine that learns models to identify
wildfire susceptibility spatial patterns in different seasons. Finally, to explore the extent of
the influence and response of factors such as human activities and climate on wildfires in
Northeast China.

2. Resources and Methods
2.1. Study Area

The study area encompasses the Heilongjiang, Liaoning, and Jilin provinces and part
of the Inner Mongolia Autonomous Region (including Hulunbeier, Chifeng, Tongliao, and
Xing’anmeng) (115◦ E–135◦ E, 38◦ N–55◦ N) (Figure 1) [28,29]. The northeastern region
undergoes a temperate monsoon climate, characterized by an annual precipitation range
of 300 to 1000 mm. Importantly, there exist notable spatial variations within this range,
resulting in considerable differences in precipitation levels across various locations within
the territory. This marked divergence significantly contributes to the overall heterogeneity
observed in the region. The region’s topography is primarily characterized by mountains
and plains, with the Northeast Plain formed by the Sanjiang Plain, Songnen Plain, and
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Liaohe Plain [30]. Additionally, there are natural barriers in the form of the Changbai
Mountains, Greater Khingan Mountains, and the Inner Mongolian Plateau, resulting in
a horseshoe-shaped overall terrain, with lower elevations in the central area and higher
elevations in the surrounding regions [28]. The entire region is rich in forest resources, with
the predominant vegetation consisting of deciduous broadleaf forests and mixed coniferous
forests. According to the data from the ninth China Forest Resources Inventory, the forest
coverage rates in the three northeastern provinces are as follows: Heilongjiang Province—
43.78%, Jilin Province—41.49%, and Liaoning Province—39.24% (data source: National
Forestry and Grassland Science Data Center, http://forest.ckcest.cn/sd/si/zgslzy.html
(accessed on 15 June 2022)) [31]. Between 2001 and 2019, a total of 9890 wildfire data
were identified within the forest coverage area of the entire region. The distribution of
these wildfires is as follows: Heilongjiang Province had 6664 wildfires, Jilin Province had
136 wildfires, Liaoning Province had 527 wildfires, and the eastern part of Inner Mongolia
(including Hulunbuir, Chifeng, Tongliao, and Xing’an League) had 2563 wildfires [18,32].
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Figure 1. Study area (wildfires indicated by red dots).

2.2. Data sources

In this study, historical wildfire data (MODIS) were obtained from the Fire Informa-
tion for Resource Management System (FIRMS) by the National Aeronautics and Space
Administration (NASA) (https://firms.modaps.eosdis.nasa.gov/download/ (accessed on
10 February 2022)) [18,33]. In our study, we utilized MODIS (Moderate Resolution Imaging
Spectroradiometer) data for wildfire observation, which indeed has a spatial resolution
of 1 km. While this resolution is considered moderate and may not be classified as high
when compared to some other remote sensing systems, it provides valuable insights into
large-scale wildfire patterns and dynamics. The use of the MODIS data allowed us to

http://forest.ckcest.cn/sd/si/zgslzy.html
https://firms.modaps.eosdis.nasa.gov/download/
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capture a broad view of wildfire occurrences over a significant area, which supports real-
time warnings and emergency responses and provides more accurate data, reducing the
potential for human errors [34]. Forest land coverage data for the northeast region was
sourced from the Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences (https://www.resdc.cn/ (accessed on 24 October 2023)). It has a spatial resolution
of 1000 m and an accuracy exceeding 93% [35].

In addition, four categories of influencing factors and 18 influencing factors were
included, and their data sources are as follows: The meteorological data in this paper
were derived from the National Meteorological Information Centre (https://data.cma.cn
(accessed on 10 November 2022)), and the specific meteorological parameters are shown in
Table 1 [36]. The NDVI time series data were from the Resource and Environment Data
Centre of the Chinese Academy of Sciences (https://www.resdc.cn (accessed on 24 October
2023)). In this study, the slope factor, calculated based on the DEM, is used to reflect the
impact of terrain characteristics on wildfire occurrence [37]. A 90 m resolution DEM dataset,
provided by the Geographic Spatial Data Cloud (https://www.gscloud.cn (accessed on
24 October 2023)) [38], was used to calculate the slope using ArcGIS 10.6 software (Esri,
Redlands, CA, USA) [39]. The socioeconomic data were sourced from the Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences. The 18 variables for the
four influencing factors of wildfires are shown in Table 1.

Table 1. Description of datasets used and data used in this study.

Subclassification Data Abbreviations Source Reference

Climatic

Sunshine hours Ssh https://data.cma.cn

[18]

Mean temperature Mean-Temp https://data.cma.cn
Max temperature Max-Temp
Daily maximum surface temperature Max-Lst https://data.cma.cn
Daily average ground surface temperature Mean-Lst https://data.cma.cn
Cumulative precipitation Prec https://data.cma.cn
Average air pressure Mean-Pre https://data.cma.cn
Daily average relative humidity Mean-Hum https://data.cma.cn
Daily minimum relative humidity Min-Hum https://data.cma.cn
Maximum wind speed Max-Win https://data.cma.cn
Average wind speed Mean-Win https://data.cma.cn

FVC FVC FVC https://www.resdc.cn/ [40]

Topographic Slope Slp https://www.gscloud.cn [18]

Socioeconomic

GDP GDP https://www.resdc.cn/
Population Pop https://www.resdc.cn/
Residential area Res https://www.webmap.cn [20]
Road network Roa https://www.webmap.cn
Special holiday Hol

2.3. Data Preparation
2.3.1. Data Processing

During the data processing phase, this study comprehensively addressed various
datasets, including meteorological, vegetation, socioeconomic, and topographical data,
laying a solid foundation for the establishment of the wildfire prediction model. Extensive
meteorological data were collected, covering key variables, such as temperature, humidity,
and wind speed. Thorough cleaning procedures were conducted to address issues like miss-
ing values and outliers, ensuring the integrity of the dataset. Meanwhile, to eliminate data
bias and ensure a balanced contribution of different factors, we performed normalization
on all the data, including climate, terrain, and socioeconomic data. This approach helps
prevent computational issues caused by overly large numerical values and ensures that the
weights of various factors are balanced in the analysis. All the data were transformed into
a numerical range between 0 and 1.

https://www.resdc.cn/
https://data.cma.cn
https://www.resdc.cn
https://www.gscloud.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://data.cma.cn
https://www.resdc.cn/
https://www.gscloud.cn
https://www.resdc.cn/
https://www.resdc.cn/
https://www.webmap.cn
https://www.webmap.cn
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For the vegetation data, we computed vegetation indices, such as the NDVI, to quantify
the vegetation conditions. Simultaneously, we classified the vegetation to better understand
the potential impact of different vegetation types on wildfire occurrence. Considering the
significant influence of socioeconomic factors on wildfire incidence, we calculated per
capita GDP and employed GIS technology for a spatial analysis of the socioeconomic data,
revealing the spatial correlations between socioeconomic levels and wildfire incidents. In
the processing of the topographical data, we conducted an analysis of the elevation models
to gain insights into the potential impact of the terrain on wildfire spread. This involved
calculating the slope to better comprehend the potential influence of the topography
on wildfire occurrence. Additionally, an equal number of non-fire-point samples were
generated in the northeastern region (randomly split into 70% training samples and 30%
validation samples). Non-fire points were defined as 0 events, while fire points were defined
as 1 event. Subsequently, a wildfire ignition-point detection model based on random forest
was constructed. The training model at the point scale was extrapolated to various regional
pixel scales to achieve wildfire risk zoning and an attribution analysis.

2.3.2. Influencing Factors

Climate is a powerful driving factor for wildfires’ spatial and temporal patterns.
Prolonged drought, high temperatures, low relative humidity, and windy conditions are
conducive to wildfire outbreaks [41]. Temperature, humidity, and wind speed are closely
associated with wildfire occurrence. Temperature primarily affects the flammability of
combustible materials, thereby influencing wildfire risk. When the relative humidity drops
below 55%, the likelihood of wildfire outbreaks increases as the humidity decreases. Wind
speed is a crucial factor in spread and wildfire initiation; it provides oxygen and creates
conditions more favorable for combustion, accelerating the progression of the wildfire.
Combustible materials’ moisture content is impacted by precipitation directly, and typically,
2 to 5 mm of precipitation can reduce these materials’ combustibility significantly. Moreover,
precipitation increases the relative humidity in the air [39].

Terrain is a driving factor for wildfires, affecting vegetation distribution, composition,
and local microclimates, making it one of the fundamental factors in wildfire occurrence.
Because slope and elevation can both be calculated using digital elevation models (DEMs)
and are strongly correlated, introducing both of these factors simultaneously during the
construction and prediction process of the random forest model can artificially increase the
influence weight of DEM factors in model predictions.

Vegetation’s status is quantified by the vegetation coverage on the Earth’s surface,
representing the vegetation’s vertical projection area (leaves, stems, and branches) as a ratio
of the total statistical area of the region [39,42,43]. Vegetation is crucial in wildfire initiation,
and vegetation coverage effectively represents the respective fuel load for each wildfire
or control point. There is a strong linear correlation between vegetation coverage and the
NDVI [44]. FVC represents vegetation coverage, describing the proportion of vegetation
coverage on the ground, and is used in ecological and environmental research. To eliminate
the impact of data scale or dimensionality on analysis results, the difference between the
maximum and minimum NDVI values is used for normalization, converting NDVI values
across different times and spaces to a common range, making them comparable. In this
study, the vegetation coverage was calculated using a pixel-wise binary model with the
following formula [45–48]:

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(1)

Vegetation coverage is represented by FVC; NDVI stands for Normalized Difference
Vegetation Index; and NDVImax and NDVImin represent the maximum and minimum NDVI
values during the entire growth season [32,44,49].

The socioeconomic data include infrastructure information and socioeconomic indica-
tors. The infrastructure information consists of data on distances to residential areas and
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roads, obtained from the National Geographic Information Resource Catalog System. The
socioeconomic data include information, such as population, GDP, and holidays. Globally,
approximately 10% of wildfires are attributed to natural factors, while the remaining 90%
are caused by human factors. Therefore, socioeconomic factors play a crucial role [50].

2.4. Method

In this study, a systematic approach was employed to analyze the patterns of wildfire
occurrences, including spatiotemporal patterns and risk zoning (Figure 2). This analysis
aimed to identify relevant and effective risk reduction measures and strategies as required.
The research involved the use of the Mann–Kendall, sliding t-test, and geographic heat
map algorithms to investigate the temporal trends and spatial distribution of the wildfire
ignition points in the study area. Meanwhile, the random forest algorithm was applied to
realize the wildfire risk zoning and attribution analysis.
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2.4.1. Mann–Kendall

The Mann–Kendall mutation test is a non-parametric test method commonly used
to analyze trends and mutation points in time series data [51]. In this study, the Mann–
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Kendall mutation analysis method will be applied to explore the degree of historical wildfire
changes in different seasons. Its basic principle is as follows [52]:

(i) Define Sk as the statistical test statistic for a single sequence:

Sk = ∑k
i=1 ∑i−1

j aij k = 1, 2, 3, . . . , n (2)

(ii) Assume that the original sequence is random and independent; the mean is repre-
sented by E(Sk), and the variance is represented by var(Sk):

E(Sk) =
k(k + 1)

4
(3)

var(Sk) =
k(k − 1)(2k + 5)

72
(4)

(iii) Normalize Sk as follows:

UFk =
Sk − E(Sk)√

var(Sk)
(5)

UBk = −Sk − E(Sk)√
var(Sk)

(6)

If UF is greater than 0, it shows an upward tendency in the number of wildfires;
conversely, if UF is below 0, it indicates a downward trend in the number of wildfires [53].
When the UF and UB values go beyond the confidence interval, it indicates a significant
upward or downward tendency. When the statistical curves of UB and UF intersect, and
the crossing point goes down within the confidence interval, the corresponding time is
considered as the wildfire mutation time [54,55]. In addition, if the intersection of the UB
curves and UF happens outside the critical line or multiple intersection points appear, a
sliding t-test ought to be conducted for further verification [56].

2.4.2. Sliding t-Test

The sliding t-test is a statistical method that is applied to test whether the means of
two equally sized continuous subsequences in a time series exhibit a significant differ-
ence [57]. In this study, continuous sequences of wildfires over time are divided into two
subsequences, denoted x1 and x2, point by point. These subsequences have respective
sample sizes of n1 and n2 and variances of s1 and s2. A statistical parameter T is constructed
as follows [58]:

T =
x1 − x2√

n1s1
2+n2s2

2

n1+n2−2

√
1

n1
+ 1

n2

(7)

The parameter T follows a t-distribution with degrees of freedom v = n1 + n2 − 2;
Given a significance level α = 0.05, if |T| > α(critical value), it is considered that a mu-
tation occurred at the splitting point in time [59]. Otherwise, it is concluded that there
is no significant difference in the two subsequences’ means before and after the splitting
point [56].

2.4.3. Principle of Geographic Heat Maps

The term “heat map” was originally coined and created by software designer Cormac
Kinnery in 1991 [60]. It was initially used to describe a method for visualizing real-time
financial market information in a two-dimensional image format. The theoretical founda-
tion of heat maps is based on visualizing the data density and distribution by representing
the values of the cells in a data matrix [61]. To better illustrate relationships and patterns
between data, heat maps utilize combinations of rows and columns to achieve the cluster-
ing and classification of data, resulting in a clearer data visualization outcome [60,62]. In
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this study, geographical heat maps are engaged to visualize wildfires and further reveal
wildfires’ spatial distribution patterns in the northeastern region (Figure 3) [63].
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(I) Wildfire hotspot data are projected onto the screen and represented as a geographic
coordinate dataset, where n represents the number of data points.

Pn = (xn, yn, zn) n = 1, 2, 3 . . . (8)

In this equation, xn and yn correspond to the horizontal and vertical coordinates of
the data points, respectively. zn represents the attribute value of the data point.

(II) The rendering radius is determined, and the K-means algorithm is applied to the
wildfire dataset to form clusters. Transparent gradient circles are drawn from the
inside out with cluster centers (X and Y) and a radius r, with the influence diminishing
linearly from the center outward.

(III) The method for creating geographical heat maps employs a standard renderer pixel
alpha overlay rule as the influence superimposition mode. Once all the cluster points
are rendered, a grayscale image is generated. Different colors are applied to the
grayscale image based on heat-level grading thresholds, resulting in the creation of
the heat map [64].

a =
[

a1 + a2 −
a1a2

255

]
(9)

a represents the alpha value of the overlaid pixel. a1, a2 represent the overlaid pixels.
The value range for a, a1, and a2 is [0, 255].

2.4.4. Random Forest

The data related to the driving factors affecting wildfires are multidimensional, and the
relationships between variables are complex and nonlinear. Traditional statistical methods
face challenges when analyzing such data and may not be adequate to reveal the relations
between diverse driving factors and wildfire occurrences. The random forest algorithm has
several advantages, as it can flexibly and robustly analyze nonlinear relationship data and
provide simple and understandable interpretations [65]. The random forest algorithm is
therefore chosen to establish a nonlinear regression relationship between multiple driving
factors and wildfires, creating a wildfire prediction model ultimately based on random
forest [40].

Random forest is an ensemble that learns an algorithm that is based on decision
trees, originally proposed by Breiman, and it can be used for both regression tasks and
classification [66]. The principle behind random forest involves using Bootstrap sampling
to randomly draw k samples with a replacement from the training dataset, resulting in
different classification outcomes. These outcomes are then “voted” upon to determine



Forests 2023, 14, 2350 9 of 19

the optimal classification result. There are several important parameters in the model,
including the number of decision trees in the forest and the depth of the decision trees,
which represent the number of features. Using more features can lead to better accuracy,
but larger feature sets can increase the computation time [67] (as shown in Table 2).

We constructed a random forest model implemented in the Python programming lan-
guage to delineate the wildfire risk zones. During the modeling process, the entire dataset
was randomly divided into a training set (70%) and a testing set (30%) for training the
model and evaluating its performance, respectively. In this study, the model’s performance
was tested with tree numbers ranging from 15 to 1000. By comparing various metrics such
as the recall, precision, AUC, and F1 score, we found that the model performed best with
200 trees. A total of 18 predictor variables (Table 1) were selected and categorized into
four classes: climate variables [18]; topography; flammable materials; and socioeconomic
factors [68]. We ranked their importance using the IncMSE metric calculated by the ran-
dom forest model. We used historical wildfire data and the aforementioned 18 predictor
variables (Table 1) to create a wildfire prediction model. Model performance was evaluated
based on a confusion matrix, and the accuracy, recall rate, F1 score, and AUC values were
analyzed to assess the random forest classification results’ credibility [69].

Table 2. Model evaluation metrics.

Name Formula References

Precision Precision (P) = TP
TP + FP [70,71]

Recall Recall (R) = TP
TP + FN [70,72]

F1 F1 = 2 × P × R
P + R [70]

AUC AUC =
∑(Pi ,nj)Pi > nj

P × N [72]

TP (true positive), FP (false positive), TN (true negative), FN (false negative).

We used the Kriging interpolation method in the ArcGIS 10.6 software to interpolate
the wildfire prediction probabilities. Compared to other common methods, Kriging inter-
polation is suitable for spatial data interpolation, providing accurate estimates of unknown
data, especially in areas with dense sample data points, resulting in higher interpolation
accuracy. Additionally, Kriging interpolation allows for adjusting the interpolation model
parameters to control the smoothness of the interpolation results, offering greater flexibil-
ity compared to other interpolation methods. It also minimizes mean squared errors by
maximizing the utilization of spatial sampling information while considering the spatial
relationships between sampling points, effectively avoiding the occurrence of systematic
errors [18].

3. Results
3.1. Changing Trends

In the northeastern region of China, a total of 9890 wildfires were identified within
the forest cover area. Over the past 19 years, the northeastern region has experienced
an average of 520 wildfires per year, with significant year-to-year fluctuations [73]. The
year 2003 witnessed an exceptionally high number of wildfires, and in 2010, the number
of wildfires in the summer was notably higher compared to the spring and autumn. In
addition to the annual trends, there were distinct seasonal variations. During the spring,
the highest number of wildfires was recorded, reaching 5289. The autumn followed with
3559 wildfires, while the summer had a lower count of 955 wildfires, and the winter had
the fewest wildfires, totaling 87. In terms of the overall distribution, the spring, summer,
autumn, and winter accounted for 53.48%, 9.66%, 35.99%, and 0.88% of the total wildfire
incidents in the northeastern region (as shown in Figure 4).
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As shown in Figure 5, the Mann–Kendall change-point test was used to create trend
charts for historical wildfires in different seasons in the northeast region, aiming to identify
seasonal variations and the years of significant change. The results indicate that wildfires in
different seasons in the northeast region exhibit fluctuating patterns. In the spring season,
except for the year 2003, the wildfire data showed a slow declining trend from 2000 to 2013,
followed by an increasing trend after 2013.

During the summer season, except for the year 2006, wildfires displayed a non-
significant increasing trend from 2000 to 2007, followed by a consistent decreasing trend
after 2008. The historical wildfire data in the autumn season exhibited significant fluctu-
ations. From 2001 to 2011, there were four years of growth: 2002, 2004, 2005, and 2011.
After 2012, the wildfire data consistently showed a declining trend. In the winter season,
historical wildfire data have been declining since 2009. From 2001 to 2009, there was an
M-shaped fluctuation with a growth trend from 2001 to 2004, a decline from 2004 to 2007,
and growth again from 2007 to 2009. Except for the spring season, the other three seasons
all showed a declining trend in wildfires. The trend charts for the spring, summer, autumn,
and winter in the northeast region exhibited multiple intersecting points (as shown in
Figure 5). Due to the possibility of a less accurate determination of change points with
a single change-point test, a sliding t-test and the quantity of wildfire data were used to
assist in identifying change points. Within a 95% confidence interval, the change-point
years for the spring and autumn in the northeast region were determined to be 2014 and
2009, respectively, while there were no significant change points identified for the summer
and winter (as shown in Figure 6).
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3.2. Spatial Analysis

Using the “Heat Map” tool in the ArcGIS Pro software, the distribution of wildfires
was visualized. This leads to substantial differences in natural conditions such as climate
and topography across different regions, as well as variations in human activities, leading
to significant regional differences in wildfire occurrences. In the spring season, wildfires in
the northeast region overall exhibit a clustered distribution, forming a high-density heat
zone situated in the northern role of Heihe City in Heilongjiang Province, at the junction
of the Greater Khingan Mountains and Hulunbuir. The wildfire heat zone extends to the
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southwest and southeast, aligning with the direction of the Greater Khingan Mountains in
the southwest and the Lesser Khingan Mountains in the southeast. Other regions, such as
the eastern part of Shuangyashan City in Heilongjiang Province, Chaoyang City, Huludao
City, Jinzhou City, and Fushun City in Liaoning Province, exhibit lower-density wildfire
heat zones. In the autumn season, the fires show a high degree of similarity to that in the
spring season by using the forest’s spatial distribution. In the summer season, there is a
noticeable shift in the center of wildfire hotspots in the northeast region. In the winter
season, which has the fewest occurrences of wildfires, the hotspot areas experience the
greatest variation. Unlike other seasons, there are multiple hotspot areas in the winter.
Please note that this is a translation of the information provided, and it may not include
specific geographic details or visual representations (as shown in Figure 7).
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3.3. Wildfire-Driving Factors and Risk Zonation

The random forest model achieved the following evaluation metrics: a recall of
87.535626%, a precision of 81.800426%, an AUC of 92.277844%, and an F1 score of 84.570904.
All these metrics exceeded 0.8, indicating the accurate prediction of wildfire-prone areas.
Based on the output of the random forest model, we used Kriging interpolation to obtain
the probability values of wildfire occurrence across the entire northeast region. Utilizing a
natural breaks method, we categorized wildfire risk into five levels (the range is 0–1, where
I is 0–0.129; II is 0.129–0.298; III is 0.298–0.506; IV is 0.506–0.737; and V is 0.737–1) [74,75].
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According to the model’s predictions, the wildfire-prone areas in the study region
are primarily concentrated in the northern part of the northeast region. Specifically, the
proportions of the low-risk area, low-medium risk area, medium-risk area, medium-high
risk area, and high-risk area are 49.51%, 21.57%, 11.61%, 9.16%, and 8.15%, respectively (as
shown in Figure 8). In terms of the spatial distribution patterns, some areas in the northeast
region are susceptible to wildfires, with significant regional variations. As depicted in
Figure 8, these areas are predominantly situated in the northern regions of Aihui District and
Nenjiang City in Heilongjiang Province, the southeastern sectors of Huma County, Sunwu
County, the northern territories of Wudalianchi City, the northeastern and eastern areas of
Xunke County, and the eastern parts of Tahe County. Additionally, scattered occurrences
can be observed in Ewenki Autonomous Banner, Morin Dawa Daur Autonomous Banner,
and Genhe City in Hulunbuir City. In terms of the topography and terrain, the northeast
region consists of the Greater Khingan Mountains, Lesser Khingan Mountains, Changbai
Mountains, and the Northeast Plain. Wildfire-prone areas are predominantly located at
the junction of the Greater Khingan Mountains and Lesser Khingan Mountains. These
areas are characterized by high forest coverage, mainly consisting of coniferous forests, and
maintain relatively intact natural environments [76].
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Medium, Medium high, High risk, respectively).

When analyzing the importance of the factors contributing to wildfires in the northeast
region, we selected four major categories of factors: climate factors, human factors, topo-
graphic factors, and vegetation coverage. The results indicated that climate and human
factors had relatively high relative importance. The top three features in terms of impor-
tance were sunshine hours, minimum relative humidity, and vegetation coverage. These
factors are considered significant influencing factors for wildfires. Furthermore, human ac-
tivities, including factors like GDP and population (POP), exert a widespread and profound
impact on the occurrence of wildfires. The expansion of economic activities and the increase
in population density can lead to excessive land use and resource pressure, elevating the
potential risk of wildfires. The construction of roads and the celebration of special holidays
also contribute to the introduction of fire sources. The process of urbanization intensifies
the interaction between urban areas and forested lands, creating an urban–forest interface
and increasing the likelihood of interface fires (as shown in Figure 9).
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4. Discussion and Conclusions

In this comprehensive study, we provide an in-depth analysis of the spatial and tempo-
ral distribution patterns of wildland fires in the northeast from 2001 to 2019. The findings
reveal a consistent and overall declining trend in forest fire occurrences, underscoring
the effective alignment of China’s forest fire policies with the actual situational dynamics.
Our research further unveils distinctive seasonality in the occurrence of wildfires in the
northeastern region. Specifically, there is a notable peak in wildfire incidents during the
autumn and spring seasons, while occurrences are comparatively fewer in the summer
and winter months. Notably, with the exception of the spring season, the historical data
demonstrate a decreasing trend in wildfires during the other seasons [77]. The summer of
2010 witnessed a notable increase in wildfires compared to the spring and autumn seasons.
This can be attributed to the influence of the El Niño and La Niña phenomena, leading to a
shift in the fire-prone period from the autumn to the summer. The reduced annual precipi-
tation, increased drought conditions, and higher temperatures contributed to the higher
occurrence of summer wildfires [78]. Unlike previous studies analyzing forest fires as a
whole, we conducted a seasonal analysis and found that forest fires’ spatial and temporal
distribution varies across seasons. Apart from the spring, a decreasing trend was shown by
wildfires in the other three seasons. Therefore, it is crucial to focus on wildfire prevention
in the spring, as there is a trend toward earlier spring wildfires [79]. The factors driving
wildfires in the northeast region exhibit spatial non-uniformity due to both natural and
anthropogenic factors [80]. Wildfire-prone areas are mainly concentrated at the junction
of the Lesser Khingan Mountains and the Greater Khingan Mountains, characterized by a
predominance of temperate coniferous forests rich in flammable oils [56].

The most important influences are climatic [43] in Northeast China. Among these
factors, sunshine hours had the greatest impact on wildfire happenings, followed by
humidity and temperature. Factors such as atmospheric pressure, precipitation, and
wind speed had relatively less impact. Relative humidity and precipitation affect the fuel
moisture content in forests, with higher levels reducing a wildfire’s likelihood [20]. These
results align with previous studies conducted in northern Chinese forests [43]. While
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atmospheric pressure and wind speed also played a role in wildfire occurrences, their
effects were relatively minor and primarily influenced wildfire spread during active fires.

Vegetation coverage and terrain emerged as crucial factors that affected wildfire occur-
rences, with the gentle and relatively uniform terrain of Northeastern China contributing
to the topographical factors’ lesser impact. Vegetation, on the other hand, had a significant
influence, reflecting the amount of available fuel for wildfires. Forest cover, especially
the presence of coniferous trees, was identified as a key indicator for wildfire ignition,
corroborating findings from previous research [81].

Wildfires demonstrated a close association with human activities, with densely pop-
ulated areas characterized by reduced forest cover and lower chances of wildfire inci-
dents [22]. These regions were also more susceptible to accidental ignition, such as arson.
Human per capita GDP levels influenced the wildfire occurrence rate in Northeast China,
with lower wages and poverty increasing the likelihood of wildfires [82,83]. Distance from
infrastructure was another significant factor, with remote areas having more continuous
vegetation, greater fuel accumulation, and potentially faster fire spread. Rapid develop-
ments in high-speed railways and modern highways in China, especially after 2000, have
created transportation corridors that segregate forests from urban areas, reducing the risk
of fires caused by human activities.

Surprisingly, holidays were considered one of the driving factors for wildfires, al-
though their importance in terms of feature importance was relatively small. This discrep-
ancy could be attributed to policy interventions. For instance, during special holidays
like the Qingming Festival, wildfire prevention and control measures are typically stricter,
and even the traditional practices associated with these holidays have gradually evolved.
Virtually 90% of wildfires are caused by human activities [84], and it is expected that the
influence of outgoing factors on fire incidents will grow as the economy of China continues
to develop. Therefore, it is imperative to prioritize fire management efforts, even though
human factors may not be the primary driver of wildfire.

The analysis of the spatiotemporal patterns of wildfires in Northeast China, consider-
ing seasonal variations, has provided insights into the season-specific wildfire occurrence
patterns and revealed high-risk areas. To address the varying fire risks in different periods
and forest ecosystems, tailored fire prevention and management strategies should be im-
plemented. Monitoring high-risk areas during different seasons, especially in areas with
high fire occurrence rates, is recommended for effective fire prevention efforts. Overall,
understanding the changing temporal aspects, such as the timing and duration of fire
seasons, is crucial, as these changes could result from interactions between extreme weather
events and government policies. Therefore, the periodic updating of research results and
the development of an effective long-term monitoring system for spatial and temporal
changes in wildfires are essential.

While the application of the random forest model proved accurate in generating
wildfire susceptibility models, there are limitations to this study. Firstly, satellite-based
fire monitoring may not differentiate between planned fires, such as controlled burns, and
wildfires, potentially leading to misclassification. To mitigate this, we applied a confidence
threshold of above 80% for wildfires and focused on fires within forested areas. However,
there is still room for improvement in the sample selection methods to ensure more reliable
dependent variable samples [40]. Secondly, in terms of driver factors, we concentrated
on live fuel loads as the material basis for wildfires, potentially overlooking the impact
of dead fuels on wildfires. Additionally, our study focused on understanding the feature
importance of driver factors; however, there is a lack of research on the critical values of
the various impact factors. Strong influences on wildfires occur when climate conditions
cross certain thresholds, necessitating further research into the threshold data [20]. For
example, logistic regression can calculate its threshold, but its accuracy is low. Therefore,
the two methods can be combined for future analysis.
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