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Abstract: This study aimed to determine the optimal approach for estimating stem diameter distri-
butions (SDD) from airborne laser scanning (ALS) data using point cloud metrics (Mals), a canopy
height model (CHM) texture metrics (Mtex), and a combination thereof (Mcomb). We developed
area-based models (i) to classify SDD modality and (ii) predict SDD function parameters, which we
tested for 5 modelling techniques. Our results demonstrated little variability in the performance of
SDD modality classification models (mean overall accuracy: 72%; SD: 2%). Our best SDD function
parameter models were generally fitted with Mcomb, with R2 improvements up to 0.25. We found the
variable Correlation, originating from Mtex, to be the most important predictor within Mcomb. Trends
in the performance of the predictor groups were mostly consistent across the modelling techniques
within each parameter. Using an Error Index (EI), we determined that differentiating modality prior
to estimating SDD improved the accuracy of estimates for bimodal plots (~12% decrease in EI),
which was trivially not the case for unimodal plots (<1% increase in EI). We concluded that (i) CHM
texture metrics can be used to improve the estimate of SDD parameters and that (ii) differentiating
for modality prior to estimating SSD is especially beneficial in stands with bimodal SDD.

Keywords: airborne laser scanning; texture; stem diameter distributions; forest inventory; boreal forest

1. Introduction

In the last decade, much effort has been devoted to modelling and mapping forest
inventory attributes from airborne laser scanning data (ALS) to the point where these
data are being used operationally over large, continuous areas internationally (e.g., [1–3]).
ALS can provide precise and reliable predictions of many stand-mean values of biophys-
ical attributes (e.g., biomass, volume, height, and DBH [4–6]), as well as distributions
thereof (e.g., stem diameter, height, and volume distributions [7–9]). Stem diameter is the
most frequently modelled distribution found in the literature (e.g., [10–17]) as it provides
insights on stand structure, the basis for understanding the stand’s ecological and eco-
nomic value. Stem diameter distributions can be used to describe forest dynamics [18],
carbon stock, biomass, and wood volumes [19,20], and are known to be correlated with
species diversity [21,22]. This information is an important aid for forest managers, who are
planning silvicultural strategies [23] and assessing the commercial value of given stands.

Numerous functions have been described in the literature to fit stem diameter dis-
tributions (SDD). The early works of Bailey and Dell (1973) [24] proposed the Weibull
probability density function (PDF) as a diameter distribution model. Since then, many
studies have evaluated the effectiveness of other statistical functions. Hafley and Schreuder
(1977) [25] found Johnson’s SB function to outperform the Weibull in terms of quality of
fit of the distributions. Similarly, and more recently, Gorgoso-Varela et al. (2021) [26]
compared the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta, and gamma-2P
functions, and although the Weibull (2P and 3P) and Johnson’s SB yielded the poorest fits
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to the data, they concluded that all six assessed PDF produced reasonable results. Sim-
ilarly, Consenza et al. (2019) [27] demonstrated that Johnson’s SB presented comparable
performances to the Weibull for two forest types: slightly better for a Eucalyptus globulus
plantation and slightly worse for a Pinus radiata plantation. Although these studies have
demonstrated that the Weibull is not always the best-fitting PDF, it has been most widely
used in forestry (e.g., [7,14,28,29]), namely due to the function’s flexibility in shape and
relative simplicity of mathematical implementation [24]. The Weibull, however, is better
suited to represent homogenous stands, given that it contains only one mode. Recent
studies have demonstrated improvements in SDD predictions by fitting the bimodal SDD
of heterogeneous stands to two PDF in structurally diverse forests [28,30]. The accuracy in
representing SDD is therefore inevitably dependent on the forest structure being assessed.

Parametric and non-parametric approaches have been used to model SDD regardless
of the distribution’s modality (e.g., [8,19,20,31]). As PDFs are multivariate, it is often neces-
sary to use multiple models developed with methods that can handle high-dimensional
space [32]. Although many approaches to predict SDD have been proposed in recent
decades, the current trends have been based on the PDF parameter prediction [28,33–35]
and recovery methods [12,36–38]. In the 1990s, studies found k-nearest neighbor (k-NN)
regression to be more accurate and flexible than methods based on parametric distributions
in predicting stand-level diameter distributions [39,40]. With the advent of ALS, k-NN ap-
proaches were implemented using the area-based approach [41] to produce sub-stand-level
diameter predictions with similar results [42–44]. Although k-NN estimation has long been
used to predict SDD, the large amounts of training data required can limit its application.
Many other approaches have also been proposed. For example, Kangas and Maltamo
(2000) [45] suggested a model that first predicted diameters at 12 percentiles, then the basal
area diameter distribution was interpolated using a rational spline. Liu et al. (2009) [46]
later assessed the percentile-based approach [47] against five other methods in predicting
parameters for SDD represented by a Weibull function for white spruce plantations and
found the percentile-based parameter recovery method performed best. In another study,
Bollandsås and Naesset (2007) [19] proposed to use partial least squares regression to effec-
tively predict diameters at percentiles of basal area in uneven-sized Norway spruce stands.
In a most recent study, Strunk and McGaughey (2023) [36] compared post-stratification, or-
dinary least squares regression, k-NN, and random forest to predict diameter class-specific
volumes and found that random forest produced overall better results for a managed south-
ern white pine forest. The complex distributions associated with more heterogeneous forest
structures are, however, often better represented within a Finite Mixture Model (FMM)
by combining two or more PDFs [28,33,34,48]. For example, Mulverhill et al. (2018) [34]
developed maximum likelihood estimation models for both unimodal and bimodal SDD to
appropriately characterize the simple and irregular distributions found in stands of boreal
mixedwood forests (Canada). Though the estimation approaches continue to evolve, no
consensus on a singularly favoured modelling method has yet been established.

Spatially explicit and exhaustive characterizations of SDD are made possible with
remote sensing. Tarp-Johansen (2002) [49] used a 3D model and digital aerial photographs
to estimate stem diameters for monospecific English oak (Quercus robur L.) stands in
Denmark. With the development of ALS, Gobakken and Næsset (2004) [50] used vari-
ous ALS height metrics to estimate Weibull parameters accurately (R2 ranging between
0.6–0.9 with an RMSE of 0.15) to predict SDD for the boreal forest in southeast Norway.
Multi-source remote sensing data can also be combined to improve prediction accuracy.
Peuhkurinen et al. (2018) [30] combined ALS data and SPOT5 imagery to make accurate
predictions (Reynold’s Error Index for all plots ranged from 17.99 to 122.94) of SDD for
coniferous boreal forests of Russia’s Perm Region with the non-parametric k-Most Similar
Neighbour method. In addition to height metrics, intensity metrics can be derived from
ALS data, thereby providing indications of the strength of backscattered energy. Shang et al.
(2017) [51] used ALS height and intensity metrics to predict SDD for a hardwood forest in
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Ontario, Canada. They found that combining intensity and height metrics improved the
model’s performance beyond employing either height-only or intensity-only metrics.

Texture metrics that are derived from remote sensing can provide additional informa-
tion regarding canopy structure that is independent of spectral features regarding spatial
variations [52]. Haralick’s Grey-Level Co-occurrence Matrix (GLCM) [53] is one common ap-
proach to calculating texture features from a given raster surface. GLCM uses second-order
statistics, which are defined as the probability of observing a certain pair of pixel values
within a predefined angle and observation window size [54]. Studies have demonstrated
that texture metrics derived from optical data can be used successfully to predict forest at-
tributes for a range of forest types (e.g., for boreal and Great Lakes—St. Lawrence forests of
Canada [55]; temperate forests of Ontario, Canada [8]; boreal forests of Finland [56]). Dube
and Mutanga (2015) [57] compared aboveground biomass models for three medium-density
plantation forest species in South Africa that were derived from Landsat-8 spectral bands,
spectral band ratios, vegetation indices, texture bands, and texture band ratios. The study
demonstrated that models developed from multiple texture band ratios yielded the highest
R2. Several studies have incorporated canopy height model (CHM)-derived texture metrics
in predicting forest attributes. Ozdemir and Donoghue (2013) [58] used CHM-derived
texture metrics to explain tree diversity for a broad range of stand types (pure conifer,
mixed conifer, pure deciduous, mixed deciduous, and conifer, different age classes) and
found that the combination of ALS metrics with texture metrics explained up to 85% of the
measured tree height diversity. Niemi and Vauhkonen (2016) [59] demonstrated that using
texture metrics improved prediction of total stem volume and basal area over models that
were developed solely from ALS metrics for boreal forests in southern Finland. Similarly,
van Ewijk et al. (2019) [55] found that combining ALS, CHM texture, and intensity metrics
improved R2 by 0.19 for the prediction of stem density when compared with models that
were developed solely with ALS metrics.

The studies provide meaningful insight into potential improvements for predicting
forest attributes using a variety of modelling approaches and predictor variables that are
derived from remote sensing data. To date, no studies have specifically examined whether
the inclusion of canopy surface texture metrics can improve the characterization of SDD
from ALS data. In this study, we compared the accuracy of SDD predictions that were
modelled independently from commonly used ALS metrics, CHM-derived texture metrics,
and a combination of the two using multiple statistical modelling techniques. We first
hypothesized that models using texture-derived metrics would more accurately predict
SDD parameters than ones using ALS metrics alone. Second, based upon past research,
we hypothesized that developing differentiated modality-specific models (unimodal or
bimodal) would improve SDD predictions. We tested these hypotheses by developing two
modelling approaches: the first considers a priori knowledge regarding the modality of the
SDD, while the second considers all SDD to be unimodal. We then evaluated the contribu-
tion of texture metrics in both approaches and determined which approach is best suited
for estimating SDD in the eastern boreal forests of Quebec and western Newfoundland.

2. Materials and Methods
2.1. Study Area

Two study areas were selected based on their similarity in forest composition: both are
conifer-dominated and lie within the eastern extent of the North American boreal forest [60]
(Figure 1). The forests are comprised of balsam fir (Abies balsamea (L.) Miller), black spruce
(Picea mariana [Miller] Britton), white spruce (Picea glauca [Moench] Voss), paper or white
birch (Betula papyrifera Marshall), yellow birch (Betula alleghaniensis Britton) and, to a lesser
extent, tamarack, or eastern larch (Larix laricina [Du Roi] K. Koch). Balsam fir and white
spruce-dominated mixed stands are found south of the 50th parallel in our first study area
(123,140 km2), located in the province of Quebec. As we move north, the presence of black
spruce increases until it completely dominates the landscape above the 52nd parallel. The
second study area (977 km2) is in the most eastern extent of the Boreal Shield Ecozone, in the
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province of Newfoundland and Labrador, and is dominated by balsam fir. The climate at
both sites is favorable for forest growth due to abundant precipitation and warm summers.
The primary silvicultural treatments practiced in these areas are pre-commercial thinning
and clear-cut harvesting, which generally yield even-aged, homogeneous forest stands.
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Figure 1. Plot distribution across two sites within the eastern Boreal Shield, Canada.

2.2. Ground Plots

Fixed-area circular plots were established with radii of 11.28 m where species, di-
ameter at breast height (DBH), height, and status (live or dead) were recorded for all
merchantable trees (trees ≥ 9 cm DBH). We retained plots having a total basal area ≥ 75%
associated with balsam fir or black spruce with a presence of ≤10% hardwoods. We then
identified and removed outlier plots by performing a multivariate local outlier factor anal-
ysis with the R package DMwR [61]. The analysis was based upon mean DBH and gross
merchantable volume, together with the shape and scale parameters of a fitted Weibull
function. We differentiated the SDD of each retained plot as unimodal or bimodal using
the Bimodality Coefficient (BC) [62], given that its validity has been demonstrated in boreal
forest environments [34] (Figure 2). The BC is proportional to the ratio between squared
skewness and uncorrected kurtosis [63]. We associated plots having BC values ≤ 5/9
with unimodal distributions, while bimodal distributions were associated with BC val-
ues > 5/9 [64]. In total, we retained 307 plots differentiated as unimodal and 120 as bimodal
for the analysis of our hypotheses.

2.3. ALS Data and Metrics

All ALS data were acquired within 2 years of ground-plot measurements between 2012
and 2016. We calculated the mean point densities from plot locations to be 5.8 points m−2

and 4.9 points m−2 for the Quebec and Newfoundland sites, respectively. We created a
CHM at a 1 m × 1 m resolution from first returns that were classified as vegetation using a
natural neighbor interpolation. Binning cell assignment was set to the maximum value,
and zeros replaced negative values. We calculated ALS metrics that are commonly used



Forests 2023, 14, 287 5 of 18

to describe the height, structure, and density of the canopy using the lidR package [65] in
the R programming environment [66], using only returns ≥ 2 m that were classified as
vegetation. We calculated the GLCM edge (contrast and dissimilarity) and patch interior
texture metrics from the CHM, i.e., correlation, homogeneity, mean, and angular second
moment [67]. We considered three window sizes, 3 × 3, 5 × 5 and 7 × 7, for the GLCM
texture feature calculations and determined that the 3 × 3 window produced metrics
that explained the most variation in our response variables (i.e., Weibull parameters). We
computed the GLCM features in all directions and limited the number of grey levels to 32.
We then averaged the 1 m × 1 m resolution texture feature values for each ground plot
location to produce associated metrics of texture. To evaluate our hypotheses, we grouped
the predictor variables into three sets of ALS metrics based upon: (i) point cloud metrics
(Mals); (ii) CHM texture metrics (Mtex); and (iii) a combination thereof (Mcomb) (Table 1).
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and a Finite Mixture Model (red lines).

Table 1. Description of metrics and associated groupings used as predictor variables: ALS metrics
(Mals), texture metrics (Mtex), and combined ALS and texture metrics (Mcomb).

Group Metric Units Description

Mals

MAX m Maximum height
MEAN m Mean height [68]

P25, P75, P90 m Height percentiles. E.g., P25 is the height of the 25th percentile. [69]
SKEW Skewness
VAR Variance [68]

COVAR % Coefficient of variation: standard deviation/mean [70]
VDR Vertical Distribution Ration: (MAX-MEAN)/MAX [71]
VCI Vertical Complexity Index [72]
ENT Entropy: normalized Shannon diversity index [73]

RI Rumple Index of roughness [74]

D2, D5, D8 % Proportion of all vegetation returns found in sections divided within the range of heights of
all returns for each plot. [75]

COVER Ratio of the number of vegetated returns above 2 m to the total number of ground and
vegetated returns [76]

LPI Light Penetration Index, Ground returns/(Ground returns + Canopy returns). [69]

LPI1st Light Penetration Index (first returns): Ground first returns/(Ground returns + Canopy
returns) [77]

FR First return ratio: number of first return heights below a specified height threshold/total
number of first return heights [68]
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Table 1. Cont.

Group Metric Units Description

RR All return ratio: all returns < 2 m/all returns [78]
LAI Sum of Leaf Area Density [68]

cvLAI Coefficient of variation of Leaf Area Density [68]

Mtex

CON Contrast (edge texture) [67]
COR Correlation (interior textures) [67]
DIS Dissimilarity (edge textures) [67]

HOM Homogeneity (interior textures) [67]
MEAN Mean (interior textures) [67]

Mcomb Combination of all metrics (Mals and Mtex)

2.4. Overview of the Methods

Figure 3 provides an overview of the methodological approach of the study. We used
the ground-plot data to develop area-based models (i) to classify SDD modality and (ii) to
predict SDD function parameters. We first defined three sets of ALS metrics from the
ground plot locations (Mals, Mtex, and Mcomb). We then created three ground plot datasets:
the first two, unimodal and bimodal, were differentiated based on the modality of the SDD,
while the third group was undifferentiated and assumed all plots were unimodal. Within
each of the differentiated modality groups, we randomly selected 70% of plots for model
development and used the remaining 30% as test cases. We developed models using 70%
of the model development data for training and the remaining 30% for evaluating model
performances. We generated three sets of models for each of the ground-plot groups using
the ALS metrics sets. We used the modality and associated Weibull parameters as response
variables for the SDD modality classification models and the SDD parameter prediction
models, respectively. We implemented our best-performing models on our reserved test
case data and analyzed the contribution of the CHM texture metrics to both groups of
models (classification and prediction). Finally, we compared the predicted SDD that was
obtained from the differentiated and undifferentiated modality models to assess whether
modality differentiation improved the prediction of SDD in our data. All calculations were
performed in R [66].

2.5. Development of SDD Modality Classification Models

We developed classification models to classify the modality of SDD using the differ-
entiated SDD modality plot datasets (unimodal and bimodal). We constructed models
independently using the three metrics groups (Mals, Mtex, and Mcomb) as predictor vari-
ables. Herein, we evaluated four statistical techniques: random forest (RF); generalized
linear model (Logit); support vector machine (SVM); and generalized linear model through
penalized maximum likelihood (GLMNET), which uses the elastic net penalty that mixes
the lasso and ridge penalties [79]. These contained internal feature selection mechanisms
for selecting the best predictors and models with the caret package [80]. We developed the
RF models with the randomForest package [81] and optimized the parameter mtry, which
controls the number of predictors that were randomly picked at each split, by testing five
values, viz., 1, 2, 3, 4, and 5. Logit models were developed with the MASS package [82]
and used stepwise model selection based upon the Akaike Information Criterion (AIC). We
defined the family parameter as a binomial and conducted no grid search for parameter
optimization. SVM models were developed with the kernlab package [83] and used a radial
basis function. We tuned two parameters for SVM, sigma, which controls the rigidity of the
decision boundaries, and C, which controls the influence of misclassification. The values
for sigma were 2−25, 2−20, 2−15, 2−10, 2−5, and 20, while those for C were 20, 21, 22, 23, 24,
and 25. Finally, GLMNET models were developed with the glmnet package [84]. GLMNET
corresponds to a ratio between model regularization levels L1 and L2, affecting the penalty
coefficient, and allows the selection of relevant predictors [85]. The two parameters that
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were tuned were lambda, which controls the overall strength of the penalty, and alpha,
which controls the gap between the L1 and L2 regularization. We tested alpha values rang-
ing from 0 to 1 with 0.1 increments and the following lambda values: 0.0001, 0.1112, 0.2223,
0.3334, 0.4445, 0.5556, 0.6667, 0.7778, 0.8889, and 1. We repeated cross-validation five times,
using 70% of the model development data for training and 30% for validation. Finally, we
averaged the overall accuracies within each technique and ALS metric group and applied
the best performing models to our test case dataset and assessed the contribution of CHM
texture metrics.
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percentage of the mean; %Bias = relative Bias expressed as a percentage of the mean.

2.6. Development of SDD Prediction Models

We developed three sets of models to predict SDD function parameters using (i) dif-
ferentiated unimodal, (ii) differentiated bimodal, and (iii) undifferentiated SDD modality
plot datasets. Using the differentiated unimodal plot data, we fitted a truncated Weibull
function over the measured SDD and estimated the two function parameters (i.e., shape
and scale) using the fitdistrplus package [86]. We implemented the same analysis for the
undifferentiated plot data, for which all plots were treated as having a unimodal SDD
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distribution. From the differentiated bimodal plot data, we fitted a FMM composed of two
Weibull functions over the SDD. The first Weibull related to smaller stem diameters relative
to the second Weibull, which described the probability distribution of larger stems. The
FMM can be represented by either the scale and shape, or the mean and standard deviation,
of each of the two Weibull components and their associated proportions. We estimated
the parameters of each function using the mixR package [87]. We assessed three modelling
techniques within each model set, which included feature selection that was based on
optimizing the root-mean-square deviation (RMSD) using the caret package. Again, the
three metric groups (Mals, Mtex, and Mcomb) were used independently as predictor variables.
The maximization option for RMSD was set to FALSE to ensure that the best combination
of parameters produced the lowest RMSD. The first technique that was used was RF from
the randomForest package. Again, the only optimized parameter with grid search was mtry,
with values 1, 2, 3, 4, and 5. The second technique was GLMNET, with two parameters
to optimize, i.e., alpha and lambda. The alpha that was tested ranged from 0 to 1 in 0.1
increments; lambda values were 0.0001, 0.1112, 0.2223, 0.3334, 0.4445, 0.5556, 0.6667, 0.7778,
0.8889, or 1. We implemented the third and final technique, i.e., best subset regression
with branch-and-bound algorithm (LEAP) [88], with the R package leaps [89]. This best
subset regression used the branch-and-bound algorithm [90], which solves and optimizes
combinatorial problems to select the best subset of predictors. In this study, we defined the
number of predictors allowed in each subset to range between 2 and 6 predictors.

We evaluated the best-tuned models from the repeated 5-time cross-validation with
the reserved test case dataset not used for model development. We compared the coefficient
of determination (R2), the absolute and relative RMSD (Equations (1) and (2)), and the
absolute and relative bias (Equations (3) and (4)) for both the model development and test
case datasets to assess our two hypotheses:

RMSD =

√
∑n

i=1
(
yi − ŷi

)2

n − 1
(1)

RMSD% =
RMSD

y
× 100 (2)

Bias = ∑n
i=1(yi − ŷi)

n
(3)

Bias% =
Bias

y
× 100 (4)

where yi is the observed value, ŷi is the predicted value for case i, n is the number of
observations, and y is the mean.

To evaluate the composition of metrics used in the best-performing models developed
with Mcomb, we calculated the associated variable importance. Since methods to character-
ize variable importance are dependent on the modelling technique implemented, we first
scaled values between 0 and 100 to finally derive an average for each parameter modelled.
For random forest models, we calculated the variable importance as the percent increase in
mean square error (noted %IncMSE) [91]. For GLMNET models, we scaled variable coeffi-
cients as a representation of variable importance since they are proportionally indicative
of the variables’ importance [85] due to the penalization that reduces the coefficients of
less-important variables [84]. Finally, we calculated variable importance for LEAP models
as the absolute value of the t-statistic for each parameter in the final model [80].

2.7. Evaluation of the Predicted SDD

The quality of the predicted SDD was estimated with the Reynolds Error Index (EI) [92].
To do so, we predicted the SDD’s parameters with the models demonstrating the highest
R2 and lowest RMSD% for the unimodal, bimodal, and undifferentiated plots from both
model development and test case datasets. We then grouped the predicted tree DBH into
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2-centimetre-wide bins to limit variability at larger intervals [93]. Finally, we evaluated
the goodness-of-fit between the predicted SDD and the observed SDD of each plot with EI
as follows:

EI = ∑m
i=1 100

∣∣∣∣∣ fre f i − falsi

Nre f

∣∣∣∣∣ (5)

where m is the total number of bins, frefi is the reference stem count for DBH bin i, falsi is
the predicted stem count for DBH bin i, and Nref is the true stem count of all DBH bins. EI
values ranged between 0 and 200, where an EI of 0 indicated a perfect fit between predicted
and observed SDD and an EI of 200 indicated a completely different SDD. To assess the
effects of modality differentiation, we averaged the EI from all plots that had been derived
independently for both the differentiated (unimodal and bimodal) and undifferentiated
modelling approaches.

3. Results
3.1. SDD Modality Classification Models

Table 2 denotes the overall accuracies of the modality classification models using the
three ALS metric sets as predictor variables and four modelling techniques for both model
development and test case datasets. During model development, we observed Mals and
Mcomb to perform best using RF and GLMNET (overall accuracy of 74%). Surprisingly, the
Mtex predictor set was used in both the best (using Logit) and worst (using RF) performing
models in our test case. Overall, we observed little variability in the overall model accura-
cies regardless of the ALS predictor variable set or modelling technique used during model
development or in our test case (mean: 72%; SD: 2% in both scenarios).

Table 2. Overall accuracies (%) of the SDD modality differentiation models using predictor vari-
ables that were derived from the three ALS metrics sets (Mals, Mtex, and Mcomb) for both model
development and test case datasets.

ALS Metric Set RF SVM Logit GLMNET

Model
development

Mals 74 72 71 74
Mtex 73 72 68 68

Mcomb 74 71 70 74
Test case

Mals 72 73 72 71
Mtex 66 72 74 73

Mcomb 71 71 72 71

3.2. SDD Prediction Models

We developed model sets to estimate probability distribution function parameters from
the differentiated unimodal, differentiated bimodal, and undifferentiated SDD modality
plot datasets. We developed models within each model set using the three ALS metrics sets
(Mals, Mtex, and Mcomb) and three modelling techniques (RF, GLMNET, and LEAP). The
model performance measures (R2, RMSD%) that were derived from cross-validation are
presented as Supplementary Material (Figure S1), as we observed for the most part the same
trends in results with our case study illustrated in Figure 4. The results of our test case show
that the proportion of the variance in the parameters describing the differentiated unimodal
SDD were variable (R2: 0–0.62). We observed associated errors ranging between 9.9% and
13.4% and 16.4% and 23.8% for models predicting scale and shape, respectively. For both
parameters, the results indicate, with one exception (Shape ~ƒ(Mals) using RF), that models
developed with Mcomb consistently outperformed models that were developed with either
Mals or Mtex. Both parameters were best predicted with RF; scale was best predicted using
Mcomb (R2: 0.62; RMSD%: 9.9%), while shape, using Mals (R2: 0.39; RMSD%: 16.4%).
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Figure 4. Coefficient of determination (R2) and relative root-mean-squared deviation (RMSD%)
that was derived from the application of the SDD prediction models to the test case data using the
differentiated unimodal, differentiated bimodal, and undifferentiated SDD modality plot groupings;
three ALS metrics sets (Mals, Mtex, and Mcomb) and three modelling techniques (RF, GLMNET, LEAP)
were used.
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The performance of models that were developed using the differentiated bimodal
SDD modality plot data were again variable (R2: 0–0.53; RMSD%: 8.2%–52.1%). The results
indicated that the FMM could not be represented by the parameters’ scale and shape; the
parameter shape of the first Weibull component could not be predicted given that the
resulting models could never explain any of the variation in the parameter around its mean
(R2: 0), regardless of the ALS metric set or modelling approach. We therefore used the
parameters mean and standard deviation to describe each component of the FMM. As
expected, variation in the two proportion parameters was very poorly explained, if at all,
by the predictor sets (R2: 0–0.15), with associated errors ranging from 17.5% to 36.9%. As
expected, the two Weibull component proportions of the FMMs were poorly predicted,
with the best predictions modeled with RF using Mals (R2: 0.15, 0.15; RMSD%: 17.5% and
33.8% for the proportions of the first and second components, respectively). The parameter
mean was best predicted using Mcomb for both components (R2: 0.27, 0.53; RMSD%: 8.2%,
14.4%; using LEAP and GLMNET for means 1 and 2, respectively). Of note, GLMNET only
marginally outperformed LEAP for the mean of the second FMM component (increase in
R2 < 0.01, decrease in RMSD% < 0.13%), both using Mcomb. Standard deviation was best
predicted with LEAP using Mtex for the first Weibull component (R2: 0.34; RMSD%: 45.13%)
and Mcomb for the second (R2: 0.43; RMSD%: 37.6%) with either LEAP or GLMNET.

The development of models using the undifferentiated modality SDD plot data in-
volved applying the unimodal fitting analysis to all plots, regardless of modality. Herein,
models performed better for the scale parameter (R2: 0.37–0.73; RMSD%: 8.4%–12.9%) than
for shape (R2: 0.12–0.52; RMSD%: 17.7%–23.9%). We consistently observed improvements
in model performance associated with models that have been developed with Mcomb. Scale
was best predicted with LEAP (R2: 0.73; RMSD%: 8.4%), while shape was best predicted
with GLMNET (R2: 0.52; RMSD%: 17.7%). For these models, we observed a mean increase
in R2 of 0.08 (SD: 0.03) and a mean decrease in RMSD% of 1.3% (SD: 0.6%) with models
that were developed using Mcomb over those developed using Mals.

Analysis of the variable importance indicated that the correlation metric from Mtex
is holistically the most important predictor within Mcomb (Figure 5). The most important
predictors thereafter are, for the majority, from Mals. In summary, we generally observed
higher R2 and lower RMSD% to be associated with models that were developed with
Mcomb compared with those using Mals or Mtex, regardless of the parameter being modelled
or modelling technique being used. We found the variable correlation, originating from
Mtex, to be the most important predictor within Mcomb. Relative biases remained very
low regardless of the parameter being modelled, the ALS metric set that was used, or
the modelling approach that was employed (min.: −8.8; max.: 9.2; mean: 1.0; SD: 2.7 in
absolute values of bias; data not shown). We observed no trend in the performance of the
modelling techniques across all parameters.

3.3. Goodness-of-Fit of the Predicted SDD

We applied the best model within each model set independently to each plot and
calculated mean Error Indices (EIs) from the predicted SDD parameters for both the model
development and test case datasets (Table 3). We observed the same trends in both datasets.
Surprisingly, we observed an increase in EI by applying differentiated unimodal models
to unimodal plots, although the increase is negligible (<1%). Differentiating modalities
prior to estimating SDD most improved the accuracy of estimates for bimodal plots (~12%
decrease in EI). Of the 120 plots that were used to test our models, 50 (41.7%) had a better
EI when derived from differentiated modality model predictions (31 and 19 plots within
the differentiated unimodal and bimodal plots, respectively). Overall, we observed a
marginally better fit (~4% decrease in EI) for SDD that were estimated from the differen-
tiated modality model set in comparison with those estimated from the undifferentiated
modality model set. The results therefore indicate improvements in SDD predictions by
using differentiated modality-specific models, namely for heterogeneous (bimodal) stands.
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Table 3. Plot-level Reynold’s Error Index means for each ground plot dataset and model set. EI values
ranged between 0 and 200, where an EI of 0 indicated a perfect fit between predicted and observed
SDD, which an EI of 200 indicated a completely different SDD.

Model Set
Plot Dataset n Differentiated Undifferentiated

Model development
Differentiated as unimodal 215 50.4 50.3

Differentiated as bimodal 92 65 74
Undifferentiated modality 307 54.8 57.4

Test case
Differentiated as unimodal 88 50.8 50.5

Differentiated as bimodal 32 59.1 67
Undifferentiated modality 120 53 54.9

4. Discussion

From our first hypothesis, we expected models that were developed with CHM texture
metrics to outperform SDD prediction models developed solely with ALS metrics. This
expectation was based upon previous studies that related CHM texture metrics (Mtex) to
properties of the growing stock, such as the spatial pattern of trees [94], and furthermore,
demonstrated that their inclusion as predictors in modelling forest attributes improved
predictions over using ALS metrics alone [55,58,59]. For example, van Ewijk et al. (2019) [55]
tested multiple predictor sets using height metrics with combinations of CHM texture and
intensity metrics and found that the addition of texture metrics improved prediction
accuracy for basal area, quadratic mean DBH, and stem density. To our knowledge,
no published studies have directly assessed the contribution of CHM texture metrics
in estimating SDD using ALS data. Hence, the innovative aspects of our study make direct
comparisons with past research challenging, especially regarding the attributes that we
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assessed (i.e., SDD modality and parameters), together with the CHM texture metrics that
were included in our analyses. Nevertheless, our study demonstrated comparable results in
classifying SDD modality with Zhang et al. (2019) [33] and Mulverhill et al. (2018) [34] using
Mals (range in overall accuracies: 71%–73% vs. 49%–76% and 47%–78%, respectively). Our
results for estimating SDD were generally comparable with those presented in Mulverhill
et al. (2018) [34] for the differentiated unimodal distributions’ modelled parameters, albeit
with consistently lower error. Consistent with Thomas et al. (2008) [28] and Zhang et al.
(2019) [33], the second component of the FMM that was associated with differentiated
bimodal distributions was better predicted than the first. As highlighted by Thomas et al.
(2008) [28], the main drawback of FMM is the increase in parameters that are needed to
describe it. With the increase in modelled parameters, it becomes unlikely that each can
be predicted accurately with Mals. Apart from the proportions associated with the FMM’s
components, the parameters of the differentiated bimodal distributions were best predicted
with Mcomb. Unlike Zhang et al. (2019) [33] and Mulverhill et al. (2018) [34], who developed
models solely from Mals, our best SDD prediction models were generally developed with
Mcomb. Therefore, we could confirm our first hypothesis given that our study demonstrated
that SDD prediction models developed with Mcomb usually outperformed those developed
with Mals (Figure 4). Inevitably, the contribution of CHM texture metrics will be dependent
on the complexity of the forest environment assessed. Further research is warranted to
determine the consistency of these results across varied forest types.

Our second hypothesis stated that developing differentiated modality-specific models
(i.e., unimodal or bimodal) would improve SDD predictions for heterogeneous stands in our
study site. The literature demonstrates improvements in estimating SDD with approaches
that differentiate stand modality over approaches that do not (e.g., [33,34]). Our results
indicated a similar trend. Yet, when interpreted globally, the improvements were marginal
(~4 decrease in EI). Surprisingly, within our differentiated plot datasets, we observed that
SDD was marginally better predicted by the undifferentiated modality model set that was
intended for unimodal plots. Notably, and in support of our hypothesis, we observed SDD
to be better predicted by the differentiated bimodal model set for bimodal plots (mean EI
of 59.1 vs. 67.0). Our results therefore support the idea that developing model sets based
on the modality of stands can improve SDD predictions for bimodal stands. Given this,
we can confirm our hypothesis that differentiating for modality prior to estimating SSD
improved the accuracy of estimates for the bimodal SDD conifer stands of our study site.

The accurate differentiation of the SDD modalities was assumed in our analyses, and
therefore, potential errors in differentiation would directly impact model performances.
Of the multiple available approaches to differentiate SDD modalities, we implemented
BC as it has been successfully implemented in similar studies (e.g., [34]). Yet, it should
be noted that BC is directly influenced by the kurtosis and, more so, by the skewness of
a given distribution [64]. A distribution with high skewness and low kurtosis can inflate
BC and subsequently differentiate the distribution as bimodal. Left-skewed distributions
are observed when larger diameter trees dominate, while right-skewed distributions are
associated with stands that are dominated by smaller diameter trees. Both situations will
yield, however, a skewness value greater than zero. The closer that observed skewness is
to zero, the more homogeneous the distribution will be and the stand can be described as
having an even-aged distribution [48]. Freeman and Dale (2013) [63] evaluated the effect of
the skewness, the proportion, and the distance between the modes on the BC value. In their
study, BC produced 21% of false positives where simulated unimodal distributions had BC
values greater than the bimodality threshold of 5/9 and were subsequently classified as
bimodal. The BC relies upon the basic assumption that bimodality involves an increase
in distribution asymmetry; therefore, an increase in skewness within a unimodal context
can increase the BC and produce misclassification. Furthermore, the BC is not calibrated
to proportion size; a small proportion in either component of a bimodal distribution can
also produce false positives when the former is combined with a small distance between
associated means. Of the 124 (92 in model development and 32 in test case) plots that
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were differentiated as bimodal in our study, 81 had skewness estimates > 1 and, thus, can
be considered substantially skewed. Furthermore, the proportions that were associated
with the second component of the bimodal distributions of our bimodal plots were low, as
were the distances between the observed means (mean 5.8 cm). Given these results, it is
possible that the combination of these factors could have inflated the BC and, therefore,
mis-differentiated plots as bimodal. We can advance this as a plausible explanation, given
the observed better fit for SDD that was estimated from the differentiated modalities model
set was minimal (decrease in RI ~4%). These effects on the BC suggest that relying solely on
this differentiation method may not be advisable for all forest types. Zhang et al. (2019) [33]
used a combination of the Gini Coefficient and the asymmetry of the Lorenz curve to
differentiate SDD modality, given that both measures are related to stand heterogeneity
and the skewness of the diameter distribution [28,68]. Additional research is required
to determine the optimal approach for differentiating the modality of SDD for a given
forest type.

Nevertheless, the research presented here is important for several reasons. First,
the methodology is used to differentiate the SDD modality and to develop the modality
classification model, which can be used by foresters to improve the differentiation of
stand structure types and to select the most appropriate models for accurately estimating
diameter distributions across large ALS coverages. Second, we demonstrated that models
fitted with Mcomb yielded higher R2 and lower RMSD% in comparison with those using
solely Mals, thereby indicating that textural metrics contain additional information useful
for the estimation of SDD.

5. Conclusions

In this study, we demonstrated that SDD probability function parameters were gener-
ally best estimated using a combination of ALS and texture metrics, thereby emphasizing
the additional information contained in CHM texture metrics. As expected, we confirmed
that developing modality-specific models improved SDD predictions for bimodal dis-
tributions, which, surprisingly, was not the case for unimodal distributions. For forest
managers who rely on timely and detailed information, more accurate assessments of
the distribution of diameters across a land base can therefore be made by differentiating
modalities and adding texture metrics to modelling and mapping efforts. These results
may provide for operational efficiencies in modelling and mapping SDD in these balsam fir
or spruce-dominated forest environments.
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www.mdpi.com/article/10.3390/f14020287/s1, Figure S1: Average of 5 repeated cross-validation
performance measures (R2, RMSD%) derived during model development using the various SDD
modality plot groupings, ALS metric sets and modelling techniques.
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