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Abstract: Land-use change has a great impact on regional ecosystem balance and carbon storage, so
it is of great significance to study future land-use types and carbon storage in a region to optimize the
regional land-use structure. Based on the existing land-use data and the different scenarios of the
shared socioeconomic pathway and the representative concentration pathway (SSP-RCP) provided
by CMIP6, this study used the PLUS model to predict future land use and the InVEST model to
predict the carbon storage in the study area in the historical period and under different scenarios
in the future. The results show the following: (1) The change in land use will lead to a change in
carbon storage. From 2000 to 2020, the conversion of cultivated land to construction land was the
main transfer type, which was also an important reason for the decrease in regional carbon storage.
(2) Under the three scenarios, the SSP126 scenario has the smallest share of arable land area, while this
scenario has the largest share of woodland and grassland land area, and none of the three scenarios
shows a significant decrease in woodland area. (3) From 2020 to 2050, the carbon stocks in the
study area under the three scenarios, SSP126, SSP245, and SSP585, all show different degrees of
decline, decreasing to 36,405.0204 × 104 t, 36,251.4402 × 104 t, and 36,190.4066 × 104 t, respectively.
Restricting the conversion of land with a high carbon storage capacity to land with a low carbon
storage capacity is conducive to the benign development of regional carbon storage. This study can
provide a reference for the adjustment and management of future land-use structures in the region.

Keywords: land-use change; carbon stocks; CMIP6; PLUS model; InVEST model

1. Introduction

Since the second industrial revolution, a large amount of greenhouse gases, mainly
carbon dioxide, have been emitted, resulting in rising global temperatures and frequent
extreme weather [1–3]. Since China’s reform and opening up, China’s economy has devel-
oped rapidly, the proportion of construction land has risen rapidly, and China’s carbon
emissions have reached first place in the world [4]. In the face of common global challenges,
General Secretary Xi Jinping made an important speech at the 75th session of the United
Nations General Assembly on the carbon peak in 2030 and carbon neutrality in 2060 [5].
The process of the carbon cycle in terrestrial ecosystems is often accompanied by carbon
exchange, and land-use change is the main factor affecting regional carbon balance [6].
Studying the intrinsic relationship between carbon storage and land use can provide a
reference for regional development and even increase regional carbon storage under the
premise of ensuring economic development.

The traditional methods of carbon storage assessment have shortcomings in research
scale, temporal and spatial changes in carbon storage, and visual expression. Moreover, the
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operation is complex and costly, and it is not suitable for large-scale carbon storage research,
such as the biomass method, accumulation method, and field sampling method [7,8]. In
recent years, InVEST has attracted the attention of scholars due to its simple parameters,
small amount of data required, and high accuracy [9]. The InVEST model is a model
developed by Stanford University in the United States, which can be applied to quantify
ecosystem services [10]. Many scholars at home and abroad use the carbon storage plate in
the InVEST model to predict carbon storage. For example, Tadese and Rajbanshi studied the
relationship between land-use change and carbon storage in the Majang Forest Biosphere
Reserve and the Konar catchment, India, respectively [11,12]. Xie [13], Wang [14], and
Qing [15] estimated carbon storage and predicted different scenarios for the Huaihai
Economic Zone, the Hubao and Yuyu urban agglomeration, and the Shihezi River Basin,
respectively. Some scholars use land-use simulation models such as Dyna-CLUE, FLUS,
CA-Markov, and other land-use simulation models coupled with InVEST models to predict
future carbon stocks. Although the above methods can well simulate future land-use
changes, they cannot find out the potential driving factors of land-use changes and the
evolution of patches [8,16]. On the basis of these shortcomings, Liang [17] and other
scholars proposed the PLUS model, which can improve the mining of transformation rules
and the lack of landscape dynamic simulation and obtain higher simulation accuracy and
more realistic landscape pattern indicators. At present, many scholars have coupled the
InVEST and PLUS models to estimate and predict carbon stocks at provincial levels [18–20]
and in urban agglomerations [21,22], cities [23,24], and counties [25]. At present, in the
scenario provided by CMIP6, there are relatively few studies coupling the InVEST and
PLUS models for research on basin. Therefore, this paper takes the Yiluo River Basin as the
research object to evaluate the relationship between regional land-use change and carbon
stock change.

The Yiluo River, composed of the Yi River and the Luo River, is one of the ten major
tributaries of the Yellow River, and the Yellow River Basin is an indispensable ecological
barrier in China [26,27]. In this paper, the PLUS model and InVEST model are coupled
to simulate the prediction of carbon stocks in the study area for different periods in the
future based on different scenarios provided by CMIP6. In this paper, the land-use change
regulation between 2010 and 2020 is used to simulate and predict the land-use status of the
study area in 2030, 2040, and 2050. Based on The InVEST model, this paper explores the
relationship between land-use change and regional carbon storage in the Yiluo River Basin
in different periods. It is expected to point out the trend of carbon stock changes in the
basin in recent years and provide a reference for the future development of surrounding
cities so as to promote the benign development of carbon storage in the basin.

2. Data Sources and Methodology
2.1. Overview of the Study Area

The Yiluo River Basin originates in Luanchuan County at the southern foot of the
Xiong’er Mountain, with a total length of 974 km, passing through Shaanxi Province and
Henan Province and mainly flowing through Shangluo City, Sanmenxia City, and Luoyang
City. Most of them belong to the Henan boundary, of which the Luoyang section accounts
for approximately 59.73% of the total area (Figure 1). The Yiluo River Basin covers an area of
approximately 18,881 km2, located between 109◦43′~113◦11′ E longitude and 33◦39′~34◦54′ N
latitude, and it is located in the transition zone of the second and third tiers in China, with
various landform types. The overall trend of the region is low in the east and high in the
west, high in the north and south, and low in the middle. The region belongs to the warm
temperate continental monsoon climate, summer and autumn are hot and rainy, and spring
and winter are cold and dry [28]. The region is rich in mineral resources, and a series of
enterprises such as mineral mining, processing, and transportation have been formed in
the basin, which play a supporting role in local development.
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Figure 1. Overview of the Yiluo River Basin.

2.2. Data Sources

The 30 m land-use type, night light, population, GDP, and DEM data required for
this study from 2000 to 2020 were obtained from the Resource and Environmental Sci-
ence and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/ (ac-
cessed on 18 September 2023)). Road and town data were sourced from OpenStreetMap
(https://www.openhistoricalmap.org/ (accessed on 20 September 2023)). Land-use data
from 2030 to 2050 were sourced from the Global 0.25◦ × 0.25◦ Land-Use Harmonization
(LUH2) dataset (https://luh.umd.edu/data.shtml (accessed on 23 September 2023)). Soil–
root oxygen content data were sourced from the Harmonized World Soil Database (HWSD)
(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/ (accessed
on 27 September 2023)). On the basis of the original data, ArcGIS was used to process the
original data to ensure that the coordinate system was unified (Krasovsky_1940_Albers),
the number of rows and columns was unified, and the accuracy of the land-use raster data
was unified to 100 m × 100 m (Table 1).

Table 1. Sources of data.

Data Type Data Name Data Source

Social factors
Night lights The Resource and Environmental Science and Data Center of Chinese Academy of Sciences
Population The Resource and Environmental Science and Data Center of Chinese Academy of Sciences

GDP The Resource and Environmental Science and Data Center of Chinese Academy of Sciences

Locational factors

Railway OpenStreetMap
Expressway OpenStreetMap

National highway OpenStreetMap
Provincial highway OpenStreetMap

Town OpenStreetMap
City OpenStreetMap

Natural factors

Land-use data 2000–2020 The Resource and Environmental Science and Data Center of Chinese Academy of Sciences
Land-use data 2030–2050 The Global 0.25◦ × 0.25◦ Land-Use Harmonization (LUH2) dataset
Soil–root oxygen content The Harmonized World Soil Database (HWSD)

Soil types The Resource and Environmental Science and Data Center of Chinese Academy of Sciences
DEM The Resource and Environmental Science and Data Center of Chinese Academy of Sciences
Slope Derived from extracting DEM data

Slope orientation Derived from extracting DEM data

https://www.resdc.cn/
https://www.openhistoricalmap.org/
https://luh.umd.edu/data.shtml
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
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2.3. Research Method
2.3.1. PLUS Model

The PLUS model is a model that generates land-use change simulations at the patch
level and can better explore land-use drivers and sustainable landscape layouts. The PLUS
model includes the Land Expansion Analysis Strategy (LEAS) and the CA Model (CARS)
based on multi-type random plaque seeds [21,29]. Land expansion analysis strategy rule
mining is used to obtain the development probabilities of various types of land use by
extracting the parts of various types of land-use expansion in different time slices of land-
use change and using the random forest algorithm to excavate the relationship between
various types of land-use expansion and driving factors one by one. In the CA module,
the expansion probability of each type of land based on the LEAS model was input, and
the parameters of land-use conversion rules and domain weights were set to obtain the
prediction results. The conversion rules and domain weights used in the CA module were
set based on previous studies and the actual situation of the research area [30,31]. The
Kappa coefficient was calculated by comparing the predicted land-use type with the real
land-use type. If the Kappa coefficient was high, the land-use type under different scenarios
in the future could be predicted.

2.3.2. InVEST Model

The InVEST model includes modules for assessing habitat quality, water supply,
carbon stocks, and more [32]. In the assessment of carbon stocks, the carbon stocks in
the ecosystem are divided into four basic carbon pools: above-ground biochar (Cabove),
below-ground biochar (Cbelow), soil carbon (Csoil), and dead organic carbon (Csoil). The
formula for calculating total carbon stocks is:

Ci = Ci−above + Ci−below + Ci−soil + Ci−dead

Ctotali = ∑n
i=1 Ci × Ai

In the formula, i is a certain land-use type; Ci is the carbon density of land use in
category i; and Ci−above, Ci−below, Ci−soil , and Ci−dead are the aboveground vegetation carbon
density (t·hm−2), belowground vegetation carbon density (t·hm−2), soil carbon density
(t·hm−2), and dead organic carbon density (t·hm−2) of type i land-use types, respectively.
Ctotal is the total carbon stock of the ecosystem (t), Ai is the area of the type i land-use type
(hm2), and n is the number of land-use types.

The method of determining carbon density data is to use the average annual tempera-
ture and average annual precipitation in the study area and the nearby areas, and according
to the carbon density correction formula, modify the carbon density of the nearby areas,
and then obtain the carbon density of the study area. In this paper, the carbon density of the
Yellow River Basin was selected to be corrected, and the average annual temperature and
precipitation of the Yiluo River Basin and the Yellow River Basin were 680.1 mm/449.4 mm
and 7.05 ◦C/13.1 ◦C, respectively [27,33]. The carbon density correction formula is [34–36]:

CSP = 3.3968× P + 3996.1
(

R2 = 0.11
)

CBP = 6.7981e0.00541P
(

R2 = 0.70
)

CBT = 28× T + 398(R2 = 0.47, P < 0.01)

In the formula, Csp is the soil carbon density (kg·m−2) obtained based on the average
annual precipitation, and Cbp and Cbt are the biomass carbon density (kg·m−2) obtained
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based on the average annual precipitation and average annual temperature, respectively. P
is the average annual precipitation (mm), and T is the average annual temperature (◦C).

KBP =
C′BP
C′′BP

KBT =
C′BT
C′′BT

KB = KBT × KBP

KS =
C′SP
C′′SP

In the formula, KBP and KBT are the correction factors for the precipitation and temper-
ature factors of the biomass carbon density, respectively, and C′BP and C′′BP are the biomass
carbon density data based on the average annual precipitation in the Yiluo River Basin
and the Yellow River Basin, respectively. C′BT and C′′BT are the biomass carbon density
data of Yiluo River Basin and Yellow River Basin based on average annual temperature,
respectively. C′SP and C′′SP are the soil carbon density data of the Yiluo River Basin and
Yellow River Basin based on average annual temperature, respectively. KB and KS are the
correction coefficients of the biomass carbon density and the soil carbon density, respec-
tively. According to the calculated carbon density correction coefficient, the carbon density
data of the Yellow River Basin were corrected to obtain the carbon density data used in this
paper (Table 2).

Table 2. Carbon density data of the study area.

Table Cabove Cbelow Csoil Cdead

Cultivated 22.1 104.9 36.0 12.7
Woodland 55.1 150.7 52.7 18.3
Grassland 45.9 112.5 33.1 9.8

Water 0.4 0.0 0.0 0.0
Construction 3.3 35.8 0.0 0.0

Unused 1.7 0.0 7.2 0.0

3. Results and Analysis
3.1. Land-Use Change from 2000 to 2020

The construction land of the Yiluo River Basin is mainly concentrated in the northeast
of the region, that is, the urban area of Luoyang. The cultivated land is mainly distributed
in the relatively flat area in the lower reaches of the watershed, which envelops the urban
area of Luoyang. Grassland and woodland are mainly concentrated in the middle and
upper reaches of the watershed (Figure 2). From 2000 to 2010, 441.82 hectares of cultivated
land was transferred to construction land in the Yiluo River Basin, accounting for 83.89%
of the total amount of cultivated land transferred. The area of forest land and grassland
decreased, mainly due to the conversion to cultivated land, which was 38.52 hectares
and 69.06 hectares, respectively, and they accounted for 47.28% and 52.29% of the total
transfers, respectively. By 2010, the construction land increased by 351.25 hectares, and
the main reason for the increase was the encroachment of construction land on cultivated
land. In the decade from 2010 to 2020, the loss of cultivated land mainly went to forest
land and construction land, reaching 188.91 hectares and 210.51 hectares, respectively. At
this stage, the area of cultivated land converted into construction land was only 47.65% of
that in the previous decade. The total areas of forest land and grassland slightly fluctuated,
which mainly showed the mutual transformations between cultivated land, forest land, and
grassland. The changes in land-use types in the study area were mainly the transfer in and
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transfer out of cultivated land and construction land, and most of them occurred within the
boundaries of Luoyang. The slowing down of the total conversion degree of various types
of land to construction land was related to the entry of a new era and the implementation of
water control and revitalization actions in Luoyang City. Luoyang City actively promotes
comprehensive water environment management, systematic restoration, and the improve-
ment of water ecology. Luoyang City implemented comprehensive management of the
upstream and downstream and left and right banks of the “Four Rivers and Five Canals”
in the Yiluo River Basin and carried out the construction of river composite ecological
corridors and mountain ecological greening. The forest coverage rate has reached 45.8%,
the wetland protection rate has reached 55%, and the soil and water conservation rate
has reached 70%. Germplasm resource reserves have been designated, and biodiversity is
increasing year by year.
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Figure 2. Spatiotemporal evolution of land use from 2000 to 2020.

Overall, cultivated land is the main type of land use in the Yiluo River Basin, and the
cultivated land area reached 42.84% of the total area in 2020 (Table 3). The largest area
change in the past 20 years has been in cultivated land occupied by construction land,
which occupies a total of 593.879 hectares in the past 20 years. The construction land in
2020 was 1.59 times the area in 2000. The increase in the building area is concentrated
in the Luoyang section of the Yiluo River Basin, which is related to the rapid economic
development in Luoyang in the past 20 years. The other obvious ones are the mutual
transformations between arable land, forest land, grassland, and water land. In 2020, in
addition to the increase in the area of forest land, the land uses of cultivated land, grassland,
and water area all showed different degrees of reduction.

Table 3. Land-use transfer matrix from 2000 to 2020 (km2).

2000
2020

Cultivated Woodland Grassland Water Construction Unused Total

Cultivated 7518.743 198.940 132.989 30.293 593.879 0.176 8475.021
Woodland 164.991 5786.434 101.878 8.979 22.598 2.931 6087.812
Grassland 175.317 110.143 2792.163 5.427 48.448 1.419 3132.916

Water 50.240 5.189 6.235 252.246 17.275 0.010 331.194
Construction 178.962 2.444 1.916 1.647 654.486 0.062 839.517

Unused 0.352 2.610 0.145 0.663 10.771 14.541
Total 8088.605 6105.760 3035.325 298.591 1337.349 15.369 18,881.000

3.2. Multi-Scenario Land-Use Change Simulation Based on PLUS Model

According to the actual situation of the study area, 13 driving factors were selected
from three aspects: social factors (population and GDP), location factors (distance to railway,
distance to expressway, distance to national highway, distance to provincial highway,
distance to city, and distance to town), and natural factors (DEM, slope, slope direction, soil
type, and oxygen content in soil–roots). The driving factor data were input into the LEAS
module of the PLUS model to obtain the contribution degrees of different driving factors
to various land-use changes and the expansion probabilities of various land types. The
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land-use data of 2020 were predicted with the land-use data of 2010 and compared with the
actual land-use data of 2020, and the comparison chart was finally obtained (Figure 3). The
Kappa coefficient reached 0.896, and the overall accuracy was 0.929. The simulation results
were more accurate, which can be used to predict future land use. Afterward, the land-use
data for 2030, 2040, and 2050 were projected via the CA module in the PLUS model by
combining the land-use data under different SSP-RCP scenarios.
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The CMIP emphasizes the impact of different development approaches on future
climate change, combining different SSP-RCP scenarios. Five different scenarios are de-
scribed for the future, depending on the rate at which greenhouse gases are emitted. SSP119
(the scenario combining SSP1 and RCP1.9) is the ideal scenario to reduce global carbon
emissions to zero by approximately 2050. SSP126 (coupling SSP1 and RCP2.6) is a more
moderate and eco-friendly sustainable development scenario with lower greenhouse gas
emissions, with carbon emissions declining at a slower rate and reaching zero after 2050.
SSP245 (the scenario that couples SSP2 and RCP4.5) is equivalent to a compromise sce-
nario, representing the middle way for society, with moderate greenhouse gas emissions.
Under the SSP370 (the scenario coupling SSP3 and RCP7.0), both carbon emissions and
temperatures will rise, and carbon emissions will approximately double by the end of the
century. SSP585 (coupling the SSP5 and RCP8.5 scenarios) is a high-speed development
scenario dominated by fossil fuels, which is a barbaric development, the pursuit of devel-
opment at all costs [37,38]. In this paper, three scenarios, SSP126, SSP245, and SSP585, were
selected to predict carbon storage in the study area by considering the possibility of future
development and the status of the study area [16].

Based on the current changes in land-use types, this paper predicted the land-use types
under different scenarios in 2030, 2040, and 2050. In the forecast for the three different time
periods, it was shown that under the SSP126 scenario, the cultivated land area will decrease
to 8066.58 hectares by 2030, with a total decrease of 22.02 hectares, which is a small decrease.
From 2030 to 2050, the cultivated land area shows a fluctuating trend of first increasing
and then decreasing. At the end of the period, compared with 2020, the cultivated land
area will decrease by 118.38 hectares, with a decrease of only 1.46%. In 30 years, forest
land will increase significantly, and by 2050, the total area of this area will increase by
351.88 hectares, an increase of 5.76%. Grassland is decreasing year by year and will decrease
by 455.08 hectares in 2050, with a change rate of 14.99%. The area of construction land will
increase relatively rapidly before 2040, but there will be no significant change from 2040 to
2050, with a total increase of 220.63 hectares over the preceding 30 years.

Under the SSP245 scenario, the cultivated land area shows a trend of increasing
year by year, reaching 8893.85 hectares by 2050, with a total increase of 805.24 hectares
during the period, an increase of 9.96%. In this scenario, the change in forest area is
relatively small, with a total increase of 75.51 hectares between 2020 and 2030, while the
change is not significant in the following 20 years, with a total increase of 82.81 hectares
by 2050. Grassland area will decrease rapidly between 2020 and 2050, with a total loss



Forests 2023, 14, 2442 8 of 14

of 936.98 hectares in 30 years, accounting for 30.87% of the total area. The change trend
of construction land area is similar to that under the SSP126 scenario, but the change
amplitude is relatively small, with an increase of only 48.14 hectares in 30 years (Table 4).

Table 4. Areas of land-use types under different scenarios for the future period (km2).

Year
SSP126 SSP245 SSP585

2030 2040 2050 2030 2040 2050 2030 2040 2050

Cultivated 8066.58 8097.63 7970.22 8337.60 8597.56 8893.85 8591.40 8771.78 8866.43
Woodland 6105.55 6237.27 6457.63 6181.06 6189.20 6188.37 6015.33 6046.18 6085.90
Grassland 2902.83 2674.57 2580.24 2679.77 2395.78 2098.34 2604.28 2380.52 2234.17

Water 298.56 298.56 298.56 298.56 298.56 298.56 298.56 298.56 298.56
Construction 1490.84 1556.50 1557.98 1367.40 1383.41 1385.49 1354.67 1367.23 1379.25

Unused 16.64 16.47 16.36 16.60 16.50 16.40 16.76 16.72 16.69

The largest change in the cultivated area occurs under the SSP585 scenario, while
this scenario has the largest change in area between 2020 and 2030, with an increase of
6.22 percent. In the following 20 years, although the cultivated land area still increases,
the increase rate is relatively lower, and the total area of cultivated land increases by
777.82 hectares in 30 years, with an increase rate of 9.62%. The area of forest land decreases
in the first 10 years and then increases in the next 20 years. By 2050, the total amount of
forest land will decrease by 19.86 hectares. The trend of grassland changes from 2020 to
2050 is similar to that of grassland area changes under the SSP245 scenario, but the decrease
is relatively small, with a total reduction of 801.15 hectares, a decrease of 26.39%. The area
of construction land will change minimally, with a total increase of 41.90 hectares by 2050.

The changes in the areas of water land and unused land in all three scenarios are
relatively small. In the three scenarios of the 2050 node, the construction land under the
SSP126 scenario is the largest, but at the same time, the forest and grassland areas under the
SSP126 scenario are greater than those of the same land type areas under the SSP245 and
SSP585 scenarios. The construction land area under the SSP126 scenario is relatively
concentrated compared with SSP245 and SSP585. Under the three different scenarios, the
increase in construction land mostly occurs around the urban area of Luoyang and the
Zhengzhou section of the Yiluo River Basin (Figures 4 and 5).
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3.3. Changes in Carbon Storage in Historical and Future Scenarios Based on the InVEST Model

From 2000 to 2020, the overall carbon storage in the region showed a downward trend.
The decrease in carbon storage from 2000 to 2010 was 399.0891× 104 t, and from 2010 to 2020,
the carbon storage decreased by 208.8340 × 104 t, with a total decrease of 607.9230 × 104 t
over the past two decades. The intensity of change in the regional carbon stock coincided
with the intensity of change in the built-up land, which shows that the change in land-use
type affected the regional carbon stock. Limiting the transfer of land with a high carbon
storage capacity and stabilizing or increasing the area of land types with a high carbon
storage capacity is of great significance for the benign development of regional carbon
storage capacity.

In this paper, the carbon storage values of the Yiluo River Basin were assigned to
grids, and then ArcGIS was used to classify the carbon storage levels, resulting in Figure 6.
From the perspective of spatial distribution, the overall distribution of carbon storage in
the watershed shows a high level in the central and western regions and a low level in
the eastern region. The distribution of carbon storage corresponds to the landforms of
mountainous areas upstream of the watershed and hills and plains downstream. Low
carbon density areas are mainly distributed near the main urban area of Luoyang City.
This area is the economic center of the Yiluo River Basin, with a high population density
and rapid urban development. The construction land area ratio is significant, and there
is a trend of continued expansion. This phenomenon leads to land types with low carbon
storage capacities constantly encroaching on land with a high carbon storage capacity,
mainly around existing building areas. The areas with high carbon storage in the basin are
mainly concentrated in the central and western parts of the Yiluo River Basin, with high
vegetation coverage and primeval forests (Table 5).
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Table 5. Carbon storage in the study area in different periods and scenarios (104 t).

2000 2010 2020 2030 2040 2050

Reality 37,075.9030 36,676.8140 36,467.9800 —— —— ——
SSP126 —— —— —— 36,240.2765 36,227.6534 36,418.2218
SSP245 —— —— —— 36,411.4745 36,327.9075 36,249.1117
SSP585 —— —— —— 36,245.9717 36,204.1592 36,190.8492

Under the influence of future climate change, carbon storage in the study area under
the three scenarios will decrease to different degrees compared with 2020. In the period
from 2020 to 2050, the SSP126 scenario exhibits the least reduction in regional carbon
storage, and in 2050, the regional carbon storage will be 36,418.2218 × 104 t, with a total
reduction of 49.7582 × 104 t. In the SSP245 scenario, the regional carbon storage decreases
the second most, and the carbon storage in 2050 will be 36,249.1117 × 104 t, with a total
decrease of 218.8683× 104 t. Under the SSP585 scenario, the regional carbon stock decreases
the most, with a total decrease of 277.1308 × 104 t in 30 years, and the regional carbon stock
in 2050 will be 36,190.8492 × 104 t (Table 5).

Figure 7 shows the spatiotemporal changes in carbon storage under multiple scenarios
based on the carbon storage in the study area in 2020. The number of patches indicating
an increase in carbon storage under the SSP126 scenario is much larger than that of the
patches indicating increases in carbon storage under the SSP245 and SSP585 scenarios in
the same period. Under the SSP126 scenario, the areas exhibiting carbon storage decreases
in 2050 are mainly distributed downstream of the basin, around the main urban area of
Luoyang city, and within the boundary of Zhengzhou. The main reason is that under
urban development, land types with low carbon storage capacities continue to erode areas
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with high carbon storage capacities. The areas with increased carbon storage are mainly
distributed in the upper reaches of the basin, where the landform is mostly mountainous
and there are more forest lands. Furthermore, due to topography and other reasons, other
land areas have the conditions for conversion to forest lands, and the forest area has a
trend of expansion, which will increase the regional carbon storage. In the SSP245 scenario,
the patches indicating a reduction in carbon storage are much larger than those in the
SSP126 scenario, and the distribution is scattered throughout the basin. The patches of
increased carbon storage in this scenario mainly exist in the middle and upper reaches of
the basin. In the SSP585 scenario, the patches representing an increase in carbon storage are
the least among the three and are far smaller than those representing a decrease in carbon
storage in the region, and the distribution is similar to that in the SSP245 scenario.
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4. Discussion

With the economic development of the study area, the change in land types with high
carbon density values to land types with low carbon density values is the main reason for
the decrease in regional carbon storage. In order to improve regional carbon storage, the
conversion of cultivated land, forest land, and grassland into other land types should be
controlled reasonably, and the area of land types with strong carbon storage capacities such
as forest land should be appropriately increased. The future change trend of carbon storage
in this paper is approximately similar to those in the studies by Yang [27] and Fan [39], and
the distribution of carbon storage is similar to that in Yang’s study [27]. In Yang’s study,
two scenarios were set up: an ecological protection scenario and a natural change scenario.
In Fan’s study, three scenarios were set up: business as usual, ecological conservation, and
urban development scenarios. In this paper, three scenarios, SSP126, SSP245, and SSP585,
were selected for research according to different paths provided by CMIP6. The land-use
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demand data of the study area in different periods in the future were also derived from
CMIP6 rather than being predicted by the Markov chain.

In this paper, the average annual temperature and average annual precipitation in the
Yellow River Basin and Yiluo River Basin were substituted into the carbon density correction
formula, and then the KB and KS correction coefficients were obtained, respectively. The
carbon density value of the Yellow River Basin was corrected with the correction coefficient,
and the required carbon density value was obtained, which was similar to that in the
study by Bian [40]. The carbon density will change due to environmental changes, human
activities, and other factors. This study did not continuously track and record the carbon
density values in the watershed, and there may be some differences between the carbon
density used and the actual carbon density, leading to slight differences in carbon storage
compared with the actual situation. This study was based on three different scenarios
and the PLUS model to predict the land-use types at three time nodes in 2030, 2040,
and 2050, respectively. Since the time intervals are all of ten years, this paper selected
a decade closer to the future (from 2010 to 2020) for the simulation. Taking 2010 as the
base period, the land-use type in 2020 was predicted, and the land-use types in 2030, 2040,
and 2050 were predicted after passing the test. Luoyang City has carried out a series
of ecological protection actions in the new era, resulting in changes in the intensity of
land-use type changes from 2010 to 2020 compared with that from 2000 to 2010. If the
year 2000 is used as the base period to simulate 2010 and the future land-use types are
predicted based on this, will the transformation between land-use types be greater in the
future? Based on this, the InVEST model was used to calculate the total carbon storage in
the Yiluo River Basin under three scenarios. The magnitude of the change in total carbon
stocks and whether and how the difference between different scenarios will change remain
to be discussed.

5. Conclusions

Coupling the PLUS model and the InVEST model, on the basis of clarifying the land-
use changes from 2010 to 2020, combined with three different scenarios provided by CMIP6,
the land use and carbon storage in the study area in 2030, 2040, and 2050 were simulated
and predicted, and the impact of land-use changes on the regional carbon storage were
pointed out. The main conclusions are as follows:

(1) Land-use changes led to an increase in or loss of carbon storage. From 2000 to 2020,
the areas of forest land and construction land in the Yiluo River Basin increased
to varying degrees, while the areas of cultivated land, water area, grassland, and
unused land decreased. The conversion of cultivated land to construction land was
the main transfer type, which was also an important reason for the decrease in regional
carbon storage.

(2) Under the three scenarios, the proportion of cultivated land area in the SSP126 scenario
was the smallest, while the proportions of woodland and grassland areas in this
scenario were the largest. All three scenarios had some protection of forest land area
and none of them showed a significant reduction.

(3) From 2020 to 2050, the carbon storage in the study area under the three scenarios
of SSP126, SSP245, and SSP585 all show varying degrees of decline, decreasing to
36,418.2218 × 104 t, 36,249.1117 × 104 t, and 36,190.8492 × 104 t, respectively. Forest
land, grassland, and cultivated land have strong carbon storage capacities, and lim-
iting the conversion of land with a high carbon storage capacity to land with a low
carbon storage capacity is conducive to the benign development of regional carbon
storage capacity.
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