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Abstract: In recent years, frequent global climate change has led to extreme weather events, such as
high temperatures and droughts. Under the backdrop of climate change, the potential distribution
zones of plants will undergo alterations. Therefore, it is necessary to predict the potential geographical
distribution patterns of plants under climate change. Schima superba, a plant species with signifi-
cant ecological and economic value, plays a crucial role in ecological restoration and maintaining
environmental stability. Therefore, predicting potential changes in its suitable habitat in Zhejiang
Province is significant. The MaxEnt model and combined data from 831 monitoring sites where
Schima superba is distributed in Zhejiang Province with 12 selected bioclimatic variables were used to
predict habitat suitability adaptability. We found that (1) the average AUC value of the MaxEnt model
in repeated experiments was 0.804, with a standard deviation of 0.014, which indicates high reliability
in predictions. (2) The total suitable habitat area for Schima superba in Zhejiang Province (suitability
value > 0.05) is 87,600 km2, with high-suitability, moderate-suitability, and low-suitability areas
covering 29,400 km2, 25,700 km2, and 32,500 km2, respectively. (3) Likewise, elevation, precipitation,
and temperature are the dominant climatic variables that influence the distribution of Schima superba.
Schima superba mainly occurs in areas with an elevation above 500 m and precipitation over 140 mm
during the hottest season. The probability of Schima superba distribution reaches its peak at elevations
between 1200 and 1400 m. Here, the precipitation ranges from 300 to 350 mm with high humidity,
between 160 and 170 mm during the hottest season, and an annual temperature range between 28 and
31 ◦C. Therefore, our results indicate that climate change significantly affects the suitable habitat area
of Schima superba. We also reveal the ecological characteristics and adaptation mechanisms of Schima
superba in different geographical regions of Zhejiang Province. Future research should focus on the
relationship between plant adaptation strategies and environmental changes, as well as applications
in ecosystem protection and sustainable development, to promote the development and application
of plant habitat adaptability research.

Keywords: adaptation analysis; climate change; habitat suitability zone; model evaluation

1. Introduction

In the context of climate change, the potential distribution of plants is expected to
undergo alterations [1–3]. Therefore, it becomes imperative to predict the impact of climate
change on the potential geographical distribution patterns of plants [2–4]. The habitat
suitability of plants refers to their ability, either as individual populations or as species,
to survive and reproduce in specific environments characterized by various biotic and
abiotic factors, such as temperature, humidity, light availability, soil types, nutrient levels,
salinity, and climate change [5,6]. This topic has consistently been one of the focal areas
of research in plant ecology and physiology. Plant habitat suitability encompasses several
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dimensions, including morphological and physiological traits, seed ecology, genetics, and
gene regulation [7–9]. Plant adaptability refers to the ability of plants to respond to various
environmental changes through a range of physiological, morphological, and biochemical
mechanisms. These factors encompass temperature, moisture, light, soil, and various
other aspects. By adapting to their environment, plants can enhance their survival and
reproductive capabilities [10,11]. For instance, plants can adapt to varying humidity and
light conditions by adjusting stomatal size and density [12]. They can cope with diverse
soil types and nutrient levels by altering root system architecture and root exudation.
Additionally, plants can combat environmental stressors by synthesizing specific protective
compounds, such as antioxidants and antifreeze proteins. The significance of studying
plant habitat suitability lies in gaining a deeper understanding of the survival strategies and
adaptation mechanisms that plants employ under different environmental conditions. This
knowledge aids in elucidating the distribution, competition, and evolutionary processes of
plants within natural ecosystems [4,6]. Furthermore, given an escalation in global climate
change, research on plant adaptability holds crucial practical implications that provide
scientific foundations for agriculture, ecological restoration, and plant breeding. Through
an in-depth exploration of plant habitat suitability, we can enhance our comprehension of
the interactions between plants and their surroundings and contribute to the protection
and sustainable utilization of plant resources by promoting ecological well-being and
sustainable development in human societies [3,4,13].

The growth morphology, physiological responses, and reproductive strategies of
plants exhibit varied responses and adaptive mechanisms to various types of environmen-
tal stressors, such as high temperatures, drought, salinity, and cold [13]. Recently, studies
were able to simulate the potential distribution of bamboo forests in China under future
climate scenarios based on climate variables and maximum entropy modeling [14]. Their
results revealed that precipitation and temperature changes significantly influenced the
potential distribution of bamboo forests. Additionally, the suitable growing area of bamboo
forests in China increased initially and then decreased under low carbon emission (RCP4.5)
and high carbon emission (RCP8.5) climate conditions, respectively. The growth range also
contracted in the inland direction but expanded towards the southwest. This information
provides a beneficial reference to dynamically monitor the spatial distribution and sustain-
able utilization of bamboo forests under future climate change conditions, which is crucial
for the sustainable management of bamboo forests and the development of the bamboo
industry [2,3,13,14].

Factors such as environmental selection and geographical isolation play pivotal roles
in plant evolution and speciation [15]. Population differentiation, adaptive mutations,
and natural selection significantly interact with various environmental factors, including
soil conditions, water use efficiency, photoperiod adaptation, and climate change [14–16].
These factors also make essential contributions to species formation and species diversity.
Consequently, the application of model-based predictions and decision-making methods in
plant adaptation protection becomes increasingly crucial [16]. For example, many recent
studies have explored the limitations on plant adaptability posed by climate change that
encompass shifts in environmental conditions, lack of genetic diversity, and alterations in
species interactions [3,17]. Specifically, they have discussed how models can be employed to
forecast plant responses and adaptability to climate change that emphasize the importance
of preserving genetic diversity, establishing protected area networks, and promoting the
conservation of inter-species interactions [3,17]. Likewise, recommendations have also
been proposed to enhance models and data [16,18]. The analysis of plant habitat suitability
provides valuable insights into understanding the constraints on plant adaptability under
environmental changes and formulating corresponding protection strategies.

Schima superba, an ancient angiosperm, belongs to the family Theaceae. It is an ev-
ergreen tall tree known for its rich biological characteristics and ecological functions that
exhibit high ecological adaptability to its environment. Zhejiang Province boasts abun-
dant Schima superba resources and acts as one of the crucial hotspots for biodiversity in
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China [18]. However, due to environmental changes and human activities, the habitat
adaptability of Schima superba faces certain challenges. Therefore, models that predict the
potential distribution of Schima superba based on species distribution information and cor-
responding environmental variables (species distribution models, SDMs) would contribute
to enhancing our understanding of the ecology and biogeography of Schima superba.

In terms of biological populations, the MaxEnt model can be used to predict species
and habitat distributions, especially in data-limited situations. By utilizing known con-
straints between species and habitats, the MaxEnt model infers the probability distribution
of species. Additionally, the MaxEnt model can assess a species’ responsiveness to different
environmental changes, which provides decision support for biodiversity conservation and
ecosystem management [14]. Ultimately, this study uses Schima superba survey data and
environmental factors from 831 fixed forest monitoring plots across 20 counties (cities) in
Zhejiang Province to understand the ecological characteristics, distribution patterns, and
the relationship between Schima superba and these environmental factors. Altogether, we
look forward to using the MaxEnt model to thoroughly investigate the key factors influ-
encing the geographical migration of Schima superba under future global climate change.
The aim is to understand the constraints of climate variables on the potential geographical
distribution of Schima superba, providing a scientific basis for the efficient utilization of its
germplasm resources.

2. Research Area and Methodology
2.1. Study Area

Zhejiang Province has a land area of 105,500 square kilometers with a linear distance
of approximately 450 km from east to west and north to south and accounts for 1.06% of
China’s total land area. It is one of the smallest provinces in terms of area. The topography
of Zhejiang is characterized by mountains and hills (70.4%), plains and basins (23.2%), and
rivers and lakes (6.4%). The arable land covers only 2.08 million hectares, which results in
high habitat complexity. The terrain of Zhejiang slopes in a stepped manner from southwest
to northeast. The southwestern part is dominated by mountains, the central part by hills,
and the northeastern part is characterized by a low-lying alluvial plain. It can be roughly
divided into six topographical regions: North Zhejiang Plain, West Zhejiang Hills, East
Zhejiang Hills, Central Jinqu Basin, South Zhejiang Mountains, and Southeast Coastal Plain
with Islands. Zhejiang has a subtropical monsoon climate characterized by distinct seasons,
moderate annual temperatures, abundant sunlight, plentiful rainfall, high humidity, and
synchronous changes in the rainy and hot seasons. The annual average temperature ranges
from 15 to 18 ◦C, with extreme maximum temperatures reaching 44.1 ◦C and extreme
minimum temperatures dropping to −17.4 ◦C. The annual average rainfall in Zhejiang
ranges from 980 to 2000 mm, with an annual average sunshine duration of 1710 to 2100 h.
Due to the influence of the ocean, Zhejiang enjoys superior temperature and humidity
conditions compared to the inland monsoon regions at the same latitude, making it one of
the few regions with relatively favorable natural conditions in China.

The forest area in Zhejiang is 6.68 million hectares, with a forest coverage rate of 60.5%.
The total standing volume of living trees is 194 million cubic meters. Zhejiang Province
is rich in vegetation resources, with over 3000 species, and includes 45 species of wild
plants under national protection. The province is known for its rich tree species and is often
referred to as the “Southeast Plant Treasure Trove.” Zhejiang has nearly 4000 species of
vascular plants, including over 1300 species of woody plants that belong to 109 families
and 423 genera. This includes 8 families and approximately 45 species of gymnosperms,
as well as 101 families and over 1260 species of angiosperms, many of which are unique
to China.

2.2. Sample Site Setting and Investigation

We primarily selected ecological monitoring plots for these forest plots that were
dominated by Schima superba, with a chronological age of 10 years or more and undisturbed
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stands, in Zhejiang Province from 2011 to 2021 as samples. The plots for the Schima
superba community are distributed across 20 counties in six cities in Zhejiang Province
that cover various topographies, such as mountains, low hills, hills, and basins. The plots
include uphill, mid-slope, and downhill locations with distribution across an elevation
span of 0 to 1900 m, which ensures the rationality and reliability of plot distribution. The
plots are distributed in Hangzhou City (Chun’an, Fuyang, and Jiande, totaling 125 plots),
Huzhou City (Changxing, 2 plots), Jinhua City (Panan, Wuyi, Yiwu, and Yongkang, totaling
168 plots), Lishui City (Jingning, Jinyun, Longquan, Qingyuan, Songyang, and Suichang,
totaling 465 plots), Quzhou City (Changshan, Jiangshan, Kaihua, Kecheng, and Qujiang,
totaling 23 plots), and Taizhou City (Xianju, 48 plots), and they total 831 forest dynamic
monitoring plots with a size of 20 m × 20 m (Figure 1). The altitude range of the sample
plots was from 20 to 2000 m.
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Figure 1. Distribution of study area. Note: the blue circles are the study sites, hollow circles represent
the county area, and solid circles represent the city area. The areas without sample plots were mostly
sites with relatively little cultivation and growth of Schima superba.

For each survey plot, we recorded information on surviving woody plants with a
diameter at breast height (DBH) ≥ 1 cm and included species name, DBH, tree height,
coordinates, branching status, and sprouting condition. Ecological factors such as geograph-
ical location, topography, soil texture, soil type, elevation, slope, aspect, slope position,
community structure, vegetation cover, soil layer thickness, and litter thickness were also
documented. The community structure is entirely composed of evergreen broad-leaved
forests, with the dominant species being Schima superba and other species including Quercus
glauca and Liquidambar formosana.

2.3. Sampling and Analysis of Environmental Factors
2.3.1. Acquisition of Meteorological Factors

Meteorological data were primarily obtained through two sources. First, data for the
respective regions of each plot were acquired from meteorological stations and ecological
positioning observation research stations. These data included annual average temperature,
annual precipitation, relative humidity, and minimum temperature. Second, temperature
and humidity data were collected using temperature and humidity loggers (HOBO U23-002,
Guangzhou, Guangzhou Junchong Electronic Technology Co., Ltd., Guangzhou, China)
and small weather instruments installed at the 831 plots [19].
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2.3.2. Collection and Treatment of Soil Factors

Soil samples were collected during the period from July 2011 to 2021 (when forestry survey
fieldwork was conducted). In each of the 831 forest survey plots, the upper layer of litter was
removed, and five random soil samples (0–20 cm deep) were collected using a soil auger. A
“quartering method” was employed to retain approximately 1000 g of well-mixed soil samples,
which were bulked to create a composite sample for each plot. After initial processing, the
soil samples were analyzed for soil pH, soil organic matter (SOM), total nitrogen (TN), total
phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and available potassium
(AK). The elevation, slope, litter thickness, soil thickness, humus layer thickness, and vegetation
cover were recorded as observed values. The slope aspect was represented by numerical levels:
the upslope was level 1, the mid-slope was level 2, and the downslope was level 3. Slope
direction was graded numerically with north as level 1, northeast and northwest as levels 2 and
3, east and west as levels 4 and 5, southeast and southwest as levels 6 and 7, and south as level
8. Soil type and soil texture were also classified accordingly.

2.4. Data Analysis
2.4.1. Selection of Environmental Variables

We determined the percent contribution (PC) by continuously adjusting the coefficients of
individual factors and providing the contribution of a specific climate variable to the species
in percentage form. Permutation importance (PI) determines the values of environmental
variables by randomly permuting the training point set and presenting them as percentages
after normalization. The larger the percent contribution and permutation importance values
of a climate variable, the more crucial it is to the potential geographic distribution of the
species [3,14]. To select key environmental variables that affect the distribution of Schima
superba, all 22 environmental variables were initially added to the MaxEnt model (Table 1). The
contribution of each variable to the prediction results was analyzed. Subsequently, we used
the band collection statistics tool in ArcGIS 10.8 software to calculate the correlation between
environmental variables. In cases where there was high collinearity (|r| ≥ 0.8) among variables,
the variable with the higher contribution was retained.

Table 1. The contribution rate of the 22 environmental factors.

Environmental Factor Specific Name PC (%)

elevation Elevation 37.6
bio13 The wettest monthly precipitation 12.8
bio19 The cold season precipitation 9.7
bio2 Mean diurnal temperature range 4.4

bio16 Rainfall in the wettest season 4.2
bio7 Temperature Annual Range 4.2

bio12 Annual precipitation 4.1
bio15 Seasonal variation in precipitation 3
bio6 The lowest temperature in the coldest month 2.6
bio3 Isothermality 2.4

bio14 Driest Month Precipitation 2.3
bio17 Driest Season Precipitation 2.2
aspect Aspect 2.2
bio10 Average air temperature in the hottest season 1.7
bio4 Seasonal changes in air temperature 1.6

bio11 Average air temperature in the coldest season 1.3
bio8 Average air temperature in the wettest season 0.9

bio18 Hottest Season Precipitation 0.8
slope Slope 0.7
bio5 Peak temperature in the hottest month 0.7
bio1 Annual average temperature 0.5
bio9 Average air temperature in the driest season 0.2

Note: PC represents the contribution rate.
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2.4.2. Model Accuracy Determination

The MaxEnt model uses the area under the receiver operating characteristic curves
(AUC) (the receiver operating characteristic curves, ROC curves) to judge the accuracy of
the model predictions. The AUC value is a crucial indicator to evaluate the reliability of
the prediction results. AUC values close to 1 indicate a strong correlation between envi-
ronmental variables and distribution models, which indicates higher prediction accuracy.
Generally, 0.5 ≤ AUC < 0.7 suggests moderate predictive ability, 0.7 ≤ AUC < 0.9 suggests
good predictive ability, and 0.9 ≤ AUC < 1 indicates excellent predictive ability and reflects
the potential range of species distribution with high precision.

2.4.3. Prediction of Suitable Habitat

We filtered the distribution points for Schima superba and data for 22 climate variables
and imported them into MaxEnt 3.4.1 [14]. A random selection of 75% of the distribution
points was used as the training set, while 25% was used as the test set. Cross-validation was
performed ten times with a maximum background point quantity of 10,000 and a maximum
iteration number of 500. Other default settings were not changed. The final output was an
ASCII format file. The average ASCII format files were then selected, imported into ArcGIS
10.5 software [4,14], and subjected to reclassification using the Reclassify command with the
Spatial Analyst Tools. Jenks’ natural breaks were applied to classify the suitability levels.
The suitability values obtained from the MaxEnt model ranged from 0 to 1 and were divided
into four levels based on suitability: suitability value < 0.05 indicates non-suitable areas
where growth is not favorable, 0.05 ≤ suitability value < 0.25 indicates low-suitability areas
where growth is possible but not optimal, 0.25 ≤ suitability value < 0.5 indicates moderately
suitable areas where growth is relatively favorable, and suitability value ≥ 0.5 indicates
highly suitable areas where Schima superba was most likely to thrive.

2.4.4. Analysis of Bioclimatic Characteristics in Suitable Zones

The Jackknife test sequentially [4,14] uses and excludes a specific variable to build new
models. The differences in Regularized Training Gain, Test Gain, and AUC values between
models are compared to measure the importance of bioclimatic variables. The Jackknife
test is used to detect the contribution of each environmental factor to the prediction results.
Higher Regularized Training Gain values for “only including this variable” indicate greater
predictive accuracy and a larger contribution to predicting species distribution. A greater
reduction in Regularized Training Gain values for “excluding this variable” compared to
“all variables” indicates that the variable contains more unique information and is more
important to predict species distribution. The contribution rate, permutation importance
values, and Jackknife method were used to evaluate the dominant climate variables that
influence species distribution and analyze the importance of bioclimatic variables in re-
stricting the modern geographic distribution pattern of Schima superba. Generally, when
the distribution probability value was >0.5, the corresponding ecological factor values were
suitable for plant growth.

2.4.5. Data Analysis and Graphical Processing

The distribution prediction of potential suitable zones for Schima superba was per-
formed using MaxEnt 3.4.4 software. ArcGIS 10.2 software was used to process distribution
maps for suitability levels and calculate the area of each suitable zone. Data were organized
using Excel. Principal component analysis (PCA) was conducted using the “factoextra”
package in R 3.2.5 software [14].

3. Result
3.1. Environmental Factor Screening

Based on the contribution of each variable to the prediction and correlation results
in the MaxEnt model (Table 1), we selected a total of 22 variables for subsequent predic-
tions: elevation, slope, aspect, mean diurnal temperature range (bio2), isothermality (bio3),



Forests 2023, 14, 2438 7 of 12

minimum temperature of the coldest month (bio6), temperature annual range (bio7), mean
temperature of the wettest quarter (bio8), mean temperature of the driest quarter (bio9),
precipitation of the wettest month (bio13), precipitation of the driest month (bio14), and
precipitation of the driest quarter (bio17).

3.2. Model Accuracy Description

We set the number of repetitions for the MaxEnt model to 15 and constructed 15 poten-
tial distribution models with the average taken as the final prediction result. The average
AUC value for repeated experiments was 0.804, with a standard deviation of 0.014, which
indicates that the predictions were highly reliable (Figure 2).

Forests 2023, 14, x FOR PEER REVIEW 7 of 12 
 

 

superba. Generally, when the distribution probability value was >0.5, the corresponding 
ecological factor values were suitable for plant growth. 

2.4.5. Data Analysis and Graphical Processing 
The distribution prediction of potential suitable zones for Schima superba was per-

formed using MaxEnt 3.4.4 software. ArcGIS 10.2 software was used to process distribu-
tion maps for suitability levels and calculate the area of each suitable zone. Data were 
organized using Excel. Principal component analysis (PCA) was conducted using the “fac-
toextra” package in R 3.2.5 software [14]. 

3. Result 
3.1. Environmental Factor Screening 

Based on the contribution of each variable to the prediction and correlation results in 
the MaxEnt model (Table 1), we selected a total of 22 variables for subsequent predictions: 
elevation, slope, aspect, mean diurnal temperature range (bio2), isothermality (bio3), min-
imum temperature of the coldest month (bio6), temperature annual range (bio7), mean 
temperature of the wettest quarter (bio8), mean temperature of the driest quarter (bio9), 
precipitation of the wettest month (bio13), precipitation of the driest month (bio14), and 
precipitation of the driest quarter (bio17). 

3.2. Model Accuracy Description 
We set the number of repetitions for the MaxEnt model to 15 and constructed 15 po-

tential distribution models with the average taken as the final prediction result. The aver-
age AUC value for repeated experiments was 0.804, with a standard deviation of 0.014, 
which indicates that the predictions were highly reliable (Figure 2). 

 
Figure 2. ROC curve of the wood load based on MaxEnt model operation. 

3.3. Prediction Results of Suitable Areas 
Figure 3 illustrates the final suitability habitat map for Schima superba in Zhejiang. 

The total suitable habitat area (suitability value > 0.05) is 87,600 square kilometers and 
possesses highly suitable areas that cover 29,400 square kilometers, moderately suitable 
areas that cover 25,700 square kilometers, and low-suitability areas that cover 32,500 
square kilometers. 

Figure 2. ROC curve of the wood load based on MaxEnt model operation.

3.3. Prediction Results of Suitable Areas

Figure 3 illustrates the final suitability habitat map for Schima superba in Zhejiang. The
total suitable habitat area (suitability value > 0.05) is 87,600 square kilometers and possesses
highly suitable areas that cover 29,400 square kilometers, moderately suitable areas that cover
25,700 square kilometers, and low-suitability areas that cover 32,500 square kilometers.

Forests 2023, 14, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 3. Analysis of suitable areas in Zhejiang Province based on the MaxEnt model. 

3.4. Analysis of Climatic Characteristics for Ecological Fitness Organisms 
The Jackknife method shows that precipitation during the most humid month (bio13) 

and elevation have a significant impact on the distribution of Schima superba (Figure 4). 
Likewise, precipitation during the driest quarter (bio17) and temperature annual range 
(bio7) contained a considerable amount of unique information not duplicated by other 
variables, which suggested that their distinctiveness influences Schima superba habitat dis-
tribution (Table 2). 

 
Figure 4. The Jackknife method assesses the importance of bioclimatic variables on distribution gain. 

  

Figure 3. Analysis of suitable areas in Zhejiang Province based on the MaxEnt model.



Forests 2023, 14, 2438 8 of 12

3.4. Analysis of Climatic Characteristics for Ecological Fitness Organisms

The Jackknife method shows that precipitation during the most humid month (bio13)
and elevation have a significant impact on the distribution of Schima superba (Figure 4).
Likewise, precipitation during the driest quarter (bio17) and temperature annual range
(bio7) contained a considerable amount of unique information not duplicated by other
variables, which suggested that their distinctiveness influences Schima superba habitat
distribution (Table 2).
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Table 2. Percent contribution of the 12 climatic features to the suitable habitat of Schima superba.

Environmental Factor Specific Name PC (%)

elevation Elevation 46.7
bio13 The wettest monthly precipitation 19.4
bio17 Driest Season Precipitation 6.2
bio3 Isothermality 5.3
bio6 The lowest temperature in the coldest month 5.1
bio2 Mean diurnal temperature range 4.9

bio14 Driest Month Precipitation 4.2
bio7 Temperature Annual Range 3.1
bio8 Average air temperature in the wettest season 1.8

aspect Aspect 1.7
slope Slope 1
bio9 Average air temperature in the driest season 0.5

Note: PC represents the contribution rate.

Figure 5 illustrates the response curves of Schima superba distribution to individual
environmental variables using a single environmental variable to build the MaxEnt model.
The data showed that Schima superba mainly occurs in areas above 500 m in elevation. With
the increase in elevation, the probability of Schima superba distribution initially increases
and reaches its peak between 1200 and 1400 m. It then decreases with higher elevations.
The distribution probability of Schima superba significantly increases with growth during
the most humid month with high precipitation (between 300 and 350 mm). However, in
areas with higher precipitation during the most humid month, the distribution probability
slightly decreases. Likewise, the distribution probability was very low in regions where
precipitation was less than 140 mm. Mainly, the distribution probability of Schima superba
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first rose and then declined with the peak occurring between 160 and 170 mm during the
hottest season. The temperature annual range also showed the same variable trend in
distribution probability. Here, temperature annual range represents the difference between
the highest temperature in the hottest month and the lowest temperature in the coldest
month, and our results show the optimal range between 28 and 31 ◦C (Figure 5).
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Figure 5. Response curves for Schima superba to the main environmental factors. The predicted
interval values are shown in blue and the actual values are shown in red.

4. Discussion

Our results indicated that the adaptability of Schima superba in the Zhejiang Province
was influenced by geographical distribution regions and environmental factors. Based on
our contribution, permutation importance, and Jackknife test results obtained from the
MaxEnt model simulation, we found that elevation, the most humid month’s precipitation,
and temperature annual range are the dominant climatic variables that affect the potential
geographical distribution of Schima superba. In other words, the most critical factors that
shape the Schima superba distribution pattern are elevation, precipitation, and temperature.
Yao et al. found that Schima superba tends to be clustered and distributed on higher
altitude slopes in subtropical secondary evergreen broad-leaved forests, with large-diameter
individuals mainly concentrated on the uphill positions [19].

Previous research has found that the distribution and spatial variation of Schima
superba in China is also influenced by precipitation and temperature, with precipitation
playing a relatively more significant role in vegetation dynamics than temperature [20]. In
terms of latitudinal characteristics, the adaptability of Schima superba to change in envi-
ronmental factors decreases from east to west, and precipitation is identified as the primary
factor that contributes to its weaker adaptability. However, this tends to underscore the
importance of precipitation in the suitability for growth and geographical distribution of
Schima superba [21–23]. This may be because Schima superba has the highest precipitation
utilization efficiency in the understory in evergreen broad-leaved forests [19]. Therefore,
precipitation plays a crucial role in the potential geographical distribution and growth of
the Schima superba. However, it is important to note that temperature should not be over-
looked, because it plays an irreplaceable role in constraining Schima superba’s geographical
distribution [24]. Our research results were consistent with those of another previous study,
which confirms the accuracy and precision of the MaxEnt model [14]. Likewise, other
studies have also shown that Schima superba species exhibit different morphological,
ecological, and physiological characteristics in different geographical distribution regions,
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which reflects their ability to adapt to the surrounding environment [25]. Regional differ-
ences, such as climate, soil types, elevation, and precipitation, have a significant impact
on the growth and reproduction of Schima superba. For instance, in high-altitude areas,
Schima superba may exhibit a shorter growth form to adapt to cold climate conditions and
strong winds [21].

Climate is one of the key factors that influence Schima superba communities [26,27].
Different species possess varying requirements for climate factors, such as temperature,
humidity, and precipitation [28]. Some species prefer a warm and humid climate, while
others can adapt to colder or drier environments [23,24]. Changes in climate factors can
affect the growth, flowering, and reproductive timing [29] of Schima superba. Likewise, soil
conditions are crucial for the growth and adaptability of Schima superba communities [18,29].
Ultimately, Schima superba species have different requirements for soil texture, drainage, pH,
and nutrient content, and adequate moisture is one of the key limiting factors for Schima
superba communities. Sufficient moisture is essential for their growth and survival [29].
Additionally, light conditions play an important role in their growth and reproduction.
For instance, adequate sunlight favors their growth and flowering [16]. Within forests,
the canopy shade limits sunlight availability, so different species have varying needs
and tolerances for light [17]. In summary, environmental factors play significant roles
in the distribution, growth, and reproduction of Schima superba communities [6,16], and
understanding their impact contributes to better conservation and management to maintain
their biodiversity and ecosystem functions.

In addition to the factors we studied, other factors that contribute to species spatial
distribution include ultraviolet radiation, interspecific competition, human activities, and
species-specific characteristics [18]. Together, these factors are complex and diverse and in-
fluence species distribution in not well-understood ways, which will require more research
to comprehensively characterize changes to species habit distributions. Altogether, future
research would benefit from incorporating the mentioned variables with Schima superba
to improve the accuracy of the predictive models. Nevertheless, our results serve as the
first step in conservation planning efforts and provide a reference for future measures in
Schima superba cultivation [19].

5. Conclusions

Our analysis using the MaxEnt model indicates that elevation, precipitation, and
temperature are the primary climatic variables that influence the distribution of Schima
superba. The suitable habitat total area for Schima superba in Zhejiang Province (suitability
value > 0.05) is 87,600 km2, with high-suitability, moderate-suitability, and low-suitability
areas covering 29,400 km2, 25,700 km2, and 32,500 km2, respectively. Schima superba
predominantly occurs in areas with an elevation above 500 m, and the probability of its
distribution reaches its peak between 1200 and 1400 m. The distribution probability of
Schima superba significantly increased due to growth during the most humid month with
high precipitation (300–350 mm). In areas where precipitation less was than 140 mm during
the hottest season, Schima superba was largely absent. However, its distribution probability
peaked when precipitation increased to 160–170 mm. With these results, the distribution
probability of Schima superba tends to increase with an increase in temperature and peaks
between 28 and 31 ◦C. Therefore, environmental factors’ change significantly affects the
suitable habitat area of Schima superba. Ultimately, climate change effects could be mitigated
by planting more Schima superba in these optimal habitat areas, and it would increase carbon
targets in southern China.

Author Contributions: L.Y. wrote the first draft of the manuscript and performed the data analysis.
B.J. designed this study and improved the English language and grammatical editing. J.J. and
C.W. conducted the fieldwork. The data support was provided by Y.X. and J.F. All the coauthors
contributed to the discussion, revision, and improvement of the manuscript. All authors have read
and agreed to the published version of the manuscript.



Forests 2023, 14, 2438 11 of 12

Funding: This research was financially supported by the Zhejiang Provincial Natural Science
Foundation project (LQ23C030001), Zhejiang Provincial Scientific Research Institute special project
(2022F1068-2); “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2022C02053); and the Ma-
jor Collaborative Project between Zhejiang Province and the Chinese Academy of Forestry (2021SY08).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We would like to thank Mr. Savannah Grace at the University of Florida for her
assistance with the English language and grammatical editing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kriticos, D.J.; Sutherst, R.W.; Brown, J.R.; Adkins, S.W.; Maywald, G.F. Climate Change and the Potential Distribution of an

Invasive Alien Plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 2003, 40, 111–124. [CrossRef]
2. Trivedi, P.; Batista, B.D.; Bazany, K.E.; Singh, B.K. Plant–Microbiome Interactions under a Changing World: Responses, Conse-

quences and Perspectives. New Phytol. 2022, 234, 1951–1959. [CrossRef] [PubMed]
3. Soilhi, Z.; Sayari, N.; Benalouache, N.; Mekki, M. Predicting Current and Future Distributions of Mentha pulegium L. in Tunisia

under Climate Change Conditions, Using the MaxEnt Model. Ecol. Inform. 2022, 68, 101533. [CrossRef]
4. Wu, H.; Yu, L.; Shen, X.; Hua, F.; Ma, K. Maximizing the Potential of Protected Areas for Biodiversity Conservation, Climate

Refuge and Carbon Storage in the Face of Climate Change: A Case Study of Southwest China. Biol. Conserv. 2023, 284, 110213.
[CrossRef]

5. Gogol-Prokurat, M. Predicting Habitat Suitability for Rare Plants at Local Spatial Scales Using a Species Distribution Model. Ecol.
Appl. 2011, 21, 33–47. [CrossRef] [PubMed]

6. Zuquim, G.; Costa, F.R.C.; Tuomisto, H.; Moulatlet, G.M.; Figueiredo, F.O.G. The Importance of Soils in Predicting the Future of
Plant Habitat Suitability in a Tropical Forest. Plant Soil 2020, 450, 151–170. [CrossRef]

7. Questad, E.J.; Kellner, J.R.; Kinney, K.; Cordell, S.; Asner, G.P.; Thaxton, J.; Diep, J.; Uowolo, A.; Brooks, S.; Inman-Narahari,
N.; et al. Mapping Habitat Suitability for At-Risk Plant Species and Its Implications for Restoration and Reintroduction. Ecol.
Appl. 2014, 24, 385–395. [CrossRef]

8. Sarma, K.; Roy, S.J.; Kalita, B.; Baruah, P.S.; Bawri, A.; Nath, M.J.; Baruah, U.D.; Sahariah, D.; Saikia, A.; Tanti, B. Habitat Suitability
of Gymnocladus Assamicus—A Critically Endangered Plant of Arunachal Pradesh, India Using Machine Learning and Statistical
Modeling. Acta Ecol. Sin. 2022, 42, 398–406. [CrossRef]

9. Kumari, P.; Wani, I.A.; Khan, S.; Verma, S.; Mushtaq, S.; Gulnaz, A.; Paray, B.A. Modeling of Valeriana Wallichii Habitat Suitability
and Niche Dynamics in the Himalayan Region under Anticipated Climate Change. Biology 2022, 11, 498. [CrossRef]

10. Kandhol, N.; Jain, M.; Tripathi, D.K. Nanoparticles as Potential Hallmarks of Drought Stress Tolerance in Plants. Physiol. Plant.
2022, 174, e13665. [CrossRef]

11. Balemi, T.; Negisho, K. Management of Soil Phosphorus and Plant Adaptation Mechanisms to Phosphorus Stress for Sustainable
Crop Production: A Review. J. Soil Sci. Plant Nutr. 2012, 12, 547–562. [CrossRef]

12. Murphy, M.R.C.; Jordan, G.J.; Brodribb, T.J. Acclimation to Humidity Modifies the Link between Leaf Size and the Density of
Veins and Stomata. Plant Cell Environ. 2014, 37, 124–131. [CrossRef] [PubMed]

13. Raza, A.; Ashraf, F.; Zou, X.; Zhang, X.; Tosif, H. Plant Adaptation and Tolerance to Environmental Stresses: Mechanisms and
Perspectives. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I.; Springer: Singapore, 2020;
pp. 117–145.

14. Jain, M.; Barrett, C.B.; Solomon, D.; Ghezzi-Kopel, K. Surveying the Evidence on Sustainable Intensification Strategies for
Smallholder Agricultural Systems. Annu. Rev. Environ. Resour. 2023, 48, 347–369. [CrossRef]

15. Wiens, J.J. Speciation and Ecology Revisited: Phylogenetic Niche Conservatism and the Origin of Species. Evolution 2004, 58, 193.
[CrossRef] [PubMed]

16. Christmas, M.J.; Breed, M.F.; Lowe, A.J. Constraints to and Conservation Implications for Climate Change Adaptation in Plants.
Conserv. Genet. 2016, 17, 305–320. [CrossRef]

17. Qin, A.; Jin, K.; Batsaikhan, M.-E.; Nyamjav, J.; Li, G.; Li, J.; Xue, Y.; Sun, G.; Wu, L.; Indree, T.; et al. Predicting the Current
and Future Suitable Habitats of the Main Dietary Plants of the Gobi Bear Using MaxEnt Modeling. Glob. Ecol. Conserv. 2020,
22, e01032. [CrossRef]

18. Duan, W.; Ren, H.; Fu, S.; Wang, J.; Zhang, J.; Yang, L.; Huang, C. Community Comparison and Determinant Analysis of
Understory Vegetation in Six Plantations in South China. Restor. Ecol. 2010, 18, 206–214. [CrossRef]

19. Amorim, M.; Dubreuil, V. Intensity of Urban Heat Islands in Tropical and Temperate Climates. Climate 2017, 5, 91. [CrossRef]
20. Passioura, J. Increasing Crop Productivity When Water Is Scarce—From Breeding to Field Management. Agric. Water Manag.

2006, 80, 176–196. [CrossRef]
21. Estrada-Peña, A. Climate, Niche, Ticks, and Models: What They Are and How We Should Interpret Them. Parasitol. Res. 2008,

103, 87–95. [CrossRef]

https://doi.org/10.1046/j.1365-2664.2003.00777.x
https://doi.org/10.1111/nph.18016
https://www.ncbi.nlm.nih.gov/pubmed/35118660
https://doi.org/10.1016/j.ecoinf.2021.101533
https://doi.org/10.1016/j.biocon.2023.110213
https://doi.org/10.1890/09-1190.1
https://www.ncbi.nlm.nih.gov/pubmed/21516886
https://doi.org/10.1007/s11104-018-03915-9
https://doi.org/10.1890/13-0775.1
https://doi.org/10.1016/j.chnaes.2022.05.009
https://doi.org/10.3390/biology11040498
https://doi.org/10.1111/ppl.13665
https://doi.org/10.4067/S0718-95162012005000015
https://doi.org/10.1111/pce.12136
https://www.ncbi.nlm.nih.gov/pubmed/23682831
https://doi.org/10.1146/annurev-environ-112320-093911
https://doi.org/10.1554/03-447
https://www.ncbi.nlm.nih.gov/pubmed/15058732
https://doi.org/10.1007/s10592-015-0782-5
https://doi.org/10.1016/j.gecco.2020.e01032
https://doi.org/10.1111/j.1526-100X.2008.00444.x
https://doi.org/10.3390/cli5040091
https://doi.org/10.1016/j.agwat.2005.07.012
https://doi.org/10.1007/s00436-008-1056-7


Forests 2023, 14, 2438 12 of 12

22. Dantas, B.F.; Moura, M.S.B.; Pelacani, C.R.; Angelotti, F.; Taura, T.A.; Oliveira, G.M.; Bispo, J.S.; Matias, J.R.; Silva, F.F.S.; Pritchard,
H.W.; et al. Rainfall, Not Soil Temperature, Will Limit the Seed Germination of Dry Forest Species with Climate Change. Oecologia
2020, 192, 529–541. [CrossRef] [PubMed]

23. Dobbert, S.; Albrecht, E.C.; Pape, R.; Löffler, J. Alpine Shrub Growth Follows Bimodal Seasonal Patterns across Biomes—
Unexpected Environmental Controls. Commun. Biol. 2022, 5, 793. [CrossRef] [PubMed]

24. Uni, D.; Lerner, D.; Smit, I.; Mzimba, D.; Sheffer, E.; Winters, G.; Klein, T. Differential Climatic Conditions Drive Growth of Acacia
Tortilis Tree in Its Range Edges in Africa and Asia. Am. J. Bot. 2023, 110, e16132. [CrossRef] [PubMed]

25. Franks, S.J.; Weis, A.E. A Change in Climate Causes Rapid Evolution of Multiple Life-History Traits and Their Interactions in an
Annual Plant. J. Evol. Biol. 2008, 21, 1321–1334. [CrossRef] [PubMed]

26. Spribille, T.; Resl, P.; Stanton, D.E.; Tagirdzhanova, G. Evolutionary Biology of Lichen Symbioses. New Phytol. 2022, 234, 1566–1582.
[CrossRef]

27. Niinemets, Ü. A Review of Light Interception in Plant Stands from Leaf to Canopy in Different Plant Functional Types and in
Species with Varying Shade Tolerance. Ecol. Res. 2010, 25, 693–714. [CrossRef]

28. Wang, J.; Hu, A.; Meng, F.; Zhao, W.; Yang, Y.; Soininen, J.; Shen, J.; Zhou, J. Embracing Mountain Microbiome and Ecosystem
Functions under Global Change. New Phytol. 2022, 234, 1987–2002. [CrossRef]

29. Yao, L.; Wang, Z.; Zhan, X.; Wu, W.; Jiang, B.; Jiao, J.; Yuan, W.; Zhu, J.; Ding, Y.; Li, T.; et al. Assessment of Species Composition
and Community Structure of the Suburban Forest in Hangzhou, Eastern China. Sustainability 2022, 14, 4304. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00442-019-04575-x
https://www.ncbi.nlm.nih.gov/pubmed/31863165
https://doi.org/10.1038/s42003-022-03741-x
https://www.ncbi.nlm.nih.gov/pubmed/35933562
https://doi.org/10.1002/ajb2.16132
https://www.ncbi.nlm.nih.gov/pubmed/36706279
https://doi.org/10.1111/j.1420-9101.2008.01566.x
https://www.ncbi.nlm.nih.gov/pubmed/18557796
https://doi.org/10.1111/nph.18048
https://doi.org/10.1007/s11284-010-0712-4
https://doi.org/10.1111/nph.18051
https://doi.org/10.3390/su14074304

	Introduction 
	Research Area and Methodology 
	Study Area 
	Sample Site Setting and Investigation 
	Sampling and Analysis of Environmental Factors 
	Acquisition of Meteorological Factors 
	Collection and Treatment of Soil Factors 

	Data Analysis 
	Selection of Environmental Variables 
	Model Accuracy Determination 
	Prediction of Suitable Habitat 
	Analysis of Bioclimatic Characteristics in Suitable Zones 
	Data Analysis and Graphical Processing 


	Result 
	Environmental Factor Screening 
	Model Accuracy Description 
	Prediction Results of Suitable Areas 
	Analysis of Climatic Characteristics for Ecological Fitness Organisms 

	Discussion 
	Conclusions 
	References

