
Citation: Shah, W.U.H.; Hao, G.; Yan,

H.; Lu, Y.; Yasmeen, R. The Impact of

Climate Change on China’s Forestry

Efficiency and Total Factor Productivity

Change. Forests 2023, 14, 2464.

https://doi.org/10.3390/

f14122464

Received: 15 November 2023

Revised: 10 December 2023

Accepted: 17 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Impact of Climate Change on China’s Forestry Efficiency
and Total Factor Productivity Change
Wasi Ul Hassan Shah 1 , Gang Hao 2, Hong Yan 1, Yuting Lu 1 and Rizwana Yasmeen 3,*

1 School of Management, Zhejiang Shuren University, Hangzhou 310015, China;
wasi450@yahoo.com (W.U.H.S.); yanhong@zjsru.edu.cn (H.Y.); 202001013209@stu.zjsru.edu.cn (Y.L.)

2 Department of Management Sciences, City University of Hong Kong, Hong Kong 999077, China;
msghao@city.edu.hk

3 School of Economics and Management, Panzhihua University, Panzhihua 617000, China
* Correspondence: rizwana_239@yahoo.com; Tel.: +86-199-8238-9397

Abstract: The objective of this study is to examine the impact of climate change on forestry efficiency
(FRE) and total factor productivity change (TFPC) in 31 provinces of China for a study period of
2001–2020. Additionally, the study aims to evaluate the success level of governmental initiatives
used to mitigate climate change. Using the DEA-SBM, this study estimates the forestry efficiency
for 31 Chinese provinces and seven regions. Results indicate that the average forestry efficiency
score obtained is 0.7155. After considering climatic factors, the efficiency level is 0.5412. East China
demonstrates the highest average efficiency with a value of 0.9247, while the lowest score of 0.2473 is
observed in Northwest China. Heilongjiang, Anhui, Yunnan, and Tibet exhibit the highest efficiency
scores. Mongolia, Heilongjiang, Sichuan, Hebei, and Hunan are the five provinces most affected
by climate change. This study’s findings indicate that the average total factor forestry productivity
(TFPC) is 1.0480, representing an increase of 4.80%. The primary determinant for change is technology
change (TC), which surpasses efficiency change (EC). Including climate variables reduces total factor
productivity change (TFPC) to 1.0205, mainly driven by a decrease in TC. The region of South
China exhibits the highest total factor productivity change (TFPC) with a value of 1.087, whereas
both Northeast China and Central China observe falls below 1 in TFPC. The Mann–Whitney U
test provides evidence of statistically significant disparities in forestry efficiency and TFPC scores
when estimated with and without incorporating climate factors. Kruskal–Wallis found a statistically
significant difference in FRE and TFPC among seven regions.

Keywords: climate change; forestry efficiency; total factor productivity change; Chinese provinces; DEA

1. Introduction

The significance of forest resources is of utmost importance in terms of both economic
and environmental aspects. From an economic standpoint, forests serve as a valuable
resource for producing timber and wood products, essential for supporting various indus-
tries such as building and paper manufacturing [1]. This utilization of forests not only
generates significant capital but also contributes to generating employment opportunities.
In addition, forests play a crucial role in providing non-timber goods, including fruits, nuts,
and medicinal plants. These resources serve as a means of generating revenue for local
populations and make significant contributions to regional economies [2,3]. Furthermore,
forests possess a strong attraction for tourism and recreational purposes, drawing in in-
dividuals seeking activities like hiking and camping. Consequently, this influx of tourists
stimulates local economies by generating heightened tourism and commercial revenue [4].

When viewed through an environmental lens, forests serve as crucial reservoirs of
biodiversity, providing sanctuary to a diverse array of plant and animal species while
conserving distinct and imperiled ecosystems [5]. Forests play a crucial role in climate
regulation by serving as significant carbon sinks, thereby minimizing the adverse effects of
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global warming. Forests have a crucial role in enhancing air quality through their capacity
to absorb pollutants and emit oxygen [6]. Additionally, they contribute to preserving
water quality by acting as natural filters and mitigating soil erosion. They function as
effective deterrents against soil erosion, playing a crucial role in maintaining the stability of
landscapes [7,8]. Additionally, they serve as protective shields for vital wildlife habitats
and watersheds. In addition to their ecological significance, forests provide opportunities
for recreational activities, physical exercise, and stress reduction, thus enhancing mental
well-being. Forest resources are of utmost importance for advancing economic growth
and conserving our natural surroundings, serving as a crucial component in the pursuit of
sustainable development and the overall welfare of our global ecosystem [9,10].

Enhancing efficiency and productivity in the forestry sector is crucial for ensuring
environmental sustainability and economic prosperity. These actions directly influence the
sustainable utilization of forest resources, preserving biodiversity, carbon sequestration,
and timber availability, all while stimulating economic expansion [11]. Furthermore, by
fostering technological and practical innovation and preserving ecosystem services, these
initiatives ensure a sustainable ecological balance between long-term economic benefits and
ecological health. Forestry productivity and efficiency are pivotal in generating economic
and environmental advantages; therefore, their improvement is crucial for ensuring a
sustainable future [12,13].

Climate change profoundly impacts forestry efficiency and total factor productivity,
substantially affecting the sector’s inputs and outputs. The changing patterns of precipita-
tion and increasing temperatures harm the growth conditions of numerous tree species,
requiring modifications to be made to planting and harvesting methods [14,15]. Further-
more, raised temperatures contribute to a heightened incidence of parasites and diseases,
necessitating additional resources for their control, thereby diminishing overall efficiency.
Water scarcity, frequently caused by changes in precipitation patterns, requires careful
water management and irrigation system investments to sustain crop yields [16]. As a
result of climate change-induced increases in the frequency and severity of forest fires,
not only are timber and resources required for fire prevention and control significantly
depleted, but inputs and outputs are also adversely affected [17].

Moreover, vulnerable to compromising the quality of timber are fluctuations in tem-
perature and growing conditions, which may result in diminished economic efficacy. From
a favorable perspective, climate change has generated increased attention toward carbon
sequestration in forests, which has created prospects for generating revenue from the car-
bon market [18]. Given the obstacles mentioned above, it is critical to maintain or improve
forestry efficiency and productivity by implementing sustainable forest management prac-
tices, climate-resilient tree species, and investments in monitoring and research to adapt to
and mitigate the effects of climate change [19,20].

China possesses a substantial portion of the global forest resources inside its vast and
varied terrain. China plays a significant role in world forestry because its extensive forests
span several climatic zones, including temperate, subtropical, and tropical regions [21,22].
The forested regions within the country offer essential ecosystem services and facilitate a
flourishing timber sector, contribute to the sustenance of rural communities, and play a
pivotal role in carbon sequestration [23]. Acknowledging the diverse significance of these
resources, the Chinese government has implemented significant efforts to increase the
expansion of forest cover, optimize forestry efficiency, and promote growth in total factor
productivity [24–26].

China has initiated ambitious afforestation and reforestation efforts to address the
escalating environmental concerns and the rising timber demands. The primary objective
of these programs is to enhance the extent of forested regions by implementing various
strategies, such as tree planting initiatives, restoration of deteriorated forests, and adopting
sustainable forest management practices [27,28]. These efforts have not only resulted in
an expansion of forest areas but have also led to enhancements in the overall quality and
ecological well-being of these forest ecosystems. Furthermore, the Chinese government has
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significantly emphasized improving forestry efficiency and increasing total factor produc-
tion [29]. This encompasses using advanced forest management technologies, enhancing
the efficient utilization of resources, and optimizing the value chains within the forestry
sector. China aims to optimize the productivity of its forest resources and mitigate envi-
ronmental consequences by leveraging technical progress, mechanization, and scientific
investigation [30].

Nevertheless, the forestry sector in China is confronted with a substantial problem
due to the consequences of climate change. The stability of China’s forests is endangered
by changes in temperature and precipitation patterns, heightened occurrences of pest
infestations, and a rise in the frequency of forest fires [31]. The issues mentioned above
directly impact the efficiency of forestry operations and the overall productivity of the
factors involved. This is primarily due to the escalation of expenses associated with
resource management and the consequential decline in the quality and amount of timber
produced [32].

The Chinese government has implemented a comprehensive strategy to address the
adverse effects of climate change on its forestry sector. It includes adopting climate-resilient
tree species, improving monitoring and early warning systems for pest plagues and forest
fires, and promoting sustainable forest management practices that effectively reconcile
economic interests with ecological protection [33]. In addition, China has been actively
involved in afforestation and reforestation initiatives, which function as carbon reduction
and make significant contributions to global climate change mitigation efforts [34,35]. Al-
though China has a significant advancement in these efforts to remove the impact of climate
change on forestry resources utilization efficiency and total factor productivity growth, this
mission’s success level is still undiscovered and worth investigating. Therefore, this study
contributes to the existing literature in several ways. In the first stage, it employs data
envelopment analysis (DEA-SBM) on a set of inputs and outputs to estimate the forestry
efficiency of 31 Chinese provinces over the well-strength period of 20 years (2001–2020). It
explores the efficiency level of different Chinese provinces and regions in forest resource
utilization over the study period. In the second stage, the study incorporates the climate
factor in input variables to gauge the impact of climate change on forestry efficiency. This
investigation illustrates the decline in forestry efficiency caused by climate change and
advises of different implications for decision-making authorities. Thirdly, the research uses
the Malmquist productivity index to gauge the total factor productivity change in forest
resource utilization for 31 Chinese provinces and regions. It investigates the growth or
decline in total factor productivity of forest resources and further explores the determi-
nant of productivity change (efficiency of technology). Moreover, climate change’s impact
on total factor productivity change is also explored through input incorporating climate
factors. Further climate impact on forestry TFPC for seven different Chinese regions (see
Figure 1) is also gauged to show the regional impact of climate factors. Finally, the Mann–
Whitney U and Kruskal–Wallis tests investigate the significant statistical differences in
forestry efficiency and total factor productivity scores among the results estimated with and
without climate factor incorporation and different Chinese regions. The rest of this study is
arranged as follows: A comprehensive literature review is explained in Section 2. Section 3
illustrates the methodology employed in this study. Section 4 presents the results and
Section 5 presents the discussion. The conclusions of this study are presented in Section 6.
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2. Literature Review

Measuring efficiency in managing forestry resources is an important part of sustainable
forest management because it helps make the best use of resources while causing the least
environmental damage. The Data Envelopment Analysis (DEA) method helps check how
well forestry operations and resource allocation work. The research on using DEA to
measure how efficiently timber resources are used is a constantly changing field, with new
studies and methods being formed in recent studies [36–38].

Liu et al. [36] examined the non-linear effects of forestry input factors and production
efficiency on economic growth, emphasizing worker pay. They found significant double
threshold effects in 40 Heilongjiang forestry bureaus using a panel threshold regression
model. Forestry capital investment and production efficiency boosted growth, with labor
pay mediating 69.88% of the effect. Labor compensation also moderated forestry capital
input and labor input positively and negatively. Labor remuneration mediates and moder-
ates forestry dynamics, which were shown to be non-linear. Anouze et al. [39] aimed to
evaluate the effectiveness of banks in dynamic settings through the use of a three-stage DEA
framework. The approach incorporates a random forest ensemble technique to identify
crucial environmental variables and acknowledge their impact on DEA efficiency ratings.
A regression analysis examines the relationship and ability to forecast bank performances
of these factors. The study conducted a test on the framework using 110 banks in the
Middle East and North African countries from 2014 to 2016. It found that the country
in which the banks operated was a critical element that influenced their efficiency. The
overall mean efficiency maintains consistently at approximately 87%. The findings enhance
comprehension of the influence of environmental factors on bank efficiency, with the paper
concluding by acknowledging its limits and suggesting potential areas for future research.
Moreover, numerous research studies employed DEA to evaluate forestry efficiency and
total factor productivity growth in different regions around the globe [40–42].

The Forest Production Efficiency (FPE) metric was presented in the research by
Collalti et al. [43]. It evaluated the utilization of assimilated carbon to produce biomass
or net primary production. The research extensively examines FPE about climate and
age, uncovering an unforeseen positive correlation with temperature. Results illustrated
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enhanced forest production efficiency modeling in response to climate change. Using the
DEA-SBM model, Wei and Shen [44] investigated the efficiency of forest carbon sinks in
30 Chinese provinces from 2005 to 2018. The findings indicated that the average annual
forest carbon sink efficacy in China could be enhanced by 0.29. Urbanization, natural
deforestation, precipitation (with a positive correlation), and temperature (with a negative
correlation), with regional variations, are influential factors. Enhancing human capital,
adapting strategies to local conditions, and optimizing the structure of the forestry in-
dustry are all policy recommendations that contribute to more efficient forest carbon sink
management. Some research studies examined the impact of climate factors on forestry
resources [45–47].

Research studies proved that regulating the carbon and water cycles and mitigating
climate change and forests are essential. Schulze et al. [48] examined the differences
between forests that are managed sustainably and those that are not managed, specifically
about their ability to mitigate climate change. This research challenged the conventional
methods used to measure carbon storage. Unrecorded firewood harvesting in managed
forests in Germany makes a considerable contribution to energy substitution. The study
suggested implementing a carbon dioxide tax that acknowledges the positive impact of
forest management on the environment.

Reyer et al. [49] examined the dynamic relationship between disturbances and forest
productivity in the context of the effects of climate change. They emphasized the importance
of considering these factors collectively, as disruptions have the potential to either intensify
or alleviate changes in productivity caused by climate change. These impacts are projected
across seven European forest case studies using cutting-edge forest models, revealing the
intricate interplay between climate change, disturbances, and forest productivity. The
results emphasize the need for a comprehensive strategy in comprehending and preparing
for the effects of climate change on forest ecosystems. Numerous studies gauged the impact
of climate change on forest growth or productivity [50–53]. However, the impact of climate
change on forest resource efficiency and total factor productivity has not been explored.

3. Methodology

Data Envelopment Analysis (DEA) is a widely employed mathematical technique that
leverages linear programming to assess the efficiency of similar Decision-Making Units
(DMUs) [47,48]. The conventional DEA model, introduced by Charnes et al. in 1978 [54], as-
sumes a constant return to scale (CSR). Building on this foundation, Banker et al., in 1984 [55],
adapted the model to incorporate a variable return to scale (VSR). In a preliminary ex-
ploration by Tone in 2001 [56], the Slack-based Measure (SBM) model was introduced.
Subsequently, Karou Tone [57] devised a method for ranking the most efficient DMUs. The
choice of DEA-SBM for evaluating the efficiency of forestry resources is due to its ability to
assess systems with multiple inputs and outputs. More specifically, it compares forestry
units (provinces) based on inputs such as forest area and investment and outputs like
forestry output value, timber output, and forest storage. DEA-SBM employs the efficiency
frontier as a metric to gauge unit performance. Notably, DEA-SBM is well-suited for situa-
tions where establishing a specific functional form for the production frontier is challenging,
setting it apart from Stochastic Frontier Analysis (SFA). In contrast to SFA, which gauges
inefficiency by comparing it to a predefined form, DEA-SBM’s non-parametric approach
offers flexibility when evaluating the efficiency of China’s diverse forest resources.

3.1. DEA-SBM Model

The Slacks-Based Measure (SBM) provides an alternative approach to assess efficiency
in Data Envelopment Analysis (DEA) from a non-radial standpoint. Its primary benefit is
the direct assessment of excess inputs and insufficient outputs. When gauging efficiency,
SBM takes into account slack, representing the difference between inputs and outputs at
the production frontier. This methodology operates based on the following principles:
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Suppose we have a study with n Decision-Making Units (DMUs) called “Provinces”.
M input indicators and s output indicators characterize each DMU. Let Bj, represent the
j-th DMU, where j ranges: j = 1, 2, . . . , n,

[
xij
]

represents the m × 1 input indicators of
DMU Bj, with i ranging from 1 to m,

[
yrj
]

represents the s × 1 output indicators of DMU
Bj, with r ranging from 1 to s. The relative efficiency value of the DMU j_0-th DMUs is
denoted as hj0. Now, let us discuss how the output-focused SBM-DEA model with variable
returns to scale operates:

Min hj0 = θ

s.t



n

∑
j=1

λjxij ≤ θxij0, i = 1, . . . , m

n

∑
j=1

λjyrj ≥ yij, r = 1, . . . , s

n

∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . ., n

The efficiency value at the j-th position is denoted as θ, and it is associated with a
nonnegative vector λj. A Decision-Making Unit (DMU) is regarded as efficient only when
θ is equal to 1, signifying that it is operating efficiently. In cases where θ deviates from 1, it
indicates that the DMU is inefficient and has potential for enhancement.

3.2. DEA-Malmquist Productivity Index

Malmquist productivity indices offer a valuable instrument for a Decision-Making
Unit (DMU) to monitor enhancements in efficiency over time. To harness this index
effectively, it presupposes the presence of a production function that faithfully reflects the
contemporary technological landscape. DEA models are employed to identify the position
of this production function’s threshold precisely. The variation in output between periods t
and t+1 characterizes a particular DMU, denoted as (DMU0) [58].

M0 =
Dt+1

0

(
xt+1

0 , yt+1
0

)
Dt

0
(
xt

0yt
0
)

Dt
0

(
xt+1

0 , yt+1
0

)
Dt

0
(
xt

0, yt
0
) Dt+1

0

(
xt+1

0 , yt+1
0

)
Dt+1

0
(
xt

0yt
0
)

1/2

(4)

where:

• Dt
0
(

xt
0, yt

0
)

shows the TE estimation of the DMU0 for period t;

• Dt+1
0

(
xt+1

0 , yt+1
0

)
illustrates the TE estimation for period t + 1;

• Dt
0

(
xt+1

0 , yt+1
0

)
specifies the variation in TE from time t to t + 1;

• Dt+1
0
(

xt
0, yt

0
)

represents the technical efficiency of a specific DMU0. This efficiency
is computed by replacing its data from period t with the corresponding data from
period t + 1.

The first part of Equation (4), excluding the parentheses, represents the change in
the technical efficiency of DMU0 between time t and t + 1. The period within the square
brackets demonstrates the progress in technology for the same DMU. If the index value
surpasses 1, it indicates that DMU0 achieved higher output during the second period
than in the first. Two hypotheses can be proposed to explain this significant increase in
output. Firstly, it is possible that DMU0 adopted cutting-edge methods, thereby improving
its efficiency.
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3.3. Mann–Whitney U and Kruskal–Wallis Tests

When comparing two independent groups, the Mann–Whitney U test is a non-
parametric statistical method that does not depend on assumptions about the data dis-
tribution. It determines whether the values of the two groups differ substantially by
comparing and ranking the data. It finds application in numerous disciplines and is benefi-
cial when dealing with small sample sizes or non-normally distributed data. Unlike the
Mann–Whitney U test, which is designed for comparing two independent groups and does
not assume a normal distribution of data, the Kruskal–Wallis test examines whether the
medians of multiple groups are comparable. It achieves this by ranking all the data values
together and then determining if these ranked values exhibit significant differences across
the groups [59]. When the Kruskal–Wallis test detects a statistically significant difference,
it suggests that at least one group differs concerning the variable under investigation.
This test is precious when dealing with ordinal or continuous data that do not meet the
assumptions of parametric tests like analysis of variance (ANOVA). The Kruskal–Wallis
test is commonly used in social sciences, healthcare, and environmental studies to compare
groups when the data does not follow a normal distribution.

In our investigations, the Mann–Whitney U test is employed to identify statistically
significant differences in the FRE and TFPC scores when assessed with and without con-
sidering climate factors. Additionally, the Kruskal–Wallis test is utilized to determine
statistically significant differences among FRE and TFP changes across various Chinese
regions. The hypotheses for this test are outlined as follows:

H01. The FRE scores are the same with and without climate factors.

H02. The TFP change scores are the same with and without climate factors.

H03. The FRE is the same in seven different Chinese regions.

H04. The TFP change is the same in seven different Chinese regions.

3.4. Variables Selection and Data Collection

The selection of inputs and outputs when estimating DEA efficiency is of great im-
portance because choosing the wrong variables can result in inaccurate and biased esti-
mations [60,61]. Many previous research studies have used a variety of input and output
combinations to evaluate the efficiency of forest resources, as demonstrated by [62]. In
alignment with this prior research, we have employed six distinct inputs and outputs to
gauge Forest Resource Efficiency (FRE), as detailed in Table 1. Forest area is the total land
area designated for forestry production, indicating investments in natural resource ecology.
Investment tracks the accumulation of capital investments made since the beginning of
the year, contributing to inputs related to reforestation. Employees represent the num-
ber of personnel at the end of the year, serving as an indicator of investments in human
resources. Forestry output value reflects the resulting economic benefits. Timber output
encompasses the generation of social benefits. Forest storage encompasses the ecological
benefits generated. The specific names and units of these variables are provided in Table 1,
and the data were sourced from China’s Forestry and Grassland Statistical Yearbook. Fur-
ther, the climate inputs include the measurement of temperature, expressed in degrees
Celsius, which is an essential parameter when evaluating the impact that it has on forestry
operations. Gaining insight into the effects of temperature fluctuations on forest growth
and health is beneficial. Precipitation, which is measured in millimeters, is an additional
crucial input that indicates the quantity of precipitation received by forests. Precipitation,
whether adequate or inadequate, can substantially impact the growth and sustainability
of forests.
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Table 1. Inputs and outputs used to estimate the forestry efficiency.

No. Inputs Unit

1 Forest area 10,000 hectares
2 Investment 10 thousand Yuan
3 Employees 10 thousand persons
4 Temperature ◦C
5 Precipitation millimeter
6 Shortwave Radiation W/m2

Outputs

4 Forestry output value 100 million yuan
5 Timber output 10,000 cubic meters
6 Forest storage 10,000 cubic meters

Furthermore, quantified in Watts per square meter, shortwave radiation offers signifi-
cant insights into the solar energy input pertinent to the forestry field. This input provides
insight into the accessibility of sunlight, a critical factor influencing photosynthesis and the
overall dynamics of forest ecosystems. The data for climate factors are collected from the
China Environmental Statistical Yearbook. Table 2 represents the regional distribution of
Chinese provinces.

Table 2. Forest regional distribution of Chinese provinces.

Region Province Region Province

Northeast China Heilongjiang Central China Henan
Northeast China Jilin Central China Hubei
Northeast China Liaoning Central China Hunan

North China Beijing South China Guangdong
North China Tianjin South China Guangxi
North China Hebei South China Hainan
North China Shanxi Southwest China Guizhou
North China Inner Mongolia Southwest China Yunnan
East China Shanghai Southwest China Chongqing
East China Jiangsu Southwest China Sichuan
East China Zhejiang Southwest China Tibet
East China Anhui Northwest China Shaanxi
East China Fujian Northwest China Gansu
East China Jiangxi Northwest China Qinghai
East China Shandong Northwest China Ningxia

Northwest China Xinjiang

3.5. Winsorize Technique

Our methodology incorporated the Winsorize technique, which Dixon initially pro-
posed in 1960 [63], in order to reduce the impact of outliers within our dataset. We
implemented predetermined percentile thresholds for each variable in order to eliminate
the impact of outliers on the outcomes of our Data Envelopment Analysis (DEA). This
methodology strives for equilibrium by recognizing exceptional values while guaranteeing
that their influence is managed. The application of winsorizing improves the dependability
and strength of our analysis, thereby bolstering the integrity of our research findings and
facilitating a more stable depiction of the data.

4. Results

The study used Max-DEA for estimation. The following three Sections 4.1–4.3 illustrate
the forestry efficiency, total factor productivity change, and statistical significance results.
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4.1. Forestry Efficiency in Chinese Provinces

By employing the SBM-DEA on the inputs and outputs discussed in Table 1, we
estimate the forestry efficiency of Chinese provinces for the study period of 2001–2020.
Table 3 presents the efficiency scores of Chinese provinces each year. Further, it also
distinguishes the efficiency scores estimated with and without climate factors. Results
indicate that the average forestry efficiency score of Chinese provinces is 0.7155. After
including the climate-influencing variables in the input bundle, the forestry efficiency score
FRE was observeded to be 0.5412; this scenario shows us that climate change has negatively
impacted the Chinese provinces’ forestry efficiency. In essence, it indicates that climate
factors have contributed to a reduction in the efficiency of forest resource utilization.

Table 3. Average forestry efficiency of Chinese provinces (2001–2020).

Years Without Climate Factor With Climate Factor

2001 0.6979 0.4901
2002 0.7577 0.4901
2003 0.7203 0.5664
2004 0.7102 0.5156
2005 0.6807 0.4899
2006 0.6861 0.4705
2007 0.6920 0.4924
2008 0.6919 0.4612
2009 0.7352 0.5579
2010 0.7622 0.5520
2011 0.6769 0.5160
2012 0.5546 0.4906
2013 0.7225 0.5830
2014 0.7371 0.5943
2015 0.7836 0.6140
2016 0.7001 0.6000
2017 0.7152 0.5753
2018 0.7624 0.5899
2019 0.7622 0.5890
2020 0.7603 0.5856

Avg. 2001–2020 0.7155 0.5412

Table 4 presents the mean forestry efficiency scores of all 31 Chinese provinces and
seven regions. It further distinguishes the scores estimated with and without climate
factors and gauges the climate impact on forestry efficiency change. Results illustrate
that East China’s mean efficiency scores (without climate factors) are the highest among
all seven regions, with an efficiency score of 0.9247. South China ranked second with an
efficiency score of 0.9101. At the same time, Northeast China ranked third with an average
efficiency score of 0.8729. Northwest China was to be the lowest performer, with a mean
efficiency score of 0.2473. Heilongjiang, Anhui, Yunnan, and Tibet are the most efficient
in forestry efficiency, in terms of mean score of efficiency. These results indicate that the
regions mentioned above and provinces optimized the forestry resources and utilized best
operational practices to increase their forestry efficiency. This illustrates that these regions
and provinces reduce the inputs of labor, forest resources, and government spending to
maximize forestry output. Qinghai Ningxia and Gansu were the lowest performers in
forestry resource utilization.
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Table 4. Forestry efficiency evaluation in 31 and 7 regions (2001–2020).

Region Province Without Climate With Climate Change%

Northeast China

Heilongjiang 1.0000 0.3281 −67.19
Jilin 0.9629 0.7889 −18.07

Liaoning 0.6558 0.4059 −38.11
Mean 0.8729 0.5076 −41.85

North China

Beijing 0.5523 0.4709 −14.74
Tianjin 0.4890 0.6443 +31.76
Hebei 0.5916 0.2926 −50.54
Shanxi 0.3962 0.2493 −37.08

Inner Mongolia 0.9377 0.2264 −75.86
Mean 0.5933 0.3767 −36.51

East China

Shanghai 0.9569 0.9635 +0.69
Jiangsu 0.8956 0.8131 −9.21

Zhejiang 0.9025 0.8519 −5.61
Anhui 1.0000 1.0000 0
Fujian 0.9881 0.9705 −1.78
Jiangxi 0.8078 0.5309 −34.28

Shandong 0.9224 0.6712 −27.23
Mean 0.9247 0.8287 −10.38

Central China

Henan 0.8010 0.4864 −39.28
Hubei 0.4547 0.3620 −20.39
Hunan 0.9399 0.5267 −43.96
Mean 0.7319 0.4584 −37.37

South China

Guangdong 0.8667 0.8436 −2.67
Guangxi 0.9470 0.8256 −12.82
Hainan 0.9167 0.9462 +3.22
Mean 0.9101 0.8718 −4.21

Southwest China

Guizhou 0.4983 0.3581 −28.14
Yunnan 1.0000 0.5730 −42.7

Chongqing 0.4735 0.4007 −15.37
Sichuan 0.9864 0.4341 −55.99

Tibet 1.0000 1.0000 0
Mean 0.7916 0.5532 −30.12

Northwest China

Shaanxi 0.3629 0.2112 −41.8
Gansu 0.2476 0.1540 −37.8

Qinghai 0.0759 0.0679 −10.54
Ningxia 0.1740 0.1575 −9.48
Xinjiang 0.3759 0.2224 −40.84

Mean 0.2473 0.1626 −34.25
Note: Mean values show the average of the region’s provinces.

In the second scenario, the climate inputs were incorporated to gauge the impact
of climate change on forestry efficiency. Results indicate that the forestry efficiency of
Northeast China was most significantly affected by climate change. Central China also
receives diverse climate change effects on its efficiency scores. North China is the third
most affected region by climate change and its forestry efficiency. South China, East
China, and Southwest China are the least affected regions by climate change for forestry
resources utilization.

Further illustrating each province’s climate impact on forestry efficiency, we found
that Inner Mongolia, Heilongjiang, Sichuan, Hebei, and Hunan are China’s top five most
climate-affected provinces in terms of forestry efficiency. The forestry efficiency decline in
Yunnan, Shaanxi, Xinjiang, Henan, Liaoning, Gansu, Shanxi, Jiangxi, Guizhou, Shandong,
Hubei, Jilin, and Chongqing was recorded between 15 and 43 percent, showing a moderate
effect of climate change. The climate effect on the forestry efficiency of Beijing, Guangxi,
Qinghai, Ningxia, Jiangsu, Zhejiang, Guangdong, Fujian, Anhui, and Tibet was at a low
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level between 0 and 15 percent. This illustrates that these provinces were least affected
by climate change regarding forestry resource utilization. Study results show that Tianjin,
Hainan, and Shanghai’s forestry efficiency is positively affected by climate change as these
provinces grow in forestry efficiency with an average of 31.76, 3.22, and 0.69 percent.

4.2. Total Factor Productivity Change

By employing the DEA-Malmquist model on data collected from 31 Chinese provinces,
this study evaluates changes in forestry productivity from 2001 to 2020 (Table 5). As a
result, it facilitates the calculation of variation in total factor productivity (TFP) and the
value of its decomposition. The two components that comprise total factor productivity
change (TFPCH) are technical efficiency change (EC) and technical change (TC). An index
value exceeding 1 indicates a level of growth in the current year concerning the previous
year. Conversely, an index value falling below 1 indicates a decline in the level of that
year in comparison to the previous year. The results show that the average total factor
productivity change (TFPC) is 1.0480. This demonstrates the growth of 4.80 percent in
total factor forestry productivity over the study period. By decomposing the total factor
productivity change, we found that technology change (TC) is the primary determinant
of productivity growth instead of technical efficiency change (EC); TC = 1.0403 is more
significant than EC =1.0074. This further illustrates that TC witnessed 4.03 percent growth,
and EC gained 0.74 percent over the study period. After incorporating the climate factor in
the production function, we found that forestry’s total factor productivity value is 1.0205.
However, it still grows by 2.05 percent over the study period. In this case, efficiency change
is the main decider of productivity growth as TC = 1.0049 < EC =1.0155. The total factor
forestry growth was at its highest point in the years 2018–2019 (1.1614), 2001–2002 (1.1467),
and 2017–2018 (1.1327). Similarly, the total factor forestry growth was at the lowest level in
the years 2014–2015(0.8929), 2009–2010 (0.9591), and 2015–2016 (0.9626), respectively. In
most of the years, the efficiency decline is the main culprit in the deterioration of TFPC.
In contrast, after climate factor incorporation, the TFPC of Chinese provinces was highest
in the years 2018–2019 (1.152), 2005–2006 (1.144), and 2017–2018 (1.119). While TFPC in
2014–2015(0.7619), 2013–2014 (0.7841), and 2003–2004(0.897) was at its lowest level.

Figure 2 indicates the difference in forestry total factor productivity change after
incorporating climate factors. Figure 3 further indicates the climate factor’s impact on EC
and TC.
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Figure 2. Climate impact on total factor productivity change.
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Figure 3. Climate impact on EC and TC.

Table 5. Total factor productivity change, efficiency change, and technology change with and without
climate factors for 31 Chinese provinces (2001–2020).

Without Climate With Climate

Years TFPC EC TC TFPC EC TC

2001–2002 1.1467 1.1343 1.0197 1.0965 0.9736 1.1309
2002–2003 1.0018 0.9765 1.0246 0.9818 1.1668 0.8774
2003–2004 0.9807 0.9533 1.0365 0.8970 0.8873 1.0552
2004–2005 1.0901 0.9421 1.1676 1.0370 0.9538 1.0929
2005–2006 1.0827 0.9999 1.0826 1.1440 0.9332 1.2369
2006–2007 1.1201 0.9991 1.1214 1.1178 1.0468 1.0665
2007–2008 1.0001 0.9933 1.0064 0.9091 0.9648 0.9379
2008–2009 1.0888 1.0444 1.0418 1.0595 1.2160 0.8808
2009–2010 0.9591 1.0683 0.8982 0.9032 1.0029 0.9424
2010–2011 1.0957 0.8808 1.2629 1.0118 0.9291 1.0937
2011–2012 1.0724 0.8697 1.2797 1.0291 0.9870 1.0513
2012–2013 0.9980 1.3246 0.7913 1.0145 1.1341 0.8979
2013–2014 0.9963 1.0435 0.9593 0.7841 1.0408 0.7578
2014–2015 0.8929 1.0787 0.8332 0.7619 1.0834 0.7105
2015–2016 0.9626 0.8897 1.0898 1.0216 0.9689 1.0704
2016–2017 1.1154 1.0336 1.0803 1.0395 0.9583 1.0850
2017–2018 1.1327 1.0631 1.0905 1.1190 1.0312 1.0879
2018–2019 1.1614 1.0277 1.1678 1.1520 1.0199 1.1330
2019–2020 1.0138 1.0340 1.0014 0.9802 0.9959 0.9847

Avg. 1.0480 1.0074 1.0403 1.0205 1.0155 1.0049
Note: Avg. shows the average values by years for climate and without climate models.

Table 6 presents the TFPC in seven different forest regions of China. Results indicate
that TFPC is at its highest level in South China, with an average value of 1.087, indicating
8.7 growth over the study period. North China (1.0607) and Southwest China (1.0547)
ranked second and third among all seven regions. Northwest China region had the lowest
TFPC with an average score of 1.0065. Moreover, the TFPC in all seven regions grew as
their scores exceeded 1. Decomposing the TFPC into TC and EC, study results found that in
all regions, TC is the primary determinant of the TFPC of forestry. This study incorporates
the climate factors and gauges the TFPC of all seven regions to measure the impact of
climate change on TFPC in different regions. Results show that the TFPC of Northeast
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China, Central China, Southwest China, and Northwest China declined to less than 1. This
illustrates the deterioration in TFPC in these regions due to the climate factor.

Table 6. TFPC, EC, and TC in seven different regions of China.

Without Climate With Climate

TFPC EC TC TFPC EC TC

Northeast China 1.0471 1.0112 1.0627 0.9717 1.0071 0.9898
North China 1.0607 1.0159 1.0679 1.0177 1.0111 1.0227
East China 1.0471 1.0218 1.0459 1.0239 1.0122 1.0198

Central China 1.0488 1.0061 1.0592 0.9850 1.0024 0.9971
South China 1.0870 1.0262 1.0728 1.0658 1.0180 1.0527

Southwest China 1.0547 1.0333 1.0356 0.9963 1.0534 0.9725
Northwest China 1.0065 1.0106 1.0270 0.9584 0.9978 0.9838

Moreover, the TFPC in North China, East China, and South China also declined due
to climate factors; however, it did not decline below 1. Figure 4 indicates the TFPC, EC,
and TC decline of all seven regions after incorporating the climate factor. However, a
slight growth of EC was witnessed in the South China region. The main culprit in the
deterioration of TFPC was TC, which declined due to the climate factors included in the
production function. Figure 5 further displays the difference between all seven regions’
gauged TFPC, EC, and TC with and without climate factors.

Table 7 presents the TFPC, EC, and TC in 31 Chinese provinces. Results indicate that
the average forestry TFPC without climate factor was at its highest level in Guangxi (1.1596),
Liaoning (1.1512), and Chongqing (1.151). This indicates that Guangxi witnessed a 15.96%
growth in total factor productivity in forestry. Similarly, Liaoning observed 15.12 percent,
and Chongqing observed 15.11 percent growth. Further results found that the primary
determinant of TFPC in all three provinces was found to be technology change as efficiency
change is less for all three DMUS (1.0358 < 1.1228) (1.0451 < 1.1492) (1.1052 < 1.1112).
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Figure 5. Climate impact on TFPC, EC, and TC.

Further, Zhejiang, Guizhou, Hunan, Shandong, Shanxi, Jiangxi, Guangdong, In-
ner Mongolia, Beijing, Hubei, Yunnan, Anhui, Sichuan, Gansu, Hainan, Fujian, Jiangsu,
Shaanxi, Xinjiang, Henan, and Heilongjiang also witnessed growth in total factor produc-
tivity change as their TFPC score is over one. In most provinces, TC is the primary reason
for productivity growth. It indicates that these provinces efficiently utilized their forest
resources for optimum output and witnessed growth. Moreover, they also received an
incline in their technology and efficiency over the study period. However, in Qinghai,
Tianjin, Shanghai, Ningxia, Jilin, and Tibet, the TFPC declined over the study period as
their scores were less than 1. The culprit of deterioration in TFPC is both efficiency and
technology decline.

After the inclusion of climate factors in the production function, we found that Guangxi
(1.1693), Shandong (1.1199), and Chongqing (1.0847) are the top 3 performers in terms
of TFPC level. Shanxi, Guangdong, Hebei, Zhejiang, Guizhou, Tianjin, Anhui, Beijing,
Jiangsu, Shanghai, Hubei, Liaoning, and Fujian grew in TFPC as their average values were
over 1. Shaanxi, Hainan, Hunan, Yunnan, Jiangxi, Jilin, Sichuan, Henan, Qinghai, Xinjiang,
Ningxia, Gansu, Inner Mongolia, Heilongjiang, and Tibet deteriorated their TFPC after the
inclusion of climate factors. This demonstrates that the TFPC of more than half of Chinese
provinces declined due to climate factors. This indicates a diverse effect of climate change
on forestry total factor productivity.

Moreover, the climate also deteriorated the TC and impacted the decline of TFPC in
Chinese provinces. Therefore, this advocates that limiting the climate factor could increase
the TC, ultimately boosting the TFPC in China’s forestry sector.

The level of difference due to climate factors on TFPC, EC, and TC of Chinese provinces
is essential as it gives an overview of the diverse regional impact of climate change and
suggests a path for the central government to focus on specific provinces or regions. We
found that Liaoning, Hunan, and Jiangxi were the most affected provinces as their TFPC
declined (see Figure 5). However, the TFPC of Guangxi, Shanghai, Shandong, and Tianjin
obtained positive effects from climate change. Ningxia, Jiangxi, and Hebei were found to
be the top diverse impacts of climate on EC.
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Table 7. TFPC, EC, and TC in 31 different provinces of China.

Without Climate With Climate

TFPC EC TC TFPC EC TC

Northeast China
Heilongjiang 1.0031 1.0000 1.0031 0.9359 1.0250 0.9410

Jilin 0.9870 0.9885 1.0358 0.9723 0.9786 1.0279
Liaoning 1.1512 1.0451 1.1492 1.0070 1.0177 1.0006

North China

Beijing 1.0472 0.9867 1.0719 1.0133 0.9643 1.0521
Tianjin 0.9966 0.9357 1.0689 1.0306 1.0029 1.0451
Hebei 1.1175 1.0775 1.1053 1.0377 1.0487 1.0112
Shanxi 1.0884 1.0571 1.0570 1.0649 1.0439 1.0448

Inner Mongolia 1.0536 1.0226 1.0365 0.9423 0.9956 0.9601

East China

Shanghai 0.9938 1.0148 0.9822 1.0088 1.0000 1.0088
Jiangsu 1.0140 1.0224 1.0207 1.0095 1.0302 0.9936

Zhejiang 1.1015 1.0417 1.1193 1.0342 1.0224 1.0357
Anhui 1.0265 1.0000 1.0265 1.0152 1.0000 1.0152
Fujian 1.0156 1.0039 1.0191 1.0070 1.0012 1.0067
Jiangxi 1.0880 1.0473 1.0652 0.9728 0.9895 0.9988

Shandong 1.0900 1.0222 1.0883 1.1199 1.0419 1.0794

Central China
Henan 1.0046 0.9697 1.0570 0.9692 0.9693 1.0212
Hubei 1.0431 1.0274 1.0235 1.0081 1.0361 0.9829
Hunan 1.0986 1.0212 1.0971 0.9776 1.0018 0.9872

South China
Guangdong 1.0851 1.0413 1.0557 1.0481 1.0308 1.0377

Guangxi 1.1596 1.0358 1.1228 1.1693 1.0426 1.1190
Hainan 1.0164 1.0013 1.0401 0.9798 0.9805 1.0014

Southwest China

Guizhou 1.0992 1.0559 1.0479 1.0313 1.0821 0.9810
Yunnan 1.0321 1.0000 1.0321 0.9769 1.0589 0.9571

Chongqing 1.1510 1.1052 1.1112 1.0847 1.0949 1.0157
Sichuan 1.0218 1.0054 1.0176 0.9712 1.0309 0.9911

Tibet 0.9692 1.0000 0.9692 0.9174 1.0000 0.9174

Northwest China

Shaanxi 1.0132 1.0007 1.0321 0.9857 1.0482 0.9654
Gansu 1.0168 1.0104 1.0323 0.9467 1.0197 0.9640

Qinghai 0.9967 1.0124 1.0216 0.9545 0.9860 0.9672
Ningxia 0.9930 1.0113 1.0286 0.9518 0.9282 1.0590
Xinjiang 1.0127 1.0184 1.0204 0.9533 1.0071 0.9632

4.3. Statistical Significant Difference

Sections 4.1 and 4.2 found that forestry’s FRE and total factor productivity change is
heterogeneous with and without climate factors. Similarly, the results indicate that average
FRE and TFPC differ for seven Chinese forest regions. However, whether these results
significantly differ is a question of great concern. This research applied the Mann–Whitney
U and Kruskal–Wallis tests to investigate this scenario. The first hypothesis states that the
FRE scores are the same with and without climate factors. Table 8 and Figure A1 indicate
that the sig level of the first hypothesis is 0.001, which is less than 0.05; therefore, we reject
the hypothesis that FRE scores are the same with and without climate factors. This result
indicates that climate significantly impacts forestry resource utilization efficiency.

Similarly, the sig level of the second hypothesis is 0.004, below 0.05. Thus, this study
rejects the hypothesis stating that “the TFP change scores are same with and without climate
factor.” It proves that TFPC is significantly different with and without climate factors.
Climate factors have diverse effects on TFPC in forestry. The third and fourth hypotheses
claim that the FRE and TFPC in forestry are the same for seven regions. The significance
levels of 0.009 and 0.003 indicate that these are less than 0.05; therefore, this study concludes
that FRE and TFPC significantly differ in seven different Chinese forest regions.
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Table 8. Statistically significant test results.

Hypothesis Test Summary

Null Hypothesis Test Sig. Decision

1 The FRE scores are the same with and
without climate factors.

Independent-Samples
Mann–Whitney U Test 0.001 Reject the null hypothesis.

2 The TFP change scores are the same with
and without climate factors. 0.004 Reject the null hypothesis

3 The FRE is the same in seven different
Chinese regions.

Independent-Samples
Kruskal–Wallis Test 0.009 Reject the null hypothesis

4 The TFP change is the same in seven
different Chinese regions. 0.003 Reject the null hypothesis

Asymptotic significances are displayed. The significance level is 0.050.

5. Discussion

An analysis of forestry efficiency in different Chinese regions provides significant
insights into the influence of climate change on the exploitation of resources. The recorded
mean forestry efficiency score was 0.7155. After including the climate factors, the average
forestry efficiency score was 0.5412, highlighting the substantial impact of climate change on
the forestry sector of China. This decline is a concrete obstacle to the effective usage of forest
resources, highlighting the difficulties caused by changing climate conditions. The findings
suggest that the forestry sector in China is experiencing negative impacts due to climate
change. The decline in efficiency scores observed when including climate factors implies
that the practical usage of forest resources is hindered by changing climate conditions,
including extreme weather events, altered precipitation patterns, and temperature changes.
These results are aligned with the past forestry research [64].

The regional analysis presented in Table 4 reveals a detailed and complex distribution
of efficiency scores among provinces and regions. East China has exceptional perfor-
mance with the greatest efficiency scores, whereas Northwest China severely falls behind.
Provinces such as Heilongjiang, Anhui, Yunnan, and Tibet have admirable efficiency, which
can be attributed to their efficient resource utilization and implementation of best opera-
tional methods. In contrast, the provinces of Qinghai, Ningxia, and Gansu face challenges
in effectively utilizing their forestry resources, highlighting the urgent requirement for
customized policies. The findings are consistent with the current body of research that
highlights the harmful impacts of climate change on the forestry sector. The decrease in ef-
ficiency scores reflects reservations regarding severe climate impact, modified precipitation
patterns, and temperature changes. It highlights the importance of implementing adaptive
strategies and resilient practices to reduce the effects of climate change on the efficiency
of forestry. Studies have suggested several measures to improve forestry efficiency and
lessen climate change’s impact on different places. Heilongjiang, Anhui, Yunnan, and
Tibet have optimized resource use, adopted the best operational techniques, and reduced
input costs, teaching others. Forest management in climate-affected areas should include
selecting resilient tree species, monitoring methods, and biodiversity. Effective forestry
management requires early warning systems, government backing, research, and capacity
building. These measures can boost forestry efficiency and help regions adjust to climate
change, ensuring sustainable forest management [65].

The analysis of total factor productivity change (TFPC) investigates the dynamic
characteristics of forestry productivity over the research period. The computed mean
total factor productivity change (TFPC) of 1.0480 indicates a total growth rate of 4.80%,
primarily driven by technological change (TC). The decomposition of TFPC underscores
the importance of technological advancements in comparison to efficiency enhancements.
It indicates that when climate impact is taken into account, there is a decline in TFPC to
1.0205. Efficiency change (EC) plays a crucial role in determining productivity growth in
this setting, surpassing the significance of technological advancements. The fluctuations
in TFPC recorded across many years demonstrate the temporal variability of forestry
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productivity. Numerous research studies also found technological advancement as a key
factor in forestry productivity growth (Ref.). Further, the diverse effects of climate change
on forestry growth are proved in previous research studies, making a strong background for
this study’s results [66,67]. These results indicate that climate factors significantly impact
the TC instead of EC. However, after 2012–2013, the diverse effects of climate change on
both TC and EC gradually decreased. This indicates that government efforts to decrease the
climate effect on total factor productivity, efficiency, and technological advancement have
started working with time. It further demonstrates the efficiency and technological progress
to boost the total factor productivity of forestry resources in China over the study period.

The regional analysis presented a clear understanding of the varied influence of cli-
mate conditions on TFPC. The South China region demonstrates resilience by exhibiting
the highest total factor productivity change (TFPC). In contrast, the Northeast China and
Central China regions see drops below 1, showing a decline in productivity attributed
to climate-related issues. The examination particular to each province highlights the di-
verse impacts, as Guangxi, Shandong, and Chongqing demonstrate a positive increase
in total factor productivity change (TFPC) despite the influence of climate factors. The
combination of these findings highlights the complex interaction between climate change
and the productivity of forestry. The decrease in total factor productivity change follow-
ing the integration of climate factors requires a reassessment of approaches to enhance
efficiency and technological advancement. Moreover, the varied effects reported in differ-
ent locations and provinces necessitate targeted interventions to improve resilience and
flexibility. Studies highlight the importance of TFPC (Timber, Forest, and Paper Products
Company) for forestry needs technology change of efficiency, sustainability, and worker
safety. Optimizing operations, promoting sustainable forest management, and reducing
hazards benefits the industry and environment [68,69]. Our study results are aligned with
numerous research studies that witnessed the diverse impact of climate change on forestry
productivity [70–72]. This scenario illustrates that benchmarking the efficient DMUs in
these provinces could increase their TFPC by increasing their TC and EC. Numerous re-
search studies highlighted the importance of technological development and efficiency
incline to increase the TFPC level [73–75].

Several research studies investigate the impact of climate change on forestry productiv-
ity and suggest policy recommendations to boost technological advancement to increase the
TFPC [76–78]. Climate change dramatically impacts the total factor productivity, EC, and
TC of forestry in many Chinese provinces. Cultivating climate-resilient tree species, adap-
tive forest management, climate monitoring, sustainable land use, research and innovation,
and international cooperation are some measures to counteract these consequences [79].
Statistically significant differences among the FRE and TFPC for different regions and with
and without climate change are evident from the results of Section 4.3. Numerous research
studies advocate for the impact of climate change on forestry efficiency and productivity
and further differences in efficiency and productivity levels in different regions [80–82].

6. Conclusions

In the last two decades, the Chinese government has employed numerous strategies to
minimize the impact of climate change on forestry efficiency and total factor productivity.
However, the level of success in this mission to mitigate the climate impact on forestry
efficiency and TFPC is still undiscovered and needs comprehensive investigation. To this
end, this research employed different estimation methods to investigate the climate impact
on FRE and TFPC. This study employed data envelopment analysis (DEA-SBM) on a set of
inputs and outputs to estimate the forestry efficiency of 31 Chinese provinces over the well-
strength period of 20 years (2001–2020). It explores the efficiency level of different Chinese
provinces and regions in forest resource utilization over the study period. Afterwards,
the study incorporates the climate factor in input variables to gauge the impact of climate
change on forestry efficiency. This investigation illustrates the decline in forestry efficiency
caused by climate change. Thirdly, the research uses the Malmquist productivity index
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to gauge the total factor productivity change in forest resource utilization for 31 Chinese
provinces and regions. It investigates the growth or decline in total factor productivity of
forest resources and further explores the determinant of productivity change (efficiency
of technology).

Moreover, climate change’s impact on total factor productivity change is also explored
through input incorporating climate factors. Further climate impact on forestry TFPC for
seven different Chinese regions is also gauged to show the regional impact of climate factors.
Finally, the Mann–Whitney U and Kruskal–Wallis tests investigate the significant statistical
differences in forestry efficiency and total factor productivity scores among the results
estimated with and without climate factor incorporation and different Chinese regions.

Results revealed that the average forestry efficiency score in Chinese provinces is
0.7155. However, when climate-influencing variables are considered, the forestry efficiency
scores significantly decrease to an average of 0.5412, highlighting the negative impact of
climate change on forestry efficiency. Regionally, East China demonstrates the highest
mean efficiency score (0.9247), followed by South China (0.9101), while Northwest China
performs the lowest with a mean efficiency score of 0.2473. In the presence of climate
factors, Northeast China experiences the most significant decline in forestry efficiency,
emphasizing the adverse impact of climate change on different regions. Heilongjiang,
Anhui, Yunnan, and Tibet are the most efficient in forestry efficiency. Inner Mongolia,
Heilongjiang, Sichuan, Hebei, and Hunan are China’s top 5 most climate-affected provinces
regarding forestry efficiency. Studies suggested several ways to enhance forestry efficiency
and minimize the effect of climate on forestry production. It is imperative to adopt a
comprehensive and multidimensional strategy to optimize forestry efficiency and mitigate
the detrimental impacts of climate change. Using sustainable forest management strategies,
such as selective logging and replanting, plays a pivotal role in maximizing the efficient
utilization of resources. Utilizing technological tools, such as Geographic Information
Systems (GIS) and remote sensing, can facilitate the acquisition of up-to-date information,
enhancing the quality of decision-making processes. Ensuring sustainability necessitates
implementing several crucial measures, including cultivating tree species that are tolerant to
climate variations, active engagement of local populations in forest management practices,
and the seamless integration of land use planning with forestry initiatives. The use of
erosion control and water management strategies is crucial in addressing the issues of
soil erosion and water scarcity. To effectively mitigate the risks posed by wildfires and
climate-related difficulties, adopting proactive fire control tactics and climate-adaptive
policies is imperative. Continuous research, monitoring, and international collaboration
facilitate informed decision-making and foster standard solutions. By implementing these
strategies, there is potential to enhance the efficiency of forestry practices and mitigate the
adverse effects of climate change on forest ecosystems.

This study reveals an average total factor productivity change (TFPC) of 1.0480, indi-
cating a 4.80% growth in total forestry productivity. Technology change (TC) emerges as the
primary driver of productivity growth, with TC (1.0403) exceeding efficiency change (EC)
(1.0074). Incorporating climate factors leads to a decline in forestry total factor productivity
(1.0205), primarily influenced by a decrease in TC. The impact of climate change on TFPC
is evident, with varying effects across different regions and years. South China exhibits
the highest TFPC (1.087), while Northeast China and Central China experience declines
below 1. The further analysis highlights the top five provinces most affected by climate
change regarding forestry efficiency: Inner Mongolia, Heilongjiang, Sichuan, Hebei, and
Hunan. These provinces witness substantial declines ranging from 43.96% to 75.86%. The
Mann–Whitney U and Kruskal–Wallis tests investigated the significance of the results. The
findings reject the hypotheses that forestry efficiency scores and total factor productivity
change remain the same with and without climate factors, emphasizing the significant
impact of climate change on forestry resource utilization efficiency. Additionally, this study
concludes that forestry efficiency and total factor productivity change vary significantly
across the seven Chinese forest regions.
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This study’s findings have significant policy consequences for the forest authority
in China. The rapid implementation of climate-resilient measures is essential due to the
significant adverse effects of climate change on forestry efficiency and total factor produc-
tivity change. Customizing these measures following regional disparities is imperative,
mainly focusing on regions such as Northeast China that experience substantial impacts.
The prioritization of the adoption of innovative technologies and practices should be em-
phasized by forest authorities, recognizing the significant role that technology change plays
in driving productivity increase. Provinces identified as being particularly vulnerable
to climate change, including Inner Mongolia, Heilongjiang, Sichuan, Hebei, and Hunan,
necessitate targeted initiatives to enhance their ability for adaptation and resilience. Es-
tablishing robust monitoring and evaluation systems is crucial to evaluate the efficacy
of mitigation measures and to change policies in response to evolving climate circum-
stances. Incorporating international cooperation, integrating climate issues into preexisting
policies, and cultivating public knowledge and engagement are integral elements of a
holistic approach. This study emphasizes the importance of adaptive forest planning that
can effectively respond to dynamic climate circumstances. It also highlights the need for
effective cooperation between appropriate government agencies, research institutions, and
non-governmental organizations to meet the diverse difficulties mentioned in this study.
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Appendix A

Table A1. Effect of climate change in TFPC, EC, and TC.

Effect of Climate Change

Years TFEPC EC TC

2001–2002 −0.0502 −0.1607 0.1112
2002–2003 −0.0200 0.1903 −0.1472
2003–2004 −0.0837 −0.0660 0.0188
2004–2005 −0.0531 0.0117 −0.0747
2005–2006 0.0613 −0.0667 0.1542
2006–2007 −0.0023 0.0476 −0.0548
2007–2008 −0.0910 −0.0285 −0.0684
2008–2009 −0.0293 0.1716 −0.1610
2009–2010 −0.0559 −0.0654 0.0443
2010–2011 −0.0840 0.0484 −0.1692
2011–2012 −0.0433 0.1174 −0.2284
2012–2013 0.0165 −0.1905 −0.1066
2013–2014 −0.2123 −0.0028 −0.2016
2014–2015 −0.1310 0.0047 −0.1228
2015–2016 0.0590 0.0792 −0.0194
2016–2017 −0.0759 −0.0752 0.0047
2017–2018 −0.0137 −0.0320 −0.0026
2018–2019 −0.0095 −0.0079 −0.0348
2019–2020 −0.0336 −0.0381 −0.0167

https://data.cnki.net/yearBook/single?nav=Natural%20Resources,%20Energy,%20and%20Environment&id=N2020030130
https://data.cnki.net/yearBook/single?nav=Natural%20Resources,%20Energy,%20and%20Environment&id=N2020030130
https://data.cnki.net/yearBook/single?nav=Natural%20Resources,%20Energy,%20and%20Environment&id=N2022030234
https://data.cnki.net/yearBook/single?nav=Natural%20Resources,%20Energy,%20and%20Environment&id=N2022030234
https://data.cnki.net/yearBook/single?nav=Natural%20Resources,%20Energy,%20and%20Environment&id=N2022030234
https://www.forestry.gov.cn
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