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Abstract: To solve the problem of the poor performance of a flame detection algorithm in a complex
forest background, such as poor detection performance, insensitivity to small targets, and excessive
computational load, there is an urgent need for a lightweight, high-accuracy, real-time detection
system. This paper introduces a lightweight object-detection algorithm called GS-YOLOv5s, which
is based on the YOLOv5s baseline model and incorporates a multi-scale feature fusion knowledge
distillation architecture. Firstly, the ghost shuffle convolution bottleneck is applied to obtain richer
gradient information through branching. Secondly, the WIoU loss function is used to address the
issues of GIoU related to model optimization, slow convergence, and inaccurate regression. Finally, a
knowledge distillation algorithm based on feature fusion is employed to further improve its accuracy.
Experimental results based on the dataset show that compared to the YOLOv5s baseline model, the
proposed algorithm reduces the number of parameters and floating-point operations by approxi-
mately 26% and 36%, respectively. Moreover, it achieved a 3.1% improvement in mAP0.5 compared to
YOLOv5s. The experiments demonstrate that GS-YOLOv5s, based on multi-scale feature fusion, not
only enhances detection accuracy but also meets the requirements of lightweight and real-time detec-
tion in forest fire detection, commendably improving the practicality of flame-detection algorithms.

Keywords: forest flame detection; inter-stage local network; loss function; feature fusion; knowledge
distillation

1. Introduction

A forest is an important resource and environmental condition for human beings. It
shoulders many functions, such as windbreak and sand fixation, water conservation, soil
and water conservation, climate regulation, environment beautification, oxygen release,
air purification, and noise reduction. Forest fires have always been a major direct threat to
forests, and they are also the focus of forestry monitoring.

However, the traditional forest fire monitoring is mainly through manual inspection,
which has obvious shortcomings, such as low efficiency, high cost, and difficulties in
achieving all-weather duty. With the development of sensor technology, most fire-detection
systems rely on sensors [1–4], such as smoke and temperature sensors. However, limitations,
such as the restricted installation range, high costs, and inability to provide crucial visual
information constrain the use of sensors in fire detection.

With the development of computer vision technology, image processing techniques
have become widely applied in fire detection. Image detection has the advantages of a short
detection time, high accuracy, and flexible installation, so it can be fitted on UAV-equipped
drones for real-time detection. As the altitude of the UAV is constantly changing, the size
of the flame image captured is constantly changing. When flying at high altitudes, a single
image may contain multiple small targets. Sometimes the image contains complex back-
ground information, including the detection of objects that are obscured and the presence
of objects that are easily misdetected. These problems will lead to a lower accuracy of
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object detection. Object detection is one of the fundamental tasks in computer vision image
analysis and can be broadly categorized into traditional object-detection methods and deep
learning-based object detection methods. Traditional object-detection methods involve
selecting regions that may contain objects, followed by feature extraction from the chosen
regions, such as SIFT, Harr, and HOG, and then detecting and classifying the extracted fea-
tures. In contrast, deep learning-based object-detection methods, as a newer approach, can
be divided into two-stage object-detection methods and one-stage object-detection methods.
Compared to traditional methods, deep learning-based methods have higher accuracy
and recall rates. Two-stage methods initially identify candidate regions and then classify
the objects within those regions while also determining their position. Typical two-stage
models include R-CNN [5] (Regions with CNN feature), Faster R-CNN [6], R-FCN, and
Cascade R-CNN [7]. While two-stage detectors provide accurate results, they may not meet
real-time requirements in practical applications. Hence, one-stage object-detection meth-
ods have been developed. One-stage algorithms do not independently extract candidate
regions but directly provide object category probabilities and position coordinates from
input images in a single stage, resulting in faster detection speeds. Prominent one-stage
detectors include EfficientNet [8], EfficientDet [9], SSD [10], and the YOLO [11] series.

With the advancement of deep learning technology, an increasing number of re-
searchers are employing deep learning for forest fire detection, where convolutional neural
networks (CNNs) find widespread application in forest fire recognition and localization.
Ding [12] proposed an improved flame recognition color space (IFCS) based on chaos theory
and k-medoids particle swarm optimization algorithm. The multi-layer algorithm devel-
oped by Mondal [13] et al. takes color-based cues for detection into account, combining
three filtering stages, “centroid analysis”, “histogram analysis”, and “variance analysis”,
to successfully detect fires. Huang [14], proposed a lightweight forest-fire-detection method
using a YOLO-based dehazing algorithm. They obtained haze-free images using a dark
channel prior before dehazing and improved YOLOX-L through techniques, such as Ghost-
Net, depthwise separable convolution, and SENet [15], applying it to haze-free image-based
forest fire detection. Sun [16] employed a lightweight backbone network called Squeeze
and Excitation-GhostNet (SE-GhostNet) for feature extraction, making it easier to distin-
guish a forest fire from smoke within the background while significantly reducing model
parameters. Zhou [17] introduced a cosine annealing algorithm, label smoothing, and
multi-scale training to improve the detection accuracy of the model. Lu [18] proposed a
multi-task learning-based forest-fire-detection model (MTL-FFDet), which contains three
tasks (the detection task, the segmentation task, and the classification task) and shares
the feature extraction module. Additionally, Huang [19] introduced an improved early
forest-fire-smoke-detection model based on deformable transformers, featuring optimal
sparse spatial sampling capabilities for smoke, involving deformable convolutions and
transformer-based relationship modeling.

Neural network algorithm models have continuously improved in performance, with
network structures moving towards greater depth and width. However, this trend re-
quires more computational power, which leads to substantial computational and memory
costs. This has significantly constrained algorithm development. Therefore, the design of
lightweight models has become a pressing need. Lightweight models aim to reduce algo-
rithm complexity without sacrificing performance excessively. Representative approaches
include parameter pruning and quantization, low-rank decomposition, and knowledge
distillation, which have opened avenues for model lightweighting. To meet the real-time
requirements of forest fire detection while avoiding high costs, some small-scale lightweight
networks have emerged, such as Xception [20], MobileNet [21], and ShuffleNets [22]. These
networks have significantly improved the detection speed through sparse convolution oper-
ations but tend to exhibit lower accuracy when applied to forest fire detection. In the realm
of compressing entire networks, methods, like network pruning and quantization, have
matured. Pruning eliminates redundant parameters in trained networks to reduce model
parameters and prevent overfitting, whereas quantization compresses network parameters
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to approximate the original model with fewer bits, reducing the model size. However, these
methods often depend on specific hardware and customized algorithm implementations.
In addition to the aforementioned methods, knowledge distillation, which has gained
widespread attention in recent years, offers a unique approach. Knowledge distillation is a
form of knowledge transfer that involves having a smaller model learn from the outputs of
a larger model, simulating knowledge transfer. Knowledge distillation initially emerged
from transfer learning. Gou [23] devised a new knowledge distillation framework called
multi-target knowledge distillation via student self-reflection or MTKD-SSR, which can
not only enhance the teacher’s ability in unfolding the knowledge to be distilled, but
also improve the student’s capacity of digesting the knowledge. Meanwhile, Yuan [24]
constructed the conceptual model and theoretical analysis framework of the influence
mechanism of the knowledge network arrangement mechanism on knowledge distillation
in 2022. Zou [25] proposed a multi-scale feature extraction method using channel-wise
split-concatenation to enhance feature mapping’s multi-scale representation ability. Li [26]
introduced a selective feature fusion module, resulting in a new form of self-distillation
called knowledge fusion distillation. Zhao [27] proposed a Relationship-Prototype Network
(RPNet) that combines the features of ProtoNet and RelationNet, using prototype distance
and non-linear relationship scores for classification.

This paper addresses the limitations of existing forest-fire-detection algorithms, which
exhibit poor detection performance in complex backgrounds and insensitivity to small
targets. To address these issues, the GS-YOLOv5s algorithm was designed. The original
Cross-Stage Local Network (CSL) module had a number of parameters and insufficient
feature extraction capability. Therefore, this paper modified the original CSL module,
building upon the GS bottleneck and leveraging parallel branches to extract richer gradient
information. In addition, to achieve a more lightweight model suitable for deployment
on embedded devices, traditional convolutions in the neck network were replaced with
GSConv [28]. To enhance the model’s performance, the study introduced the Weighted
Intersection over Union (WIoU) [29] loss function based on a focusing mechanism. This
was performed to address the limitations of the original Generalized Intersection over
Union (GIoU) [30] loss function, which failed to accurately reflect the distance and overlap
between the prediction box and ground truth box. This improvement helps with overall
model optimization, convergence speed, and regression accuracy. Finally, a feature fusion
knowledge distillation process was employed, using YOLOv5x as the “teacher network”
to distill the enhanced model. This not only achieved model lightweighting, but also
improved the detection accuracy.

The remaining sections of this paper are organized as follows. In Section 2, we intro-
duce the dataset used in this study and outline the model evaluation metrics; a description
of the proposed GS-YOLOv5s algorithm model is also detailed. In Section 3, a compre-
hensive description of the experimental setup, including the equipment and experimen-
tal parameters is provided, and the effectiveness of the proposed modules is validated.
Section 4 provides an explanation and analysis of the overall experiments conducted. We
also summarize the work with the most significant quantitative obtained results.

2. Materials and Methods
2.1. Dataset

Datasets play a crucial role in object-detection research, particularly in tasks based
on deep learning, where a large forest fire dataset is urgently required to train efficient
detectors. In this study, we first obtained fire images from various scenes by developing
web scraping scripts. In addition, we captured images of small forest fire targets under
natural lighting conditions using UAVs. Subsequently, the dataset was manually annotated
and converted into COCO format. In total, we collected and annotated 6200 high-quality
forest-fire-detection images from different forest fire scenarios. Out of these, 4960 images
were allocated for training, and 1240 images were used for testing. At the same time, a
certain proportion of negative samples were set in it, such as vehicle lights being also
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included, streetlights, sunlight, and forest firefighter clothing. According to the Microsoft
COCO standard, objects smaller than the size of 32 × 32 pixels were defined as small
targets. The representative samples is shown in Figure 1.
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Figure 1. Sample images from the training set: (a–d) forest fire targets of different backgrounds
and sizes.

2.2. YOLOv5

As a representative method in one-stage object detection, the YOLO series of networks
is an end-to-end convolutional neural network capable of directly predicting the category
and position of objects. YOLO divides the input image into S × S grids, with each grid
responsible for detecting objects for which the center falls within it. Each grid predicts
two bounding boxes, each represented by a five-dimensional vector: (x, y, w, h, c), where
(x, y) denotes the center coordinates of the bounding box, w and h represent the width
and the height, and c represents confidence. YOLOv5, compared to YOLOv3 and YOLOv4,
is a smaller model that is more suitable for mobile applications. YOLOv5 includes five
variants: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, with increasing
model sizes. Taking factors, such as the model size, detection speed, and computational
complexity, into account, we chose YOLOv5s as the baseline model for this study. The
structure of the YOLOv5s detector is illustrated in Figure 2 and consists of three parts: the
backbone, neck, and head. The backbone network extracts features from the input, the
neck enhances these features, and the head performs classification and regression based
on the extracted features. The local network module was designed based on the CSPNet
structure for feature extraction. The Spatial Pyramid Pooling Fusion (SPPF) module is em-
ployed to capture the global information of detection targets, concatenating the outputs of
three 5 × 5 max-pooling layers before applying a channel-wise split (CBS) operation. The
neck network enhances the features extracted by the head network, and the head network’s
three branches are responsible for detecting large, medium, and small objects.
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Figure 2. The figure presents a schematic diagram illustrating the structure of the YOLOv5s model.
From left to right, the diagram showcases three dashed boxes representing the backbone network, neck
network, and head network, respectively. In this diagram, the “CBL” module denotes the combination
of convolution, batch normalization, and the Leaky-ReLU activation function. Furthermore, the
“C3” module corresponds to a local network consisting of three convolutional structures operating
across stages.

2.3. GS-C2

CNNs have demonstrated excellent performance in various computer vision tasks.
However, traditional CNNs often require a large number of parameters and computational
resources to achieve satisfactory accuracy. Moreover, during the process of feature ex-
traction from images, convolutional neural networks often suffer from the issue of losing
semantic information. Dense convolution computations maximize the preservation of
hidden connections between each channel. In contrast, existing mainstream lightweight
convolutions, such as sparse convolutions, hardly preserve these connections, making it
challenging to achieve both model lightweighting and high accuracy. GSConv, with lower
time complexity, strives to retain these connections as much as possible and incurs lower
computational costs during data reshuffling operations. Data reshuffling is a uniform
mixing strategy that allows for information from dense convolutions to be fully integrated
into the output of sparse convolutions. It evenly exchanges local feature information across
different channels without the need for fancy functionalities. For lightweight detectors,
GSConv’s advantages become more pronounced. It benefits from the addition of channel-
sparse convolution kernels and data reshuffling to enhance nonlinear expression capability.
First, a significant number of 1 × 1 dense convolutions are used to merge independently
computed channel information. Second, “channel shuffling” is employed to facilitate
channel interaction. Finally, data reshuffling infiltrates the information generated by dense
convolution operations into every part of the information generated by sparse convolutions.
The GSConv module is depicted in Figure 3a, where “DWConv” represents sparse convolu-
tion operations, “shuffle” indicates data reshuffling, C1 represents the number of channels
for each convolution kernel, which is also the number of channels in the input feature
map, and C2 represents the number of channels in the output feature map. However, if
GSConv is applied throughout all stages of the model, the network’s depth will increase,
leading to higher resistance to data flow and significantly increasing the inference time.
Therefore, using GSConv for feature map concatenation in the neck network, where the
feature channel dimensions are maximized and the width is minimized, strikes the right
balance and reduces redundant information. After concatenating GSConv, it is combined
in parallel with standard convolutions. This structure is referred to as GS bottleneck, as
shown in Figure 3b.
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It consists of three standard convolution layers and multiple bottleneck modules in
YOLOv5s. The C3 module is the primary component for feature learning. By applying the
GS bottleneck in a parallel manner to the Cross-Stage Local (CSL) network module, the
module structure depicted in Figure 4 is obtained. Compared to the original C3 module
in YOLOv5s, which contains three convolutions, incorporating the GS bottleneck reduces
one convolution layer. In this study, the module that includes the GS bottleneck with
two convolutions is referred to as GS-C2, which not only ensures lightweighting but also
provides richer gradient information. GS-C2 aims to improve the detection performance by
introducing multiple branches into the network to capture information of different levels
and scales simultaneously. This multi-branching design can better adapt to the changes in
different scenes and targets, thus improving the accuracy and robustness of target detection.
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2.4. Boundary Box Regression Loss Based on Focusing Mechanism—WIoU

The role of the loss function in a neural network is of paramount significance, as it
serves to quantify the difference between actual and anticipated values at the culmina-
tion of each iteration; its overarching purpose lies in shepherding subsequent training
phases towards the correct trajectory. The discerning choice of an appropriate loss function
expedites the model’s convergence during the training regimen. Within the domain of
YOLOv5s, the spectrum of losses encompasses classification loss, regression loss, and confi-
dence loss. Particularly noteworthy is the utilization of the GIoU (Generalized Intersection
over Union) loss function as a replacement for the original IoU loss function in the realm

of regression. Let us denote the predicted box as
⇀
B = [x, y, w, h] and the target box as

⇀
B gt =

[
xgt, ygt, wgt, hgt

]
. The formulas for IoU and GIoU Loss functions are expressed in

Equations (1) and (2), respectively.

LIoU = 1 − IoU = 1 − Wi Hi
Su

(1)

LGIoU = 1 − Wi Hi
Su

+
Wg Hg − Su

Wg Hg
(2)

where Wg and Hg represent the width and height of the minimum enclosing box. Mean-
while, the width and height of the predicted box and ground truth box are denoted as w, h
and wgt, and hgt. In addition, Wi and Hi represent the width and height of the predicted
and ground truth box overlapping each other, respectively, as depicted in Figure 5. Notably,
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the predicted and ground truth box are visually represented by the red and green box, with
the area of the union being Su = wh + wgthgt − Wi Hi.
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The GIoU loss function has limitations. Notably, when the predicted box is entirely
contained within the ground truth box, the GIoU loss function fails to indicate the relative
positional relationship between the predicted box and ground truth box, as illustrated in
Figure 6. In such cases, the minimum enclosing region corresponds to the ground truth
box, as represented by Wg Hg−Su

Wg Hg
= 0. The GIoU loss function degenerates into the IoU loss

function, which fails to capture the distance and overlap degree between the predicted box
and ground truth box. Consequently, this limitation poses challenges for optimizing the
overall model, leading to slow convergence rates and inaccurate regression. To address
these issues, this paper proposes the use of a Loss function augmented with a focused
penalty mechanism RWIoU .
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Figure 6. The performance of GIoU when the prediction box is completely contained within the
target box; the red box represents the prediction box, and the green box represents the real box.

The WIoU (Weighted Intersection over Union) is an enhanced approach based on
the intersection merge ratio. The WIoU loss function places particular emphasis on the
significance of image boundaries, thereby effectively mitigating the issue of unclear image
boundaries in detection tasks. It computes the WIoU loss function by comparing the
predicted results with the real labels, calculating the intersection and union between
them, and subsequently dividing the intersection by the union to obtain the IoU value.
Distinguishing itself from the conventional IoU loss function, the WIoU loss function
assigns weights to the IoU value, prioritizing the target boundary. The penalty term RWIoU
and Loss function LWIoU expressions for WIoU are provided below:

RWIoU = exp

(x − xgt
)2

+
(
y − ygt

)2(
W2

g + H2
g

)∗
 (3)

LWIoU = RWIoU × LIoU (4)
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To prevent RWIoU from generating gradients that hinder convergence, Wg and Hg
are separated from the calculation in dynamic non-monotonic frequency modulation (the
superscript × indicates this operation).

WIoU loss pays more attention to those that are difficult to estimate by introducing an
attention mechanism that assigns different weights to samples of different difficulties. This
helps improve the model’s performance in difficult situations. WIoU is calculated in a way
that involves the intersection and union of target and prediction boxes, where the weight
of the intersection part is proportional to the size of the intersection area according to the
attention mechanism. In this way, more attention is paid to the parts of target boundaries
that are difficult to estimate, and the learning effect of the model on these boundaries
is improved. In summary, WIoU is a bounding box regression loss that combines cross-
entropy loss and attention mechanism to improve the fitting ability of target detection
models to difficult-to-estimate samples. Such a design may achieve better performance
based on some complex scenarios and difficult samples.

2.5. Multi-Scale Feature Fusion Knowledge Distillation

Distillation, as a specialized knowledge-transfer algorithm, allows for the transfer of
knowledge from larger models to smaller ones. Typically, the larger model is referred to as
the “teacher”, while the smaller one is called the “student”, and this network structure is
known as the teacher–student network. Feature-based knowledge distillation, proposed by
Romero [31] et al., has demonstrated that distillation is an effective method for avoiding
redundant parameters in large models and improving the model inference speed.

The feature-based distillation algorithm, in order to ensure the consistency of target
features with the features to be trained, creatively introduced adaptation layers to adjust
the scale of the original features. The application of multi-scale feature fusion in knowledge
distillation can help students model better learning and utilizing information of different
scales. Eventually, the distillation loss is computed through a distance measurement
between the two. During the distillation process in this study, it was discovered that fusing
feature details from different levels significantly enhances model performance, and the
efficiency of distillation improves significantly with the incorporation of feature fusion.
The fusion of feature information with differing semantic scales aims to address issues
related to limited semantic richness and incomplete information representation in the
features. In the field of object detection, fusing high-level semantic features with low-
level features and making predictions based on larger feature scales effectively alleviates
the problem of inadequate representation capacity in low-level features, thus enhancing
the network’s ability to detect small target objects. The Feature Pyramid Network (FPN)
is an early feature fusion network in the field of object detection. It sequentially fuses
high-level features through processes, such as sampling, convolution, and addition, and
then makes predictions on features of different scales to detect objects of different sizes,
ultimately obtaining detection results on different scales. This paper investigates a unique
cross-scale feature fusion approach and optimizes traditional feature knowledge distillation
by adding the FPN [32] feature fusion structure. FPN usually consists of bottom-up and
top-down paths, which can extract rich semantic information based on feature maps with
different resolutions. In this way, feature knowledge distillation combined with FPN
enables student models to better learn and utilize feature information from different scales,
thereby improving the model’s performance in tasks, such as target detection, as shown in
Figure 7.

In particular, knowledge distillation primarily leverages the differences in semantic
information expression between features on different scales. It utilizes the student network
to learn the shallower features from the teacher network. Learning these shallow features at
the beginning of training helps the student network better fit the training data. Additionally,
due to the deep architecture of the network and to reduce model parameters effectively,
a progressive learning strategy is employed. This strategy involves gradually fusing
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features from higher layers to lower layers before proceeding with distillation from the
teacher network.
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2.6. Overall Architecture of GS-YOLOv5s

Flame detection imposes high requirements for the real-time performance and lightweight
nature of detection models. According to the training data of the current mainstream target
detection model, this paper takes into consideration the accuracy, efficiency, and scale of
the detection model and makes improvements based on the YOLOv5s architecture. The
enhanced model also performs well in small object detection. As this paper’s primary
enhancement is based on GSConv, the model is named GS-YOLOv5s.

The overall architecture of the designed optimization algorithm is illustrated in
Figure 8. The backbone network consists of CBL, GS-C2, and the Spatial Pyramid Pooling
Module (SPPF). The GS-C2 module incorporates the GS bottleneck into CSPNet, allowing
for richer gradient information through additional branch-level cross-layer connections,
ultimately leading to improved detection accuracy.
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In the neck region, information transmission and the fusion of deep and shallow-level
feature information are achieved through upsampling, facilitating a top-down informa-
tion transfer structure. Concatenation operations are performed between deep-level and
shallow-level features, enabling the seamless passage of high-resolution features from
the deep layers to the shallow layers, thereby implementing the PANet structure. This
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effectively leverages the complementary advantages of multi-scale features, enhancing the
accuracy of target recognition. Finally, the target is classified and regressed using the head
network. Comparing Figure 8 with the original YOLOv5s model, it is evident that Figure 8
replaces standard convolutions and C3 modules with the lightweight GSConv module
and GS-C2 module for feature extraction. Additionally, considerations include replacing
the original GIoU loss function with the WIoU loss function to measure localization loss
and employing YOLOv5x as the “teacher model” for overall knowledge distillation of the
improved model’s feature fusion.

2.7. Model Evaluation

In this field, common metrics for the accuracy assessment include the precision, recall,
and mean average precision (mAP), whereas lightweight evaluation metrics encompass
parameters and floating-point operations (FLOPs) as indicators of model complexity. The
specific descriptions and formulas are provided below. Recall is the ratio of the number of
true positive samples correctly detected to the total number of positive samples. Precision
represents the ratio of the number of true positive samples correctly detected to the total
number of samples detected. The F1 score is the harmonic average of precision and recall,
which takes into account the precision and recall of the model. mAP was utilized for quan-
titatively evaluating detection accuracy and serves as a critical indicator for assessing the
overall model performance. The formulas for precision, recall, F1 and mAP are as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 = 2
P ∗ R
P + R

(7)

mAP =
1
n

k=n

∑
k=1

APk (8)

In this context, TP represents the correct detection of forest fires, FP indicates instances
where forest fires were not detected when they were present, and FN represents cases
where the algorithm mistakenly detects forest fires in the absence of an actual forest fire. P
stands for precision, which calculates the ratio of true positives to all samples predicted as
positive, while R represents recall, which is the ratio of true positives to all actual positive
samples. mAP is a fundamental parameter for assessing the accuracy of a network model’s
training, calculated as the area under the PR curve. The number in the lower-right corner
of the mAP represents the IoU threshold when positive samples are considered detected;
for example, mAP0.5 indicates detection when the detection probability is greater than 0.5.

FLOPs, short for floating-point operations, are a measure of the computational work-
load and can be used to assess the complexity of algorithms or models. Parameter count
refers to the total number of parameters during the model training process. Equations (9)
and (10) show the formulas for calculating the floating-point operations and parameters.

FLOPs = k·(H − s + 1)·(W − s + 1)·c·k2 (9)

parameters = (s·s·n + 1)·c (10)

Among these variables, H and W denote the height and width of the input feature
map, while k represents the size of the convolutional kernel. The parameter c signifies the
number of output channels, n indicates the number of input channels, and an additional 1
is employed to represent the convolutional layer’s offset.
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3. Results
3.1. Training

When the dataset was collected, it was divided into training and testing sets in an 8:2
ratio. The software supplier for PyCharm (2021.2.3) is JetBrains, a company based in the
Czech Republic with its headquarters located in Prague. The experimental conditions for
training are listed in Table 1.

Table 1. Experimental conditions.

Experimental Environment Details

Software Pycharm

Programming Language Python 3.9
Operating System Windows 10

Deep Learning Framework Pytorch 1.8.2
GPU NVIDIA 3080ti

Hyperparameters can affect the structure and training process of neural networks,
thereby affecting the performance of the model. YOLOv5 uses PyTorch as a deep learning
framework, so hyperparameter adjustment is usually achieved by modifying the parame-
ters in the training script. The batch-size and learning rate are gradually adjusted through
continuous experimentation and observations of model performance. At the same time,
when the epochs reach 200, the experimental results tend to converge. Considering the
experimental period, 400 is selected as the epochs in this paper. The training parameters
for the forest-fire-detection model are specified in Table 2.

Table 2. Training parameter settings.

Training Parameters Details

Epochs 400
Batch-size 8

Img-size (pixels) 640 × 640
Initial Learning rate 0.01

Optimization algorithm SGD

3.2. Ablation Experiment

This section validates the effectiveness of GS-YOLOv5s and assesses the impact of
each component on the final performance through ablation experiments conducted on the
custom dataset, as shown in Table 3. Taking YOLOv5s as the baseline model, the GS-C2
module, GSConv, WIoU loss function, and feature fusion knowledge distillation module
were added successively. Initially, the model was trained using the training and testing sets.
The results of the ablation experiments are summarized in Table 3.

Table 3. Data of ablation experiments.

MODEL mAP0.5 mAP0.5:0.95 Parameters (M) FLOPs (G)

YOLOv5s + GS-C2 0.846 0.496 5.6 12.1
YOLOv5s + GSConv 0.863 0.513 6.6 15.4

YOLOv5s + WIoU 0.848 0.519 7.0 15.9
YOLOv5s + Feature fusion knowledge distillation 0.857 0.519 7.0 15.9

YOLOv5s + GS-C2 + GSConv 0.859 0.516 5.2 10.2
YOLOv5s + GS-C2 + GSConv + WIoU 0.861 0.515 5.2 10.2

YOLOv5s + GS-C2 + GSConv + WIoU +
Feature fusion knowledge distillation 0.872 0.516 5.2 10.2
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In addition to the ablation experiments, a series of comparative experiments is also
conducted to compare the detection results of GS-YOLOv5s proposed in this paper with
popular one-stage and two-stage detection models, such as Faster R-CNN, SSD, and the
YOLO series. The primary experimental metrics of interest included mAP0.5, mAP0.5:0.95,
parameters, and the floating-point operations. Detailed experimental results are presented
in Table 4 and are also visualized in scatterplot form in Figure 9.

Table 4. Detection results of different methods based on the dataset.

MODEL P R F1 mAP0.5 mAP0.5:0.95 Parameters (M) FLOPs(G)

YOLOv5n 0.813 0.712 0.759 0.823 0.497 1.765 4.2
YOLOv5s 0.875 0.762 0.798 0.838 0.516 7.022 15.9
YOLOv5m 0.833 0.803 0.818 0.853 0.53 20.871 48.2
YOLOv5l 0.864 0.788 0.824 0.856 0.537 46.138 108.2
YOLOv5x 0.874 0.782 0.825 0.864 0.549 86.218 204.6
YOLOv3 0.835 0.797 0.815 0.843 0.512 61.524 155.3
YOLOv4 0.767 0.884 0.819 0.781 0.493 64.4 60.363
YOLOv7 0.773 0.876 0.821 0.869 0.513 37.6 106.472

YOLOv8n 0.853 0.759 0.803 0.834 0.515 3.2 8.7
YOLOv8s 0.864 0.793 0.827 0.845 0.52 11.2 28.4
YOLOv8m 0.842 0.804 0.823 0.851 0.523 25.9 78.9
YOLOv8l 0.861 0.795 0.827 0.856 0.543 43.7 165.2
YOLOv8x 0.875 0.825 0.849 0.868 0.549 68.2 257.8

SSD 0.63 0.883 0.735 0.782 0.496 26.3 62.7
Efficientdet 0.837 0.738 0.784 0.798 0.497 3.874 5.2

Faster-R-CNN 0.802 0.613 0.695 0.753 - 137.1 370.2
GS-YOLOv5s 0.867 0.805 0.835 0.872 0.516 5.2 10.2

Forests 2023, 14, x FOR PEER REVIEW 12 of 17 
 

 

Table 3. Data of ablation experiments. 

MODEL mAP0.5 mAP0.5:0.95 Parameters (M) FLOPs (G) 

YOLOv5s + GS-C2 0.846 0.496 5.6 12.1 

YOLOv5s + GSConv 0.863 0.513 6.6 15.4 

YOLOv5s + WIoU 0.848 0.519 7.0 15.9 

YOLOv5s + Feature fusion knowledge distil-

lation 
0.857 0.519 7.0 15.9 

YOLOv5s + GS-C2 + GSConv 0.859 0.516 5.2 10.2 

YOLOv5s + GS-C2 + GSConv + WIoU 0.861 0.515 5.2 10.2 

YOLOv5s + GS-C2 + GSConv + WIoU +  

Feature fusion knowledge distillation 
0.872 0.516 5.2 10.2 

In addition to the ablation experiments, a series of comparative experiments is also 

conducted to compare the detection results of GS-YOLOv5s proposed in this paper with 

popular one-stage and two-stage detection models, such as Faster R-CNN, SSD, and the 

YOLO series. The primary experimental metrics of interest included mAP0.5, mAP0.5:0.95, pa-

rameters, and the floating-point operations. Detailed experimental results are presented 

in Table 4 and are also visualized in scatterplot form in Figure 9. 

Table 4. Detection results of different methods based on the dataset. 

MODEL P R F1 𝒎𝑨𝑷𝟎.𝟓 𝒎𝑨𝑷𝟎.𝟓:𝟎.𝟗𝟓 Parameters (M) FLOPs(G) 

YOLOv5n 0.813 0.712 0.759 0.823 0.497 1.765 4.2 

YOLOv5s 0.875 0.762 0.798 0.838 0.516 7.022 15.9 

YOLOv5m 0.833 0.803 0.818 0.853 0.53 20.871 48.2 

YOLOv5l 0.864 0.788 0.824 0.856 0.537 46.138 108.2 

YOLOv5x 0.874 0.782 0.825 0.864 0.549 86.218 204.6 

YOLOv3 0.835 0.797 0.815 0.843 0.512 61.524 155.3 

YOLOv4 0.767 0.884 0.819 0.781 0.493 64.4 60.363 

YOLOv7 0.773 0.876 0.821 0.869 0.513 37.6 106.472 

YOLOv8n 0.853 0.759 0.803 0.834 0.515 3.2 8.7 

YOLOv8s 0.864 0.793 0.827 0.845 0.52 11.2 28.4 

YOLOv8m 0.842 0.804 0.823 0.851 0.523 25.9 78.9 

YOLOv8l 0.861 0.795 0.827 0.856 0.543 43.7 165.2 

YOLOv8x 0.875 0.825 0.849 0.868 0.549 68.2 257.8 

SSD 0.63 0.883 0.735 0.782 0.496 26.3 62.7 

Efficientdet 0.837 0.738 0.784 0.798 0.497 3.874 5.2 

Faster-R-CNN 0.802 0.613 0.695 0.753 - 137.1 370.2 

GS-YOLOv5s 0.867 0.805 0.835 0.872 0.516 5.2 10.2 

 

Figure 9. (a) Scatter plots of parameter numbers and mAP0.5 of the mainstream one-stage and two-

stage detectors and GS-YOLOv5s; (b) scatter plots of FLOPs and mAP0.5 of mainstream one-stage 

and two-stage detectors and GS-YOLOv5s. 

Figure 9. (a) Scatter plots of parameter numbers and mAP0.5 of the mainstream one-stage and two-
stage detectors and GS-YOLOv5s; (b) scatter plots of FLOPs and mAP0.5 of mainstream one-stage
and two-stage detectors and GS-YOLOv5s.

When the training reached 200 epochs, the results stabilized, with subsequent fluctua-
tions remaining within an acceptable range. In other words, the curves show a trend of
convergence. The improvements proposed in this study resulted in notable enhancements
in the precision, recall, and mean average precision. Finally, in Figure 10, we provide a
compare between GS-YOLOv5s and the baseline model YOLOv5s.
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Figure 10. (a) Comparison of the mean average precision between GS-YOLOv5s and YOLOv5s.
(b) Comparison of the regression Loss function between GS-YOLOv5s and YOLOv5s. (c) Comparison
of the precision between GS-YOLOv5s and YOLOv5s. (d) Comparison of the recall between GS-
YOLOv5s and YOLOv5s.

3.3. Comparison

According to the ablation experiments, it can be observed that although the YOLOv5s
model reduces the number of parameters and improves the accuracy compared to previous
models, there is still room for improvement in mAP0.5 in forest fire detection. In the ablation
experiments, C3 was replaced with GS-C2, WIoU was used instead of the original GIoU,
and feature fusion knowledge distillation was applied to the model. After adding the GS-C2
module, the model’s parameters and floating-point operations were reduced by 20% and
23.9% respectively, while mAP0.5 increased by 0.8%. This indicates that GS-C2 effectively
enhances the detection accuracy. Next, by replacing traditional convolution with GSConv
in the neck network, parameters and floating-point operations were reduced by 25.7%
and 25.1%, respectively, and mAP0.5 increased by 2.1%, demonstrating the effectiveness
of GSConv in forest fire detection. Furthermore, the addition of a focusing-mechanism-
based WIoU loss function increases the overall mAP0.5 by 2%, demonstrating WIoU’s
effectiveness in mitigating the challenges of the original GIoU loss function, such as slow
convergence and inaccurate regression. Finally, knowledge distillation based on feature
fusion using YOLOv5x as the “teacher model” improves mAP0.5 by 1.9%, which indicates
that feature fusion-based knowledge distillation effectively enhances detection accuracy
without increasing the number of parameters. Comparing experimental data, we can
conclude that these four improvements all contribute to improving the accuracy of forest
fire detection to different degrees and further achieving lightweighting.

Next, the four improvements were fused in sequence in ablation experiments while
adding GS-C2 and GSConv. The model’s mAP0.5 significantly surpassed that of only adding
GS-C2 or GSConv, with further reductions in parameters and floating-point operations.
These results indicate that GS-C2 and the WIoU loss function together can effectively
enhance the model’s forest fire detection performance. Replacing the original GIoU loss
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function with the WIoU loss function on this basis elevated mAP0.5 to a higher level. Com-
pared to just adding one or two of the improvements, simultaneously incorporating GS-C2,
GSConv, and WIoU significantly improves the forest-fire-detection accuracy while achiev-
ing lightweighting. Ultimately, through feature fusion-based knowledge distillation, the
mAP0.5 was raised to 87.2%, a 3.4% improvement compared to the baseline YOLOv5s model.
This demonstrates that feature fusion-based knowledge distillation not only compensates
for valuable information but also reduces the computational complexity. In conclusion,
the GS-YOLOv5s structure proposed in this paper outperforms YOLOv5s, with a 3.4%
increase in the mAP0.5, while reducing overall parameters and floating-point operations by
approximately 26% and 36%, respectively.

With these comprehensive improvements, the network can accurately detect forest
fires in complex backgrounds and small targets, making it more suitable for deployment
on embedded devices, allowing for quicker and more efficient forest fire detection. Visual
comparisons of detection results between the proposed model and other widely used
detection methods in the field of computer vision, including Faster R-CNN, SSD, and
the YOLO series, validate the accuracy of GS-YOLOv5s. In summary, the distilled GS-
YOLOv5s demonstrates superior performance compared to other existing detectors based
on the dataset.

To illustrate detection performance more intuitively, the detection results for YOLOv5s,
Faster R-CNN, and GS-YOLOv5s in complex backgrounds and small target scenarios and
visualizations of the results are displayed in Figures 11 and 12, respectively.
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Figure 11. GS-YOLOv5’s performance in detecting forest fire targets in complex backgrounds. (a) 

YOLOv5s fail to detect some flames in the detection results. (b) Faster R-CNN has a relatively accu-

rate detection result and a low probability of obtaining the detection result. (c) The detection results 
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flame based on the detection results. (f) The detection results of GS-YOLOv5s are the most accurate. 

Figure 11. GS-YOLOv5’s performance in detecting forest fire targets in complex backgrounds.
(a) YOLOv5s fail to detect some flames in the detection results. (b) Faster R-CNN has a relatively
accurate detection result and a low probability of obtaining the detection result. (c) The detection
results of GS-YOLOv5s are the most accurate. (d) YOLOv5s have a false detection in the upper left
corner of the detection result. (e) Faster R-CNN mistakenly detected the forest firefighter’s helmet as
a flame based on the detection results. (f) The detection results of GS-YOLOv5s are the most accurate.
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Figure 12. GS-YOLOv5’s performance in detecting small target forest fires. (a) YOLOv5s fail to detect
the flame target in the detection result. (b) The Faster R-CNN results are relatively accurate for the
detection. (c) The detection results of GS-YOLOv5s are the most accurate. (d) YOLOv5s missed the
flame detection in the upper right corner of the detection result. (e) Faster R-CNN missed the flame
detection in the upper right corner of the detection result. (f) The detection results of GS-YOLOv5s
show that both small target flames can be detected.

4. Discussion and Conclusions

In the task of object detection, a forest fire is difficult to detect as an object without
a fixed shape. Forest fires, especially in complex environments, can be easily missed or
falsely identified. Many large-scale forest fires often result from a lack of timely detection
and intervention in their early stages, leading to the spread of the forest fire and causing
significant loss of life and property. Therefore, improving the performance of detectors
is of great importance for identifying small forest fire targets and interference caused by
complex backgrounds.

Through experiments, it was found that the baseline model has limited capabilities
in detecting small targets or targets with complex backgrounds, leading to missed and
false detections. Additionally, the algorithm’s computational load hinders its deployment
on mobile devices. Therefore, in this paper, GSConv is added to reduce the number of
model parameters, the GS bottleneck is integrated into the interstage local network module
through feature branching, and WIoU based on the focusing mechanism is used to replace
the original GIoU. Finally, the model is distilled through knowledge distillation based on
feature fusion to achieve both improved detection accuracy and model lightweighting. The
accuracy of the model was verified using 360 complex-background or small-target forest
fire images. The detection accuracy is significantly improved when using GS-YOLOv5s.
mAP0.5, in detecting forest fires in our test set, increased by 3.1%, reaching 87.2%, while
testing based on the same forest fire dataset, the mAP0.5 of YOLOv5 was only 83.8%.

However, the model proposed in this paper still has its shortcomings, and further
optimization of the forest-fire-detection network is necessary. Firstly, we will continue to
explore more robust data-annotation methods as high-quality datasets can significantly
enhance the model’s detection capabilities. Furthermore, the number of parameters of
current high-precision models are still large, so we will research ways to strike a balance
between precision and lightweighting to enable the deployment of high-precision forest fire
detectors on mobile devices, facilitating timely flame detection. While the model proposed
in this paper demonstrated real-time performance when deployed on drones for data
capture, it is still susceptible to false positives due to factors, like lighting and obstructions
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during the capture process. In future work, we aim to enhance the stability of the detection
model and reduce false positives.

In the ongoing research, we plan to equip drones with different types of cameras,
including panoramic and stabilizing high-definition cameras, to capture clearer images.
Additionally, we draw inspiration from Dong [33] who proposed a High-Speed Railway
Signaling (HSRIS) object detection method based on adaptive target orientation features
in convolutional neural networks (CNNs). This work provides insights for our future
endeavors, where we will design regression methods using adaptive approaches. Equally
important, inspired by the work of Wang [34] and colleagues, our future research will
continue to refine the feature fusion module to enable the more precise extraction of object
boundary information, especially for small objects.
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