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Abstract: Casuarina equisetifolia L. plays a significant role in sandy, coastal regions for sand stabiliza-
tion and windbreaks. However, C. equisetifolia forests are susceptible to plant diseases and insect pests,
resulting in mortality due to pure stands and a harsh natural environment. Mapping the distribution
of C. equisetifolia and detecting its height can inform forest-management decisions. Unmanned aerial
vehicle (UAV) imagery, coupled with the classical detection method, can provide accurate information
on tree-level forest parameters. Considering that the accuracy of a forest-parameter estimation is
impacted by various flight altitudes and extraction parameters, the purpose of this study is to deter-
mine the appropriate flight altitude and extraction parameters for mapping C. equisetifolia using UAV
imagery and the local maxima algorithm in order to monitor C. equisetifolia more accurately. A total of
11 different flight altitudes and 36 combinations of circular smoothing window size (CSWS) and fixed
circular window size (FCWS) were tested, and 796 trees with corresponding positions in the UAV
image and ground–tree heights were used as reference. The results show that the combination of a
0.1 m CSWS and a 0.8 m FCWS for individual tree detection (ITD) and tree-height detection achieved
excellent accuracy (with an F1 score of 91.44% for ITD and an estimation accuracy (EA) of 79.49% for
tree-height detection). A lower flight altitude did not indicate a higher accuracy for individual tree
and tree-height detection. The UAV image obtained within a flight altitude of 60 m–80 m can meet
the accuracy requirements for the identification of C. equisetifolia tree-height estimation (F1 score >
85% for ITD; EA > 75% for tree-height estimation). This study provides a foundation for monitoring
C. equisetifolia by using UAV imagery and applying the local maxima algorithm, which may help
forestry practitioners detect C. equisetifolia trees and tree heights more accurately, providing more
information on C. equisetifolia growth status.

Keywords: Casuarina equisetifolia L.; flight altitude; extraction parameters; coastal forest; local maxima method

1. Introduction

Casuarina equisetifolia L. is vital as a windbreak in coastal areas, with a wide natural
range in Australia, Southeast Asia, and the Pacific Islands [1]. This tree species also has
characteristics that include symbiotic nitrogen fixation [2,3], the ability to stabilize sandy
soils [4,5], drought and salt resistance [6,7], soil quality improvement, and soil rehabili-
tation [2,8]. Thus, C. equisetifolia has become one of the most popular trees for blocking
wind in sandy, coastal regions all over the world due to these various benefits [9,10]. In
coastal shelter forests particularly, C. equisetifolia has the ability to protect farmland and
houses from natural disasters such as wind erosion and tsunamis [11,12], and can prevent
damage from drifting sand [10]. However, in some areas with a poor growing environ-
ment, C. equisetifolia trees are particularly susceptible to various disturbances and prone
to growing difficulties. In this context, it is necessary to obtain accurate information on
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C. equisetifolia forest stands for forest management [13]. Additionally, there is still a gap in
the knowledge of how to optimize UAV flight and analysis parameters to measure tree
characteristics for C. equisetifolia.

Individual trees and tree height are significant metrics for C. equisetifolia forest manage-
ment, especially considering the height [14], density, open gaps [15,16], and structure [10,16],
which can impact the sand stabilization and windbreak ability. A previous study reported
that coastal vegetation was able to reduce the severity of a tsunami [10], however, open
gaps reduced this feature of C. equisetifolia forests. Tree height determines the horizontal
sheltered area, which is significant for reducing wind speed [17]. Zhang et al. [18] reported
that quicksand can easily penetrate the forest belt and can cause sand damage if open gaps
are formed inside the forest belt. Heisler and Dewalle found that, because the windbreak
height reduces wind speed, the horizontal, sheltered area was determined by the windbreak
height [17]. In addition, in the up-wind direction of the windward side of a forest, the
shelter area could extend to a distance of five times the height and a distance of thirty
heights on the leeward side [19]. Therefore, to manage and monitor C. equisetifolia forests,
there is a critical need for an effective tool to accurately detect forest parameters.

Unmanned Aerial Vehicles (UAVs) have become an important technology for assessing
forest parameters due to their high spatial resolution, flexibility, and operability [20,21].
Among them, low-cost UAVs with RGB cameras have been widely applied in forest ap-
plications due to their ability to detect tree-level parameters accurately (e.g., individual
trees and tree height). Notably, the structure from motion (SfM) technique is able to extract
three-dimensional (3D) information from UAV imagery [22–24]. Thus, monitoring and
detecting the complex 3D structure of forests is feasible using low-cost UAVs with RGB
sensors [25–27]. A number of studies have reported the application of UAVs in forest-
parameter extraction [28]. For example, Guerra-Hernández et al. [29] reported a relative
root mean square error (rRMSE) of 4.56% for the extracted tree height of a Pinus pinea
plantation using high-resolution UAV imagery. Combining the use of a UAV with oblique
photogrammetry, Lin et al. [30] assessed the individual tree heights of sparse, subalpine
coniferous forest and yielded an accuracy of RMSE = 1.77 m. Despite the promising accu-
racy of forest-parameter assessments achieved in previous studies, UAV flight planning
is essential, and the flight parameters should be carefully considered [31–33]. Many re-
searchers have discovered that the flying altitude, image overlap, and other flight-planning
settings can impact the quality or useability of final products [33–35]. For example, the
resolution of acquired images varies with flying altitude [36,37] and ultimately affects the
identification of individual trees [38] and tree crowns [39]. Thus, flight parameters should
be carefully considered and aligned with the actual measurement requirements.

An important aspect of processing UAV imagery for forestry applications is to select
the appropriate algorithm for individual tree identification and tree height extraction
from images [40]. Several algorithms, such as the local maxima algorithm [41], valley
following [42], extended-maxima transformation [43], template matching [44], Markov
random fields [44], and deep learning [45,46], have been successfully applied in the past
decade. Among them, the local maxima algorithm is the most common detection method,
primarily based on the maximum value of a moving window of a specified size that
is chosen to identify treetops [47,48]. Pouliot et al. [47] stated that the window size is
important for detecting individual trees. If the window size is too small, a tree would be
divided into several parts. Conversely, the individual trees may not be identified when the
window size is too large. For example, Mohan et al. [49] reported an inverse relationship
between the fixed tree window size and tree density. Thus, the local maxima algorithm
should determine an appropriate window size for object detection [50].

Few studies have considered both the influence of flight parameters and algorithm
parameters for detecting individual trees and tree heights. This study explores the influ-
ence of flying altitude and the window size of the local maxima algorithm for detecting
individual trees and tree heights for C. equisetifolia in the Pingtan Comprehensive Pilot
Zone. The main purpose of this study is as follows:
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(1) To determine the optimal flight altitude for C. equisetifolia identification and tree-
height estimation;

(2) To assess the optimal extraction parameters of the local maxima algorithm for
C. equisetifolia identification and tree height estimation.

2. Materials and Methods
2.1. Study Site

This study was conducted in the northeast part of the Pingtan Comprehensive Pilot
Zone, Fujian, China (coordinates: 25◦37′ N, 119◦46′ E) (Figure 1). This region has a marine
monsoon climate with an average annual precipitation of 196.2 mm and an average annual
temperature of 19.6 ◦C. The average wind speed reaches 6.9 m/s. The region has serious
soil desertification and is often affected by climatic disasters such as typhoons, heavy rain,
strong winds, and droughts. C. equisetifolia was introduced into the Pingtan Comprehensive
Pilot Zone in the 1950s to serve as a windbreak and to stabilize the soil. It was particularly
planted in the coastal area with strong winds and poor habitat conditions. Due to poor
environmental conditions, C. equisetifolia range in size from small bushy shrubs to trees,
with small bushy shrubs mainly distributed in the up-wind direction and trees distributed
on the leeward side. The study site is covered by C. equisetifolia and a few other tree species.
Some C. equisetifolia were removed and replanted in 2015 due to tree mortality caused by
an occurence of disease in 2014.
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Figure 1. Location of the study site, Pingtan, Fujian, China.

2.2. Field Survey Data

Following UAV imagery collection, field data was collected in September 2021 which
included the accurate position of each tree and the corresponding tree height. First, each
tree was numbered in the field, and the tree height was measured using a measuring rod.
Second, each surveyed tree in the field was marked accurately in the UAV imagery based on
GNSS positioning, empty locations in the forest, and other markers to ensure the accurate
positions on the image. Finally, a total of 749 C. equisetifolia was surveyed in the field, and
their corresponding positions on the image were identified (Figure 2). The field-surveyed
tree heights varied greatly, ranging from 1.15 to 12.5 m with an average height of 6.54 m.
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2.3. Image Acquisition and Preprocessing
2.3.1. UAV Image Acquisition

UAV imagery was acquired in September 2021 using an integrated camera with
six imaging sensors (1600 × 1300 pixels) mounted on a Phantom4-Multispectral(P4M)
(https://www.dji.com/p4-multispectral, accessed on 8 September 2021). Six sensors were
used: blue (B) (450 ± 16 nm), green (G) (560 ± 16 nm), red (650 ± 16 nm), red edge (RE)
(730± 16 nm), near-infrared band (NIR) (840± 26 nm), and RGB bands. Data was acquired
under clear-sky conditions between 10:00 and 14:00 to minimize the influence of tree and
cloud shadows. The flight altitude was set at a constant level for each flight to obtain
imagery: at 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m, 200 m, 220 m, and 240 m.
The flight plan covered approximately 6.5 ha in the study area, with a forward overlap of
85% and a side-lap of 75%. During the flight, the real-time kinematic (RTK) positioning and
navigation system was used to ensure high-precision location accuracy, and radiometric
calibration was completed using a diffuse plate before each flight.

2.3.2. UAV Image Processing

In this study, DJI Terra software was used to process the UAV imagery (https://
www.dji.com/cn/dji-terra, accessed on 28 September 2021). DJI Terra is a UAV aerial
survey software which can be used for autonomous route planning, aerial photography,
2D orthophotography, and 3D model reconstruction [51–53]. The built-in SfM algorithm
is able to extract 3D information from images with high overlap rates. The output data
includes B, G, R, RE, and NIR ortho-mosaics, as well as a digital surface model (DSM).

Next, open ground points were identified manually from non-forest locations. A
total of 995 points were used for interpolation in ArcGIS 10.8 (ESRI, Redlands, CA, USA)
to create a digital elevation model (DEM). The DEM was generated using the Kriging
method. Finally, a canopy height model (CHM) was obtained by subtracting the digital
terrain model (DTM) from the DSM. All the processing was repeated to obtain a CHM from
flights with different altitudes (Figure 3). Table 1 shows the main parameters for the CHM
acquisition process under different flight altitudes.

https://www.dji.com/p4-multispectral
https://www.dji.com/cn/dji-terra
https://www.dji.com/cn/dji-terra
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Table 1. UAV image acquisition and pre-processing parameters.

Flight Altitude
(Meter)

Flight Time
(Minutes)

Number of
Acquired Images

SfM Time
(Minutes)

CHM Resolution
(cm)

40 25.72 4548 14.22 4.9
60 19.21 3252 11.02 7.1
80 14.68 2178 9.11 9.7

100 8.13 1380 5.09 11.8
120 6.23 1038 3.87 14.4
140 6.08 816 2.24 16.7
160 4.68 642 3.47 19.1
180 4.07 546 0.86 21.5
200 3.28 438 0.68 24.0
220 3.53 474 0.77 26.4
240 3.17 426 0.71 28.7

2.4. Individual Tree and Tree Height Extraction

The key feature of the local maxima algorithm is that the CHM’s highest values and
the brightest pixels in the optical UAV imagery are identified by filtering the image using
a moving window [54]. Based on the local maxima algorithm, the highest values in the
CHM, representing the treetop were detected in this study [48,49,55,56]. Different window
sizes, including the circular smoothing window size (CSWS) and fixed circular window
size (FCWS), can impact the accuracy of detecting individual trees and tree heights when
using the local maxima algorithm. Thus, an optimal combination of CSWS and FCWS
should be determined. To select the optimal CSWS and FCWS for detecting C. equisetifolia,
the CSWS was set to 0 m (unsmoothed), 0.1 m, 0.2 m, and 0.3 m, while the FCWS was set to
0.4 m, 0.6 m, 0.8 m, 1.0 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, and 2.0 m separately to determine the
optimal combinations.

The main processing was as follows: (1) the CHM was smoothed using the focal
statistics tool in ArcGIS 10.8 to reduce the false positive detections (e.g., ground artifacts);
(2) the local maximum image with the highest values was identified from the smoothed
image using the focal statistics tool; (3) an image with 0 values was generated by subtracting
the local maximum image from the smoothed image; (4) values greater than 0.3 m in the
image generated in step (3) were filtered as treetops [57]; and (5) the corresponding treetop
on the CHM is taken as the value of the tree height [49,56].
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2.5. Accuracy Assessment

The recall (R), precision (P), and F1 score were used to evaluate the accuracy of
individual tree results [58,59]. The equations are as follows:

Recall(R) =
TP

TP + FN
× 100% (1)

Precision(P) =
TP

TP + FP
× 100% (2)

F1 score =
2PR

P + R
× 100% (3)

where a true positive (TP) indicates a correct identification (that is, a tree existed in
the ground reference and was correctly identified), a false negative (FN) indicates over-
identification (that is, a tree existed in the ground reference but was not identified on the
image), a false positive (FP) indicates under-identification (that is, a tree did not exist in the
ground reference but was identified), R is the ratio of correctly identified trees to all ground
reference trees, P is the ratio of correctly identified trees to all detected trees, and the F1
score represents the overall accuracy, considering omission and commission. A higher F1
score indicates a better-achieved accuracy for individual tree detection.

The determination coefficient (R2), RMSE, and estimation accuracy (EA) were used
to evaluate the accuracy of the tree-height results (Equations 4–6) [60–62]. R2 represents
the goodness of fit between tree heights derived from the UAV and the field survey. The
RMSE is used for error estimation, with a lower value of the RMSE indicating a higher
accuracy of tree-height results achieved, while a value of EA closer to 100% represents a
higher accuracy of tree-height results achieved.

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(yi − xi)

2 (4)

RMSE =

√
1
n ∑n

i=1(yi − xi)
2 (5)

EA =

(
1− RMSE

yi

)
× 100% (6)

where n is the number of samples, yi is the field-surveyed tree height, yi is the mean of
the field-surveyed tree height, xi is the estimated tree height, and xi is the mean of the
estimated tree height.

3. Results
3.1. The Effects of Extraction Parameters on Individual Tree Detection (ITD) and
Tree-Height Estimation

The results of individual tree detection (ITD) using different extraction parameters
based on the local maxima method are presented in Tables 2–4. It is evident that the
accuracy of the ITD was impacted by the various combinations of CSWS and FCWS. The
values of the P and F1 scores increased and then decreased, and the R values decreased
with a higher FCWS value under the same CSWS values. The P and F1 score values
increased with the higher CSWS values under the same FCWS values. A total of 15 different
combinations could meet the requirement for an accurate ITD (F1 score > 85.00%), including
the combination of a 0.1 m–0.3 m CSWS and a 0.4 m–1.0 m FCWS, and the combination of
a 0 m CSWS and a 0.6 m–1.0 m FCWS. Particularly when the combinations of CSWS and
FCWS were 0.3 m × 0.4 m, 0.2 m × 0.6 m, 0.3 m × 0.6 m, 0.1 m × 0.8 m, 0.2 m × 0.8 m, and
0.3 m × 0.8 m, the value of the F1 score was higher than 91.00%. The F1 score decreased
significantly when the FCWS was higher than 1.4 m. This can be explained by the R value
decreasing significantly with the increase in the FCWS.
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Table 2. The influence of different combinations of circular smoothing window size (CSWS) and fixed
circular window size (FCWS) on the precision (%) of Casuarina equisetifolia detection.

CSWS (m)
FCWS (m)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0 72.67 84.38 91.24 94.24 95.72 95.92 96.10 95.69 94.97
0.1 79.64 87.23 92.88 95.29 96.40 96.72 96.68 96.75 95.91
0.2 86.73 90.48 94.39 96.29 96.97 96.95 96.78 97.25 96.21
0.3 89.72 92.27 95.16 96.61 96.86 97.17 96.93 97.05 96.36

Table 3. The influence of different combinations of CSWS and FCWS on the recall (%) of C. equisetifolia
detection.

CSWS (m)
FCWS (m)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0 92.96 91.59 88.07 80.76 71.53 56.99 41.68 33.50 24.18
0.1 93.88 92.73 90.04 83.23 73.40 59.37 43.88 35.33 24.68
0.2 93.19 92.09 89.90 84.23 74.68 59.64 43.97 35.56 24.36
0.3 92.92 92.14 89.76 83.36 74.63 59.73 43.28 34.55 24.18

Table 4. The influence of different combinations of CSWS and FCWS on the F1 score (%) of
C. equisetifolia detection.

CSWS (m)
FCWS (m)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0 81.57 87.84 89.63 86.98 81.87 71.50 58.14 49.63 38.54
0.1 86.18 89.90 91.44 88.85 83.34 73.58 60.36 51.76 39.26
0.2 89.84 91.28 92.09 89.86 84.38 73.85 60.47 52.07 38.88
0.3 91.29 92.20 92.38 89.50 84.31 73.99 59.84 50.96 38.66

Fifteen different combinations of CSWS and FCWS were used to determine tree heights.
The results are presented in Tables 5–7. The accuracy of tree-height estimation declined
with an increase in the CSWS when the FCWS was held constant; that is, a higher RMSE
value and a lower EA value were achieved. The accuracy of tree-height estimation increased
with an increase in the FCWS when the CSWS was kept constant; that is, higher R2 and EA
values and a lower RMSE value were achieved. The combination of a 0.1 m CSWS value
and a 0.8 m FCWS value was generally determined to be the optimal parameter for ITD
and tree-height estimation using the local maxima algorithm.

Table 5. The influence of different combinations of CSWS and FCWS on the tree height extraction for
C. equisetifolia between UAV-derived image and field measurement (R2).

CSWS (m)
FCWS (m)

0.4 0.6 0.8 1.0

0.0 - 0.87 0.91 0.91
0.1 0.87 0.89 0.89 0.91
0.2 0.88 0.89 0.90 0.91
0.3 0.89 0.89 0.90 0.90
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Table 6. The influence of different combinations of CSWS and FCWS on the tree height extraction
accuracy (RMSE/m) of C. equisetifolia detection.

CSWS (m)
FCWS (m)

0.4 0.6 0.8 1.0

0.0 - 1.38 1.28 1.26
0.1 1.45 1.39 1.36 1.31
0.2 1.48 1.45 1.41 1.38
0.3 1.48 1.47 1.44 1.42

Table 7. The influence of different combinations of CSWS and FCWS on the tree height extraction
accuracy (EA/%) of C. equisetifolia detection.

CSWS (m)
FCWS (m)

0.4 0.6 0.8 1.0

0.0 - 79.07 80.84 81.34
0.1 78.03 78.91 79.49 80.45
0.2 77.65 78.19 78.73 79.47
0.3 77.63 77.81 78.35 78.76

3.2. The Effects of Flight Altitude on ITD

Table 8 shows the accuracy of the ITD using the combination of 0.1 m CSWS and
0.8 m FCWS at different flight altitudes. It is visually apparent that the accuracy of the
ITD initially increased and then decreased with the increase in flight altitude. The P value
was above 85% when the flight altitude was between 60 m and 140 m, and the highest P
value was achieved at 80 m (P = 94.3%). The R value was higher than 85% when the flight
altitude was between 40 m and 80 m, and the highest R value was achieved when the flight
altitude was 60 m (R = 90.04%). The F1 score was above 85% when the flight altitude was
between 40 m and 80 m, and the highest F1 score was achieved when the flight altitude
was 60 m (F1 score = 91.44%). Therefore, a reasonable accuracy of the ITD was achieved
when the flight altitude was between 40 m and 80 m (F1 score > 85%).

Table 8. The influence of different UAV flight altitudes on the accuracy of ITD.

Flight Altitude (m) Precision (%) Recall (%) F1 Score (%)

40 83.30 89.35 86.22
60 92.88 90.04 91.44
80 94.31 85.60 89.75

100 92.68 75.78 83.38
120 90.18 67.55 77.24
140 88.01 57.36 69.45
160 83.75 49.95 62.58
180 79.46 37.84 51.27
200 74.71 34.96 47.63
220 71.81 29.57 41.89
240 71.59 23.03 34.85

3.3. The Effects of Flight Altitude on Tree Height Estimation

The effects of different flight altitudes on the estimated tree heights are shown in
Table 9. The values of the R2, RMSE, and EA first increased and then decreased with the
increase in flight altitude. The optimal accuracy of tree-height estimation was achieved
when the flight altitude was between 60 m and 100 m (R2 ≥ 0.89, RMSE < 1.60 m, and
EA > 75%). The R2 value was higher than 0.85 when the flight altitude was between 60 m
and 160 m. Specifically, the highest R2 value was achieved when the flight altitude was
between 80 m and 100 m (R2 = 0.90). The RMSE value was lower than 2.00 m when the
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flight altitude was between 40 m and 100 m, and the lowest RMSE value was achieved
when the flight altitude was 60 m (RMSE = 1.36 m). The EA value was higher than 75.00%
when the flight altitude was between 60 m and 100 m, while the highest EA value was
achieved when the flight altitude was 60 m (EA = 79.49%). However, the accuracy of the
tree-height estimation declined rapidly when the flight altitude was higher than 100 m.

Table 9. The influence of different UAV flight altitudes on the tree-height estimation for C. equisetifolia
between UAV-derived images and field measurements.

Flight Altitude (m) R2 RMSE/m EA/%

40 0.81 1.69 74.39
60 0.89 1.36 79.49
80 0.90 1.59 76.28

100 0.90 1.59 76.38
120 0.87 2.21 67.88
140 0.88 2.49 65.83
160 0.86 2.74 60.43
180 0.82 2.83 60.16
200 0.79 2.98 59.21
220 0.81 3.12 57.28
240 0.72 3.03 59.72

In summary, the highest accuracy of the ITD and tree-height estimation was achieved
at a flight height of 60 m. However, it is recommended to use a flight height of 80 m for
C. equisetifolia identification and tree-height detection, mainly because of the shorter flight
time, SfM time, and fewer images to process when compared to a flight height of 60 m
(Table 1). Therefore, a flight height of 80 m was selected as the UAV parameter in this study,
which yielded an F1 score = 81.75% for ITD and an EA = 76.28% for tree-height estimation
(Figure 4). The results of C. equisetifolia identification and tree-height detection are shown
in Figure 5.
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4. Discussion

This study focused on determining the optimal flight altitude and parameters of
the local maxima algorithm to improve the accuracy of C. equisetifolia identification and
tree-height estimation results. Although previous studies have mentioned the ability of
C. equisetifolia to provide a windbreak, few studies reported monitoring this tree species
effectively in the coastal regions. Our results showed the optimal accuracy of ITD and
tree-height estimation when the flight altitude was 60 m and the combination of the CSWS
and FCWS was 0.1 m × 0.8 m for the local maxima algorithm. This study can help acquire
accurate forest-characterization information from UAVs at the tree-level, which contributes
to forest management and forest tree identification.

Flight altitude is an important variable affecting UAV image resolution, ultimately
affecting the accuracy of ITD and tree-height estimation [36,37,63]. Our study found that
the image quality could meet the accuracy requirement of ITD and tree-height estimation
when the flight altitude was between 60 m and 80 m. Similar results have been reported
in previous studies. For example, Dandois et al. [36,37,63] stated that a flight altitude of
80 m is optimal for mapping forest structure, considering image collection and processing
efficiency. Comparing three altitudes above ground level (65 m, 90 m, and 115 m) for UAV
image collection, Swayze et al. [64] reported that 65 m was the optimal flight altitude for
detecting forest parameters (e.g., tree height, DBH, and density).

Image overlap influences the forest-parameter estimation less than flight altitude.
There is a consensus that >75% forward overlap and 60%–80% side-lap are recommended
for UAV image acquisition [35]. Similarly, Tu et al. [33] demonstrated that when the forward
overlap was less than 80% the accuracy of the tree-height estimation decreased significantly,
and that the optimal side-lap was between 70% and 80%. In this context, the forward
overlap and side-lap in this study were set at 85% and 75%, respectively.

Previous studies have reported that a higher accuracy of forest-parameter estimation
results when a lower flight altitude was used [37]. However, our study indicated that
a flight altitude of 40 m is not optimal for detecting C. equisetifolia at the individual-tree
level. This may be explained by declining image overlap in higher tree-height areas,
which could decrease the accuracy of a 3D-generated reconstruction by SfM (Figure 6).
Contrarily, it has few impacts on the areas of lower tree height. Therefore, the appropriate
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flight height of a UAV should be determined for monitoring different tree species. For
instance, Johansen et al. [37] suggested that a flight height of 30 m was the optimal UAV
parameter for tree crown perimeter, area, and height estimation compared to flight heights
of 50 m and 70 m. This can be explained by the surveyed tree heights in the study by
Johansen et al., which were mainly between 2 m and 3 m and would be subject to few
impacts on image overlap.
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The UAV flight altitude of 80 m in this study had clear advantages over a 60 m
flight altitude. One advantage is that one single flight was able to cover the study area
of approximately 6.5 ha using the charge of a single battery at the height of 80 m, while
two batteries are needed to complete the flight at the height of 60 m. Moreover, a longer
flight time with battery replacement would increase the risk of shadows from cloud cover.
In addition, the number of obtained UAV images at a height of 80 m (3252) is less than
the number of images acquired at 60 m (2178). Having fewer images can also reduce
image-processing time. The SfM times were 11.02 and 9.11 minutes under the heights
of 60 m and 80 m, respectively. Torres-Sanchez et al. [65] compared imagery collected
at 50 m and 100 m above ground level for mapping the structural parameters of olive
trees and reported that both the time of flight as well as the multi-spectral images and
RGB image processing were reduced from 47 min to 13 min and from 5 h 15 min to 1 h
8 min, respectively. Therefore, considering the efficiency of UAV image acquisition and
processing, as well as the accuracy of ITD and tree-height detection, a flight altitude of 80 m
was selected for ITD and tree-height estimation.

The local maxima algorithm is the most commonly used classical method, and window
size is a critical factor affecting the accuracy of the ITD and tree-height estimation [50]. Our
study determined the optimal combination of a 0.1 m CSWS and a 0.8 m FCWS for ITD
and tree-height estimation. From Tables 4 and 7, it can be seen that when the FCWS was
0.8 m, the accuracy of the ITD increased with an increase in the CSWS. In contrast, the
accuracy of tree-height estimation decreased with an increase in the CSWS. This is because
the smoothed image becomes smoother with an increase in CSWS and outliers have less
influence on the ITD, while the UAV generally underestimated the tree height (Figure 4)
for C. equisetifolia and the accuracy of the tree-height estimation would be lower if a larger
CSWS was used. Thus, a CSWS of 0.1 m was adopted in this study to balance the accuracy
of the ITD and tree-height estimation.

In this study, the UAV-derived tree heights were underestimated at all flight altitudes.
Previous studies have reported two reasons to explain the tree-height underestimation. One
possible explanation is that the DTM is overestimated, which serves to cover the base of
trunk information. This mainly occurs in areas with high forest coverage or abundant under-
story vegetation where it is challenging to obtain the ground position accurately [57,66,67].
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Another reason is that the resolution of the CHM is relative coarse compared to the size
of treetops, which can result in the loss of treetops in the CHM [57,62,67]. In our study, it
was possible to obtain the ground position accurately because of the evenly distributed
trees. Therefore, the underestimated tree heights in our study are most likely explained
by the coarse resolution of CHM, which resulted in the loss of treetops. In this study, the
resolution of CHM was 9.7 cm when the flight altitude was 80 m. The coarse resolution of
the CHM relative to the thin treetop results in the underestimation of tree heights. The tree
heights of Figure 7a,b were 4.7 m and 5.1 m in the field measurement, respectively. The
estimated tree heights from the UAV image were 2.98 m and 2.92 m at the altitude of 80 m,
respectively, and the tree heights were underestimated by 1.72 m and 2.18 m. As can be
seen from Figure 7, the tree in Figure 7b was more seriously underestimated than the tree
in Figure 7a due to the slender and obvious treetop.
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The study site is located in a sensitive island environment, which results in the treetops
of C. equisetifolia being exposed to heavy wind erosion. The top of a tall C. equisetifolia
is more likely become full than the shorter trees under heavy wind erosion. Therefore,
the identification of shorter trees is more often underestimated in the study area. Similar
studies have reported that UAV-derived tree height was underestimated, but this deviation
can be modified if it is consistent [67,68].

Casuarina equisetifolia was widely introduced into the coastal areas of Guangdong
and Fujian, China, because of its ability to stabilize sandy soils [4,5], drought and salt
resistance [6,7], soil-quality improvement potential, and soil-rehabilitation ability [2,8].
However, some C. equisetifolia is susceptible to plant diseases and insect pests due to being
planted in a pure stand. Therefore, detecting individual trees is helpful for monitoring
the status of C. equisetifolia forest stands. In addition, monitoring can identify open forest
gaps and provide information on dead trees, such as their number and position, to support
forest management (Figure 5).

In addition to individual tree identification and tree-height estimation, other forest
parameters can be estimated using UAV-derived DSMs and multi-spectral imagery, includ-
ing tree crowns [29,56], DBH [64,69,70], and biomass [71,72]. More detailed information
can be detected rapidly and accurately using UAVs in the future as the capabilities of
UAVs increase over time. Additionally, UAVs can track long-term dynamic changes in
forest parameters using flights over time [73–76]. Low-cost consumer UAVs have been
widely used in forestry applications because of their affordable characteristics. In this study,
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the proposed workflow was designed for the Phantom4-Multispectral UAV, so the flight
parameters may not be directly suitable for other sensors. Nevertheless, the proposed
procedure for evaluating the optimal flight altitude and extraction parameters will inform
other workflows.

5. Conclusions

Detecting individual trees and tree heights is critical information for managing
C. equisetifolia, considering its characteristics of sandy-soil stabilization and windbreak
ability in coastal regions. This study assessed the accuracy of individual tree and tree-
height results based on the collected UAV imagery from different flight altitudes and the
local maxima algorithm to determine the appropriate, optimal flight altitude and extraction
parameters for detecting individual trees and tree heights. The results demonstrated that
the flight altitude should not be minimized for optimal results. When the flight altitude
was 60 m and the combination of the CSWS and FCWS was 0.1 m and 0.8 m, respectively,
of the local maxima algorithm, the highest accuracies of ITD and tree-height estimation
were achieved (F1 score = 91.44% for ITD and EA = 79.49% for tree height estimation).
Excellent accuracy was achieved when the flight altitude ranged from 60 m to 80 m (F1
score > 85.00% for ITD, EA > 75.00% for tree-height estimation). It is suggested that a flight
altitude of 80 m is suitable for detecting C. equisetifolia because a UAV can cover a larger
area using a single battery charge. This study assists forest practitioners in management
and provides accurate information on using UAVs in forestry.
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