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Abstract: Understanding how natural ecosystems are and will be responding to climate change is
one of the primary goals of ecological research. Plant phenology is accepted as one of the most
sensitive bioindicators of climate change due to its strong interactions with climate dynamics, and
a vast number of studies from all around the world present evidence considering phenological
shifts as a response to climatic changes. Land surface phenology (LSP) is also a valuable tool in the
absence of observational phenology data for monitoring the aforementioned shift responses. Our
aim was to investigate the phenological shifts of Fagus orientalis forests in Turkey by means of daily
MODIS surface reflectance data (MOD09GA) for the period between 2002 and 2020. The normalized
difference vegetation index (NDVI) was calculated for the entire Turkey extent. This extent was
then masked for F. orientalis. These “Fagus pixels” were then filtered by a minimum of 80% spatial
and an annual 20% temporal coverage. A combination of two methods was applied to the time
series for smoothing and reconstruction and the start of season (SOS), end of season, and length of
season parameters were extracted. Trends in these parameters over the 19-year period were analyzed.
The results were in concert with the commonly reported earlier SOS pattern, by a Sen’s slope of
−0.8 days year−1. Lastly, the relationships between SOS and mean, maximum and minimum
temperature, growing degree days (GDD), and chilling hours (CH) were investigated. Results showed
that the most significant correlations were found between the mean SOS trend and accumulated CH
and accumulated GDD with a base temperature of 2 ◦C, both for the February–March interval. The
immediate need for a phenological observation network in Turkey and its region is discussed.

Keywords: MODIS; land surface phenology; NDVI; phenological shift; Fagus orientalis; Turkey;
deciduous forest; climate change

1. Introduction

Phenology is the study of the seasonal timing of recurring life cycle events (i.e.,
“phenophases” [1] such as flowering or leaf unfolding) of plants and animals alike, and
the drivers behind this timing and how these phenophases affect each other for the same
species or between different species [2,3]. The rise of phenology as an integral part of global
change research starts with this very quest. Quoting from Sparks and Carey [4], “In order
to predict future responses of species to a changed climate we need first to discover how
plants have responded to climate in the past.”

Plant phenology interacts both one sided and reciprocally with many biotic and
abiotic factors such as climate [5–7]. It is a thoroughly studied fact that plant phenology
is strongly under the effect of climate variables [8–12] and it is also able to affect climate
dynamics through surface energy budget (e.g., surface roughness, albedo, etc.) and many
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other biophysical fluxes such as carbon sequestration and hydrological cycle (e.g., [13–22]).
Consequently, phenology is defined as one of the most sensitive and easily observable
bioindicators of climate change impacts in the literature (e.g., [23–28]) and unarguably has
an important place in global environmental change research [29–35].

Traditionally, plant phenology data are obtained through field-based observations of
individual plants [36,37], either by experts and/or volunteers of phenological networks [33].
However, to assess climate change impacts on the biosphere, as also noted by Parmesan
and Yohe [5], analyses of global/regional response patterns are more important than
individual-level responses because climate change itself is a global phenomenon. In order
to comprehend the critical interplays between ecosystems and atmosphere, data from
regional to global domains and at times from inaccessible areas are needed [38–40]. This
exigence is far beyond the limits of field observations.

The advent of satellite remote sensing (SRS) gave an indisputable boost to ecolog-
ical research [41–44], especially to phenology studies, to the point of the adoption of a
neologism, “land surface phenology (LSP)” [45–48], which distinguishes the phenologies
derived from SRS measurements from traditionally observed plant phenology. SRS pro-
vides datasets which have continuous near-global spatial coverage, high spatial resolution,
and high imaging frequency options, and by repeated imaging of the same region, over
long time periods, trend analysis through long time intervals is enabled by space-borne
sensors [41,49–53]. Moreover, for locations where no observational data are present to track
phenological responses (e.g., Turkey), LSP provides the much-needed estimations to fill the
gaps in regional and global evaluations.

Phenological shifts (in LSP terminology; changes in the dates of the start and the
end of seasons (SOS and EOS, respectively)) are one of the most commonly and globally
reported responses to climate change [23,54]. The majority of these reports show that there
is a spring advancement pattern ([40]; e.g., from Europe [55–58], from the U.S.A. [59], from
North America [60], from Canada [61], from China [62], for the Northern Hemisphere [63],
and from Korea [64], which commonly results in a longer growing season. Estimates of
LSP studies also contribute to this deduction [65] in varying scales (e.g., [66–70].

The length of the growing season (LOS; the period between SOS and EOS) determines
the timing and duration of carbon uptake for deciduous forests [15,71]. Although in the
climate change mitigation context a prolongation in growing season length seems advan-
tageous for carbon sequestration [16,71–73], SOS advancement may also have negative
impacts, e.g., “false springs”, and plant growth in its vulnerable stages may be damaged by
frosts [73–75], which poses an even greater threat to frost-sensitive species [76].

Deciduous broadleaf forests (DBFs) are frequently the focus of LSP research [77] as
they present a clear and observable year-around phenological cycle [78] and the lifespan of
trees enables consistent long-term analyses. Studies focused on deciduous forest cover vary
scope-wise from data or method validation/comparison to investigating drivers behind
phenological shifts (e.g., [79–83].

Turkey is located between 36◦–42◦ N latitudes, in the easternmost Mediterranean
Basin. Three intersecting phytogeographical regions [84–86], three seas bounding on
three sides, diverse topography, and orographic positioning influences [87], which lead to
varying climate attributes from Mediterranean to continental [88] as well as microclimatic
effects, edaphic variability, and glacial refuges, result in a spectacular habitat, gene, and
species diversity [89–91]. Turkey hosts around 10,000 vascular plant species with a high
endemism ratio of 31–33% [84,92,93]. However, the Mediterranean Basin is identified
as one of the most vulnerable locations to climate change by IPCC [94] and projections
revealed that Turkey is expected to experience a temperature increase and alterations in
precipitation [95–97]. Accurate management and conservation plans are a must and this
goal requires a deeper understanding of if and how the natural ecosystems are, and will be,
responding to climate change.

Despite the immediate climate threat and vulnerability of natural ecosystems, LSP
studies in Turkey are almost exclusively limited to plants of agricultural and/or economic
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value, i.e., vegetation under human intervention. Turkey can be found as “a part of the
study area” in European, Asian, or Northern Hemisphere LSP studies conducted with
coarse–medium spatial resolution composite datasets (e.g., [98–100]). However, we could
not find any previous study explicitly analyzing the long-term trends of phenological
parameters and shifts of Turkey’s natural forest covers, with a clear phenological parameter
extraction and sub-pixel information at species level.

To address the gap in the literature of phenological monitoring of natural vegetation
covers in Turkey and contribute to what is known about deciduous forest phenology under
climate change, we investigated if and how Fagus orientalis forests in Turkey have responded
to climatic changes during the past 19 years (2002–2020) by assessing the trend of SOS,
which was extracted from daily normalized difference vegetation index (NDVI) time series.
With the interest of minimizing the mixed pixel effect, by means of a forest management
map, pure stands of F. orientalis were filtered. We estimated multi-annual mean SOS, as
well as EOS and LOS to present a better view of the seasonal patterns and investigated
the effect of altitude and latitude on these phenological parameters, thus characterizing
F. orientalis phenology in Turkey. We assessed the correlation between the annual mean
SOS of all pixels and temperature-derived variables (growing degree days, chill hours, and
mean, minimum, and maximum temperatures) to see if and how F. orientalis responded to
significant changes in these variables over the study period. This study is the first LSP shift
estimation for such a long time period and for such broad-scale deciduous forest covers
in Turkey (all pure F. orientalis stand pixels in Turkey, after spatial and temporal coverage
filtering), conducted by using daily MODIS data, except for our preliminary presentation in
the earlier stages of this study [101]. Our results will contribute greatly to the regional and
global LSP and forest phenology literature as well as provide a methodological baseline
and a comparison yardstick for future LSP research on deciduous forest covers in Turkey
and its region.

2. Materials and Methods

Google Earth Engine (GEE, [102]) was used to obtain surface reflectance and climate
datasets for preprocessing surface reflectance data and for index calculations. The forest
management map of Turkey was prepared as polygon masks in the QGIS environment. All
other processes including extent masking for Fagus orientalis, time series smoothing and
reconstruction, statistical analyses, and visualizations were conducted in the R environment
(R version 3.2.0, R studio version 1.2.1335, [103]). All study steps including data acquisition
and storage were conducted with a personal desktop PC running Windows 10. A work
flow chart of the study is given in Figure 1.

2.1. Surface Reflectance Data Acquisition, Pre-Processing, and Index Calculations
2.1.1. Normalized Difference Vegetation Index—NDVI

Phenological research is mostly concentrated on plants “as their fixed location facil-
itates repeated observation” [61] which also applies to LSP research. Thus, vegetation
indices (VIs) are frequently utilized in LSP studies [78,82,104]. As the recent review of
Caparros-Santiago et al. [105] also presented, the most preferred vegetation index is the
NDVI [106,107] in LSP studies. NDVI can be utilized as a proxy for climate change response
of the the vegetation and greenness due to its strong connection with red reflectance and
thus with fractional green biomass, evapotranspiration, NPP, LAI, unstressed vegetation
conductance, fPAR, and canopy CO2 and H2O exchange activity [104,108–111]. NDVI is
calculated as the difference between the red and near-infrared (NIR) bands normalized by
their sum:

NDVI = (NIR − RED)/(NIR + RED) (1)
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Figure 1. The flowchart of the study.

2.1.2. Surface Reflectance Data, Preprocessing, and NDVI Calculation

MODIS products are one of the top preferred products in LSP research [105]. For
the vast majority of LSP studies, MODIS composite index products for NDVI are utilized.
Maximum value composite or MVC [112] is a method adopted for index products of
MODIS to reduce the noise caused by cloud contamination, atmospheric variability of
aerosols and dust, viewing angles, snow/ice, etc. [113,114]. However, there are concerns
regarding composited products about their sensitivity to catch important phenological
transition dates within the composited periods [81,115,116] while still having noise even
after the MVC process 113. Considering these concerns, to calculate NDVI time series,
the “MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid v006”
(MOD09GA) [117] product at 500 m spatial resolution was chosen as the main dataset of
this study.

Quality assessment (QA) layer information flags were used to exclude problematic
pixels. We only included pixels, of which the QA flags are cloud state (clear), cloud shadow
(no), MOD 35 Snow/Ice (no), aerosol quality (low, average, climatology), cirrus detected
(no), and data quality (per band—highest). For all remaining pixels within the extent of
Turkey, NDVI values were calculated according to Equation (1) and the daily NDVI time
series were produced. At this step, a total of 13,870 images were processed.

2.2. Climate Data

To calculate accumulated GDDs (AGDD) and CHs, two data sets were downloaded
via GEE: ERA5-Land Hourly—ECMWF Climate Reanalysis [118] and ERA5 Daily
Aggregates—Latest Climate Reanalysis Produced by ECMWF [119]. Both datasets have a
resolution of 0.25◦. For the CH calculations the hourly dataset was utilized. For the GDD,
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the daily mean temperature was calculated by using the daily minimum and maximum
temperature dataset. To extract the climate data for our study area, i.e., each study pixel,
firstly, we determined the coordinates of the center of each pixel. Then, the corresponding
pixels to these center coordinates in the climate data were extracted.

2.3. Forest Management Map and Fagus orientalis Masking

To filter pure stands of F. orientalis, we used a forest management map of Turkey.
Because all elements in a pixel are represented in one integrated sensor measure-

ment/index value, one of the major limitations of LSP estimations is their dependency
on sub-pixel information for a reliable interpretation. Especially utilizing spatially coarse–
medium resolution data without sub-pixel information leads to over- and underestimations
of season parameters as well as erroneous evaluations of the drivers behind the variability
in estimations [120,121]. Thus, to avoid the effect of pixel heterogeneity to a degree, the
selection of pure stands is important [122].

Due to its climatic sensitivity, beech is a frequently used species in phenological
studies [123]. In Turkey, F. orientalis is found especially on the north-facing slopes of
the mountain ranges in the Black Sea and Marmara regions, northern parts of Cen-
tral Anatolia and Aegean regions, and Amanos mountains in the Mediterranean re-
gion as a relict species [124,125], and is a main component of North Anatolian mixed
deciduous forests.

The determinant of our study area extent was the stand type masking (Figure 2) and
the masked areas were presumptively expected to be, so to speak, “scattered all around
Turkey” regarding the distribution of F. orientalis. Thus, we defined our initial study area as
the entirety of Turkey and the actual study area, i.e., all pixels after the stand type, temporal
and spatial masking, as “ExtentFagus” or study pixels.
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Calculated NDVI raster for the entire extent of Turkey was masked with forest man-
agement plans which was filtered for pure stands of F. orientalis with highest canopy
closedness (an option presented in the forest management map). With this step, a total of
78,147 pixels were masked for Fagus (see Figure 2). Then, a pixel coverage threshold of
80% was determined for the selected species and any pixel with a forest coverage lower
than 80% was excluded from the study area (7027 pixels). Any pixel in the NDVI time
series with an annual temporal coverage lower than 20% was also excluded from further
analysis. These masking processes are the determinant of the study area, ExtentFagus (i.e.,
study pixels), which contains 5437 pixels.

2.4. Noise Reduction, Time Series Reconstruction, and Extraction of Phenological Parameters

As a level 2 product, MOD09GA is atmospherically corrected [126]; however, as
expected of a dataset with such a fine temporal resolution, significantly high noise still
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remains. To handle the high noise and to reconstruct the daily NDVI time series, a combina-
tion of two methods, the Best Index Slope Extraction (BISE, [127]) and the Savitzky–Golay
(S–G, [128]) filter, were applied [116,129].

BISE was used as the first level to reduce the remaining noise. Starting from the first
day of the time series, BISE searches for and accepts the next point with a higher value than
the previous point. It accepts lower values if there is no point in a pre-defined time period
(sliding period) with a value that is higher than the predefined “threshold” percentage of
the difference between the first low value and the previous high value. Should there be
such a higher value, BISE accepts the higher value and rejects the lower point. For this
study, the sliding period was assigned as 30 days and the threshold was set to 10%.

As the second step, to reconstruct the time series, an S–G filter was applied. The
S–G filter is a simplified least-squares-fit convolution that can be inferred as a weighted
moving average filter with weighting given as a polynomial of a certain degree [113,130].
To implement the S–G filter to NDVI time series, two parameters, m—the half-width
of the smoothing window and d—the degree of the smoothing polynomial should be
assigned. For this study, m was set to 7 and d was set to 2. The BISE and S–G application
processes were realized with a R package called “phenex” [131]. After the smoothing and
reconstruction, the main time series, which was used in the parameter extraction process,
was produced.

To extract the phenological parameter of SOS per pixel, a piecewise logistic function
fitting approach was applied to the time series [132]. The function fitting process was
conducted with the “phenofit” R package [133]. Mean SOS dates of individual years and
fitted curves marked on interannual mean raw time series are shown in Figure 3. For
the purpose of presenting and interpreting the changes in growing season dynamics in a
more understandable fashion, EOS values were also extracted for these 547 significant SOS
pixels and LOS was calculated as the difference between EOS and SOS. As aforementioned,
EOS and LOS parameters were not initially of interest in this paper, meaning that their
interactions with temperature-derived variables were not assessed.

2.5. Trend Analysis of SOS

Because there is usually high positive autocorrelation between consecutive obser-
vations in NDVI time series, they often violate the assumption that “all ordinate values
(y axis) should be mutually independent” of regression analysis which is frequently used
for trend analysis in LSP studies [1,134]. Thus, trend analysis of SOS was conducted with a
non-parametric Mann–Kendall (MK) test for each pixel. To calculate the slopes of the SOS,
LOS, EOS, and temperature-derived variable trends, Sen’s Slope estimator was used. A
negative Sen’s slope estimation indicates a decreasing trend while a positive estimation
means an increasing one. Lastly, MK Tau presents a measure of strength. The closer Tau
gets to +1, a stronger and increasing relationship is implied, while the closer it gets to −1, a
stronger decreasing relationship is implied. Both the Mann–Kendall test and Sen’s Slope
estimations were realized with a R package named “EnvStats” [135].

SOS trend directions of individual pixels and a breakdown of their significance lev-
els (p < 0.05 and p ≥ 0.05) are shown in Figure 4. A total of 80.45% of the total pixels
(4374 pixels) showed a negative trend with no significance while 10.01% (544 pixels)
showed a significant negative trend (p < 0.05). A total of 9.49% of the pixels (516 pixels)
showed a positive trend with no significance whereas 0.06% of the pixels (3 pixels) showed
a significant positive trend. At this step, pixels which were not statistically significant
(p ≥ 0.05) were excluded from the further analysis. With this exclusion, a total of 547 pixels
were filtered for further analyses.
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2.6. Analyzing Annual Mean SOS Correlation with Temperature-Derived Variables

We investigated the relationship between the trends of AGDD, CH, and mean, maxi-
mum, and minimum temperatures (Tmean, Tmax, and Tmin, respectively) and the trend of
the mean SOS dates of 19 years to see (i) if any of these variables have a significant linear
relationship with the mean SOS trend and (ii) linear relations between the mean SOS trend
and variable/s and related interval/s with the highest significance. GDD was calculated as:

GDD = Tmax − Tmin/2 − Tbase (2)
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where Tmin and Tmax are minimum and maximum temperatures, respectively, and Tbase
is the base threshold temperature for growth below which the investigated process does
not occur [136]. CHs were calculated as the accumulated count of hours under the base
temperature of 7.2 ◦C (approximately 45 ◦F [137–139]) within a given time interval.
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Base temperature (Tbase) values ranging from 0 ◦C to 8 ◦C for AGDD calculations
were examined for different time intervals. As D, J, F, M, and A stand for the months of
December, January, February, March, and April, respectively, the AGDD intervals were
day of year = DOY1 (as 1 January) − DOYSOS, JFMA, JFM, FMA, JF, FM, MA, J, F, M, and
A. Intervals for CH were DJFM (December of the previous year), DJF, JFM, DJ, JF, FM,
D, J, F, and M. The values of GDD Tbase were initially chosen based on their appearance
frequency in the literature review, and then the list of values to examine was expanded for
exploratory purposes.

A total of 139 combinations for Tmax, Tmin, Tmean, AGDD, and CH with different time
intervals and different Tbase values for GDD were examined. Cases where (i) the variable
has no significant correlation with the SOS trend and (ii) the variable has a significant
correlation with the SOS trend but the variable itself does not have a significant trend over
the study period were not presented in this paper; however, a table of all combinations
and correlations, as well as which of the above-mentioned criterion the correlation was in,
is provided in the Supplementary Materials. The latter criterion is crucial for our study
because in temperate zones plant phenology is already considered to be driven primarily
by temperature [140–142]. However, our focus was not on this relationship and instead
aimed to assess if and how the “changes” in temperature-derived variables affect the shifts
in the spring phenology of F. orientalis. Thus, a variable with no significant trend over the
study period, although having a significant relationship with SOS, could not serve this aim.

3. Results and Discussion

Before discussing the findings, there are a few key points to be mentioned. We accept
that results obtained from LSP studies, especially in the absence of observational phenology
records to compare, should be taken as estimations and not as definitive results. With that
being said, our aim was to estimate the shift between the interannual SOS dates by following
LSP methodologies to interpret the estimations according to LSP terminology, to assess
its interactions with temperature-derived variables, and to characterize Fagus phenology
with multi-annual mean parameters in the absence of observational data. Thus, it is safe
to say that this study stands as another good example of the utility of SRS data, albeit as
a proxy, to monitor phenological parameters in domains where phenology observations
for natural ecosystems are not available [143]. Without the advantages SRS brought into
phenological research, phenological data from many countries, regions, etc., which does
not have observational records, yet hold important and complementary clues for both
ecological and climate change research, would be lacking in the global literature.
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Long-term and continuous monitoring and assessments are of high importance in
phenology as phenological shifts are not fixed processes; they do not only advance or delay
but can also be observed to halt or reverse, slow down, or accelerate depending on the
chosen time period [144–146]. Although 19 years can hardly be defined as “long term”
in both statistical and natural processes contexts, to be able to work with daily data we
chose the MOD09GA collection and to investigate the longest continuous period possible,
we included the entire temporal coverage of the collection except for the aforementioned
2 years which were excluded.

3.1. General Patterns of SOS, EOS Dates, and LOS

The distribution of mean SOS and EOS dates and LOS of individual pixels over the
study period are shown in Figure 5. The multi-annual (2002–2020) mean SOS and EOS
dates were DOY 121.21 and DOY 300.30, respectively, while the mean LOS was found to be
179.09 days. The earliest mean SOS was DOY 102.47 and the latest SOS was DOY 138.26,
while the earliest and latest mean EOSs were DOY 271.89 and 322.94, respectively. The
maximum LOS was 216 days and the minimum LOS was found to be 140.26 days.

We also investigated the possible distribution differences in phenological parameters
and shifts, sourcing from latitudinal and altitudinal diversity (Figure 6). The latitudinal
distribution of the SOS dates showed earlier SOS dates in the north and relatively later SOS
dates in the south, represented as 1.7 days earlier per 1◦ (Figure 6d). The LOS was also
found to be longer northwardly, represented as 1.23 days longer per 1◦ (Figure 6e), while
for EOS no significant correlation was found.

Our investigation on the relationship of respective altitudes of the study pixels and the
latitude showed that this pattern is due to the study pixels being distributed over relatively
higher altitudes southwardly and lower altitudes in the north (Figure 7a,b). As shown in
Figure 6a, SOS dates of study pixels and altitude have a strong positive relationship, i.e.,
at higher altitudes later SOS dates are seen while at lower altitudes SOS dates are earlier,
as 2 days later per 100 m. upward. EOS was also found to have a significantly negative
correlation with altitude, represented as 1 day earlier per 100 m. Similarly, LOS was
found to have a significant negative correlation with altitude, represented as 2 days shorter
per 100 m.

3.2. Trends of SOS, EOS, and LOS

Figure 8a shows the significant SOS trend and EOS (Figure 8b) and LOS (Figure 8c)
trends of the same pixels over the study period. Unlike the mean SOS dates and mean
LOS, no significant relationship between the SOS and LOS shifts and altitude was found
(Figure 6g,i) as well as EOS (Figure 6h). For latitude on the other hand, a weak negative
correlation was found which was apparent after latitude 39◦ N (Figure 6j), albeit not for all
pixels, meaning that the shift increases northwardly, represented as −0.07 days per year−1.
For the EOS and LOS shifts, no significant correlation with latitude was found (Figure 6k,l).

Trend analysis of mean SOS dates presented a Sen’s slope of −0.8 days per year−1 over
the 19-year period, indicating an advancement of SOS, i.e., an earlier spring (Figure 9a).
Mean EOS shift for the same pixels did not show a significant trend although a slightly
increasing slope can be observed (Figure 9b). For LOS, a significant positive trend was
found, implying a longer season by an average of 1.07 days per year−1 (Figure 9c) with an
advancing SOS pattern.

The EOS is a more elusive parameter to catch in LSP studies than SOS, arguably
this is so even for traditional phenology observations [74]. The reason is, unlike vernal
measurements, many different factors may affect the band measurements for autumnal
changes, e.g., autumnal litter, effect of soil wetness on the background, etc., [147] and unlike
budburst it is a slow, continuous body of events [148] which makes it hard to detect even
with traditional observations. Additionally, for deciduous trees, environmental factors
which drive autumn phenological events, e.g., leaf fall, are less understood compared
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with vernal phenology [142]. Thus, a cautious approach is needed when interpreting EOS
estimations [81], especially when there is no observational data to provide grounding.

Figure 5. Distributions of multi-annual mean (a) SOS and (b) EOS dates, and (c) LOS over the study
period (2002–2020).

The advancing spring pattern our estimates showed is in agreement with the major-
ity of both traditional and land surface phenology studies conducted for Europe, Asia
(two continents where Turkey resides in both), and the Northern Hemisphere ([55–58]
and [62–64,134]). For example, in their study over western central Europe, utilizing both
in situ and NDVI time series, Fu et al. ([144], Figure 3, 2000–2011 period) reported a leaf
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unfolding date advancement for Fagus sylvatica, with a trend between −0.5 and −1, over
the period of 2000–2011. Stöckli and Vidale [10] found an earlier (−0.54 days per year−1)
and longer (by 0.96 days per year−1) growing seasons for Europe, especially central Europe
for the period of 1982–2000. For the Northern Hemisphere, Jeong et al. [145] found an
advancing SOS by −5.2 days per year−1 for the period 1982–1999, albeit this advance-
ment was found to be slowed down for the 2000–2008 period (advancement by −0.2 days
per year−1).
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Figure 6. Correlations between multi-annual mean of SOS, EOS, and LOS of individual pixels and
altitude (a, b and c respectively) and latitude (d, e and f respectively) and correlations between the
shifts (Sen’s slope) in SOS, EOS and LOS of individual pixels and altitude (g, h and i respectively)
and latitude (j, k and l respectively). Blue color in (j) remarks the correlation between SOS shift and
latitude for the pixels between 39◦ N and 42◦ N while black color includes all pixels in study area.
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According to the satellite-derived (AVHHR-NDVI) budburst timing evaluation in [79]
made for beech and oak, the SOS dates our estimations produced (Figure 3) which are about
late April–early May are realistic. Our SOS date estimates for the years 2015 (DOY 122)
and 2016 (DOY 114) also show high accordance with the ground-based sensor-obtained
green-up date intervals for beech (2015; DOY 115–129 and 2016; DOY 114–129) in [149]
where they validated different satellite phenology products (MODIS Terra/Aqua and
Sentinel 2A) by multi-sensor ground measurements. It is worth noting that, despite the
fact that phenological parameters extracted from satellite data (e.g., SOS) are commonly
found either earlier or later than the ground-observation-based (sensors or traditional)
bud-burst/green-up dates by varying time scales from days to weeks, our results are in
concert with the dates in the reviewed literature. However, due to the fact that geography
plays a crucial role in phenology, even for the same species, different SOS dates are observed
for different locations, which should also be noted.

3.3. Correlations with Temperature-Derived Variables

All statistically significant correlations between the mean SOS trend and temperature-
derived variable/interval combinations, ranked by correlation coefficients (from top to
bottom; the highest to the lowest), are shown in Figure 10 and plots of the correlations with
the mean SOS trend are given in Figure 11.

As seen in Figure 10, the accumulated CHs for February–March and AGDD for the
FM interval with a Tbase value of 2 ◦C have the most significant relationships with SOS
(2 days later per 100 CH and 5 days earlier per 100 AGDD, respectively). Results given
in the figure suggest a strong FM dominance over the rest of the time intervals for both
GDD and CH. Individually, however, neither February nor March presented a signifi-
cant relationship with SOS for Tmean, Tmax, and Tmin, and CH or GDD with any Tbase
values examined.
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In their observational-records-based study on four deciduous species across Europe,
Chmielewski and Rötzer [55] also found that the beginning of the season is significantly
influenced by February, March, and April temperatures, and according to their results,
February to March temperatures are decisive for the annual start of spring in Europe. The
authors of [150] conducted a similar study that also integrated sensor data and studied four
common tree species across Europe. They found that the SOS date for beech (Fagus sylvatica)
was significantly influenced by the mean temperature of the month in which SOS occurred
and the preceding month, as well as the mean temperature of the month in which SOS
occurred together with the two preceding months. Although we did not find a significant
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relationship between the mean SOS trend and the FMA or February intervals, our results
also indicate a strong February–March dominance over the rest of the time intervals for
both CH and GDD. Moreover, in concert with their findings, the mean temperature in April
was the only individual-month interval as well as the only mean temperature variable
which showed a significant correlation with the mean SOS trend, as the SOS occurs 1.12
days earlier per 1 ◦C (Figure 11j). This is important because according to our estimations,
as shown in Figure 3, for F. orientalis, the mean SOS occurred around late April–early May
over the study period.
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Figure 10. Significant correlations between the mean SOS trend and temperature-derived vari-
ables/intervals (*** p < 0.01, ** p < 0.05) ranked by correlation coefficients. CH = chill hours;
GDD = growing degree days; D, J, F, M, and A stand for December, January, February, March,
and April, respectively. Colored lines signify monthly intervals as line length shows the months
included in the interval and colors show variable type as blue = CH, green = GDD, red = Tmean.

Chilling requirements of a species is one of the factors that affect the response to
temperature changes, together with temperature forcing and photoperiod [151]. To break
dormancy, a period of exposure to cold temperatures, i.e., fulfilling the chilling require-
ments is needed for plants [137,152]. Many studies reported that unmet chilling require-
ments may lead to delaying of budburst and leaf out dates and to a shorter growing
season [152–154]. Thus, although the majority of LSP and observational phenology studies
focus on the increasing temperature, finding a high correlation between the decreasing
CHs (see Figure 10), especially for CHs in winter months, and the mean SOS trend was not
unexpected. However, the nature of the correlation, i.e., an advancing spring start while CH
decreases, is interesting (Figure 12a,d,i). A possible explanation for the commonly reported
spring advancement despite the insufficient chilling due to the increasing temperatures,
which is considered as a delaying factor for SOS, has been hypothesized as the impact of
this delay being minor compared with vernal temperature advances [152,155].

The CH in preceding months has a higher correlation with SOS compared with longer
intervals which are further than the SOS date (Figure 11a,d,i). This pattern is also similar
for GDD and GDD correlation with SOS weakening as the TBase decreases from 2 ◦C to
0 ◦C (Figure 11b,c,e–h).

3.4. An Earlier Spring and Prolonging Season: What Do These Mean?

From an ecosystem services point of view, many studies conclude that a longer grow-
ing season has a high importance for ecosystem productivity and it contributes to achieve
a stronger net primary productivity and carbon uptake in temperate and boreal forest
ecosystems, although some contradicting results were also reported [17,21,134]. On the
species level, however, there are some other points of concern. One of them is mismatches
between species in the phenology context. Mismatches happen when the time of a species’
high demand for a resource does not match the time of that particular resource being
abundant [156]. Not all species change their phenologies at the same time or the same
rate, and some may not even change their phenology as a response to climate or other
environmental changes at all.

In a narrower context, one of the main concerns about an advancing spring and
earlier leaf unfolding of trees is the impacts of late spring frosts. Late spring frosts
are defined to occur after the first leaf-out and are of crucial importance as trees are
most vulnerable to frosts during the initial stages of leaf emergence after the dormancy
period [74,157]. Although increasing temperatures may seem to decrease late spring frost
events, an advanced leaf unfolding and the following short period of up to 2 weeks of
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low-frost resistance until leaf hardening will also take place earlier [74,158]. Late spring
frosts may damage beech growth and in some cases may even cause a total loss of leaves.
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3.5. Limitations of the Study

The most prominent limitation of this study, and in a sense why it was carried out to
assess SRS as an alternative method to monitor phenology and phenological shifts, is the
absence of observational data to validate and/or compare our results. Hence, we tried to
focus more on the patterns rather than the numbers presented by our estimations.
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By utilizing sensor data with such a fine temporal resolution considering the afore-
mentioned concerns on the sensitivity of composite datasets to catch phenophases, we
traded off a finer spatial resolution, which is a frequently mentioned trade-off for sensor
data. The impact of the spatial resolution of the MOD09GA collection (500 m) manifests
itself the most, probably in pixel heterogeneity, as each band measurement value of a pixel
represents all of the elements that the pixel contains, such as soil and understory [37].
The understory elements, for example, are known to green-up generally earlier than the
main tree species in the same pixel. Testa et al. [81] found that the understory in Fagus
sylvatica stands reached its 90% level of leaf onset at the time F. sylvatica only reached its
10%. Especially with coarse/medium resolution data, such as MOD09GA, these elements
may lead to erroneous estimations. Thus, to keep this effect to a minimum, we used forest
management plans and masked our initial NDVI pixels for Fagus-pure stands and with the
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highest canopy closedness only. Then, we filtered these Fagus-only pixels by a minimum
spatial coverage of 80% and any pixel with a Fagus coverage less than 80% was excluded.
This filter limit can go up to 100% (e.g., see [122]) and there are also examples of studies
where it was set as 60% (e.g., see [159]). To work with a reasonable count of pixels and to
have pixels from as many different regions as possible while keeping pixel heterogeneity
minimal, an optimal 80% was set as the minimum coverage limit. Moreover, although our
aim was to investigate the possible phenological shift patterns for “deciduous forests”, we
went beyond and worked at the species level, i.e., F. orientalis, to be confident, as much as
possible, in the estimations made for the deciduous forest, and the unwanted effect of other
elements was minimized.

The resolution difference between the sensor data (500 m) and the climate datasets
(0.25◦) must also be mentioned as it is inevitable to have potential discrepancies.

Latitudinal gradients are usually more prominent in larger scales, e.g., regional and
continental scales, and Turkey has a relatively narrow latitudinal width and the distribution
of pure F. orientalis stands is also a narrow range in the north. Although we also included a
latitudinal analysis in our study, this would be the reason why an emphasized latitudinal
gradient was not found. Due to the cloud cover, a characteristic of the regional climate
which interrupts band measurements for a majority of days of the year, many Fagus pixels
from the eastern Black Sea region were filtered by the QA layer and could not be used in
the study.

Because temperature is considered to be the dominant driver of phenology for
temperate-zone deciduous forests [142], we investigated the relationship between SOS shift
and temperature-derived variables. There are many other factors not covered in this paper
that can help explain our findings more in depth such as precipitation and photoperiod,
which are also considered among the main drivers of plant phenology. However, for this
paper we aimed for a synoptic view of the possible shift patterns and distributions of
phenological parameters and to present a workflow to work with daily MOD09GA data, to
constitute a baseline; some of the factors aforementioned will be included in the next steps
of our study.

4. Conclusions

SRS provides ecologists with long-term and continuous datasets which are collected
objectively from local to global scales. Narrowing down the ecology title to phenology
and phenology monitoring, SRS stands as a powerful means for observing the large- to
local-scale patterns alike, especially for regions or ecosystems where observational data
are not available. By means of SRS data, we assessed the SOS shift of F. orientalis pixels
over the period of 2002–2020, detected the significant trends and assessed their directions,
distributions, and the resulting vernal shift pattern (advancing SOS), and investigated the
relationship between the mean SOS shift and temperature-derived variables and also char-
acterized the phenology of F. orientalis in Turkey. As Turkey does not have a phenological
observation network for natural ecosystems, this study is another good example of the
advantages SRS brings to phenological research.

With that being said, it must be emphasized that the results from the LSP studies,
even for the same species and same location, may vary depending on many factors such
as the preferred sensor’s specifications, temporal and spatial resolution of the sensor data,
methods used for time series reconstruction/noise reduction and phenological parameter
extraction, study period length (which is usually limited by the temporal coverage of the
data), etc. Thus, for future LSP studies on deciduous forests in Turkey and the region, we
recommend studies on varying sizes of study areas, focusing on both different mixtures of
deciduous tree species and, if possible, single species as well, with different sensor data
(data with different temporal and spatial resolution as well as different temporal coverage)
and with higher resolution climate datasets to enrich the literature with comparable results.

Although our results were in accordance with the existing literature and this study it-
self is proof of the evident benefits of SRS for ecological research and phenology monitoring,
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estimations based on SRS are not a replacement for observational phenology data/records.
To be able to go beyond the general patterns, in the current state of LSP research, these
estimations need validation to an extent. Considering the spectacular biodiversity Turkey
has, the climate projections aforementioned, and the shift pattern we presented in this
study on this opportunity, we underline the need for a phenology network to be established
in Turkey, either as a citizen-science-based, traditional observation network to track the
phenologies of prioritized/key species or as a network of near-surface phenology instru-
ments (e.g., phenocams) to monitor natural vegetation covers and to share the records
as open-access data. A cooperative, regional network would also be a good option as it
would facilitate joint research projects and better information and experience sharing for
the scientists in the field. We strongly believe that it will greatly benefit ecological research,
not only in Turkey but also in the region.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14020413/s1, Table S1: Assessed climate variables over the
study period (2002–2020).
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Kitabı: İstanbul, Turkey, 2017.

126. Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land
data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [CrossRef]

127. Viovy, N.; Arino, O.; Belward, A.S. The Best Index Slope Extraction ( BISE): A method for reducing noise in NDVI time-series.
Int. J. Remote Sens. 1992, 13, 1585–1590. [CrossRef]

128. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

http://doi.org/10.15659/isag2021.12514
http://doi.org/10.1016/j.rse.2017.06.031
https://www.R-project.org/
http://doi.org/10.1016/j.isprsjprs.2020.11.019
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/S0034-4257(96)00112-5
http://doi.org/10.1080/01431168608948914
http://doi.org/10.1109/TGRS.1995.8746029
http://doi.org/10.1080/01431168608948945
http://doi.org/10.1016/j.rse.2004.03.014
http://doi.org/10.1016/j.isprsjprs.2014.01.003
http://doi.org/10.3390/rs13071397
http://doi.org/10.1109/agro-geoinformatics.2016.7577661
http://doi.org/10.5067/modis/mod09ga.006
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY
http://doi.org/10.24381/cds.e2161bac
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
http://doi.org/10.1016/j.rse.2018.09.027
http://doi.org/10.1016/j.rse.2009.07.020
http://doi.org/10.3390/rs12203282
http://doi.org/10.1007/s10584-019-02374-0
http://doi.org/10.1016/S0034-4257(02)00084-6
http://doi.org/10.1080/01431169208904212
http://doi.org/10.1021/ac60214a047


Forests 2023, 14, 413 24 of 25

129. Xu, X.; Conrad, C.; Doktor, D. Optimising Phenological Metrics Extraction for Different Crop Types in Germany Using the
Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. 2017, 9, 254. [CrossRef]

130. Han, H.; Bai, J.; Ma, G.; Yan, J. Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS
Int. J. Geo-Inf. 2020, 9, 111. [CrossRef]

131. Lange, M.; Doktor, D. R-Package “Phenex”: Auxiliary Functions for Phenological Data Analysis. Available online: http:
//cran.r-project.org/web/packages/phenex/ (accessed on 22 August 2022).

132. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology
using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [CrossRef]

133. Kong, D.; McVicar, T.R.; Xiao, M.; Zhang, Y.; Peña-Arancibia, J.L.; Filippa, G.; Xie, Y.; Gu, X. phenofit: An R package for extracting
vegetation phenology from time series remote sensing. Methods Ecol. Evol. 2022, 13, 1508–1527. [CrossRef]

134. Zu, J.; Zhang, Y.; Huang, K.; Liu, Y.; Chen, N.; Cong, N. Biological and climate factors co-regulated spatial-temporal dynamics of
vegetation autumn phenology on the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 198–205. [CrossRef]

135. Millard, S.P. EnvStats: An R Package for Environmental Statistics; Springer: New York, NY, USA, 2013. Available online: https:
//www.springer.com/book/9781461484554 (accessed on 3 September 2022).

136. McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300.
[CrossRef]

137. Cesaraccio, C.; Spano, D.; Snyder, R.L.; Duce, P. Chilling and forcing model to predict bud-burst of crop and forest species. Agric.
For. Meteorol. 2004, 126, 1–13. [CrossRef]

138. Baldocchi, D.; Wong, S. Accumulated winter chill is decreasing in the fruit growing regions of California. Clim. Chang. 2007, 87,
153–166. [CrossRef]

139. University of California, Davis, Fruit and Nut Research and Information Center. 2002. Available online: https://fruitsandnuts.
ucdavis.edu (accessed on 11 December 2022).

140. Chuine, I.; Cour, P. Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol. 1999, 143,
339–349. [CrossRef]

141. Laube, J.; Sparks, T.; Estrella, N.; Menzel, A. Does humidity trigger tree phenology? Proposal for an air humidity based framework
for bud development in spring. New Phytol. 2014, 202, 350–355. [CrossRef]

142. Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. Assessing the effects of climate change on
the phenology of European temperate trees. Agric. For. Meteorol. 2011, 151, 969–980. [CrossRef]

143. Hamunyela, E.; Verbesselt, J.; Roerink, G.; Herold, M. Trends in Spring Phenology of Western European Deciduous Forests.
Remote Sens. 2013, 5, 6159–6179. [CrossRef]

144. Fu, Y.H.; Piao, S.; De Beeck, M.O.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I. Recent spring phenology shifts in
western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [CrossRef]

145. Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the
Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 2011, 17, 2385–2399. [CrossRef]

146. Kozlov, M.; Berlina, N.G. Decline in Length of the Summer Season on the Kola Peninsula, Russia. Clim. Chang. 2002, 54, 387–398.
[CrossRef]

147. Hmimina, G.; Dufrêne, E.; Pontailler, J.-Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; De Grandcourt, A.; Burban, B.; Flechard, C.R.;
Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An
investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [CrossRef]

148. Delpierre, N.; Vitasse, Y.; Chuine, I.; Guillemot, J.; Bazot, S.; Rutishauser, T.; Rathgeber, C.B.K. Temperate and boreal forest tree
phenology: From organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 2016, 73, 5–25. [CrossRef]

149. Lange, M.; Dechant, B.; Rebmann, C.; Vohland, M.; Cuntz, M.; Doktor, D. Validating MODIS and Sentinel-2 NDVI Products at a
Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors. Sensors 2017, 17, 1855. [CrossRef] [PubMed]

150. Han, Q.; Luo, G.; Li, C. Remote sensing-based quantification of spatial variation in canopy phenology of four dominant tree
species in Europe. J. Appl. Remote Sens. 2013, 7, 73485. [CrossRef]

151. Keenan, T.F.; Richardson, A.D.; Hufkens, K. On quantifying the apparent temperature sensitivity of plant phenology. New Phytol.
2019, 225, 1033–1040. [CrossRef] [PubMed]

152. Laube, J.; Sparks, T.H.; Estrella, N.; Höfler, J.; Ankerst, D.P.; Menzel, A. Chilling outweighs photoperiod in preventing precocious
spring development. Glob. Chang. Biol. 2013, 20, 170–182. [CrossRef] [PubMed]

153. Chamberlain, C.J.; Wolkovich, E.M. Late spring freezes coupled with warming winters alter temperate tree phenology and
growth. New Phytol. 2021, 231, 987–995. [CrossRef]

154. Signarbieux, C.; Toledano, E.; de Carcer, P.S.; Fu, Y.H.; Schlaepfer, R.; Buttler, A.; Vitasse, Y. Asymmetric effects of cooler and
warmer winters on beech phenology last beyond spring. Glob. Chang. Biol. 2017, 23, 4569–4580. [CrossRef]

155. Thompson, R.; Clark, R. Is spring starting earlier? Holocene 2008, 18, 95–104. [CrossRef]
156. Visser, M.E.; Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 2019, 3,

879–885. [CrossRef]
157. Zohner, C.M.; Mo, L.; Sebald, V.; Renner, S.S. Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming,

enhancing the risk of spring frost damage at cold range limits. Glob. Ecol. Biogeogr. 2020, 29, 1065–1072. [CrossRef]

http://doi.org/10.3390/rs9030254
http://doi.org/10.3390/ijgi9020111
http://cran.r-project.org/web/packages/phenex/
http://cran.r-project.org/web/packages/phenex/
http://doi.org/10.1016/S0034-4257(02)00135-9
http://doi.org/10.1111/2041-210X.13870
http://doi.org/10.1016/j.jag.2018.03.006
https://www.springer.com/book/9781461484554
https://www.springer.com/book/9781461484554
http://doi.org/10.1016/S0168-1923(97)00027-0
http://doi.org/10.1016/j.agrformet.2004.03.002
http://doi.org/10.1007/s10584-007-9367-8
https://fruitsandnuts.ucdavis.edu
https://fruitsandnuts.ucdavis.edu
http://doi.org/10.1046/j.1469-8137.1999.00445.x
http://doi.org/10.1111/nph.12680
http://doi.org/10.1016/j.agrformet.2011.03.003
http://doi.org/10.3390/rs5126159
http://doi.org/10.1111/geb.12210
http://doi.org/10.1111/j.1365-2486.2011.02397.x
http://doi.org/10.1023/A:1016175101383
http://doi.org/10.1016/j.rse.2013.01.010
http://doi.org/10.1007/s13595-015-0477-6
http://doi.org/10.3390/s17081855
http://www.ncbi.nlm.nih.gov/pubmed/28800065
http://doi.org/10.1117/1.JRS.7.073485
http://doi.org/10.1111/nph.16114
http://www.ncbi.nlm.nih.gov/pubmed/31407344
http://doi.org/10.1111/gcb.12360
http://www.ncbi.nlm.nih.gov/pubmed/24323535
http://doi.org/10.1111/nph.17416
http://doi.org/10.1111/gcb.13740
http://doi.org/10.1177/0959683607085599
http://doi.org/10.1038/s41559-019-0880-8
http://doi.org/10.1111/geb.13088


Forests 2023, 14, 413 25 of 25

158. Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B.; et al.
Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [CrossRef]

159. Lukasová, V.; Bucha, T.; Škvareninová, J.; Škvarenina, J. Validation and application of European beech phenological metrics
derived from MODIS data along an altitudinal gradient. Forests 2019, 10, 60. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/nature06937
http://doi.org/10.3390/f10010060

	Introduction 
	Materials and Methods 
	Surface Reflectance Data Acquisition, Pre-Processing, and Index Calculations 
	Normalized Difference Vegetation Index—NDVI 
	Surface Reflectance Data, Preprocessing, and NDVI Calculation 

	Climate Data 
	Forest Management Map and Fagus orientalis Masking 
	Noise Reduction, Time Series Reconstruction, and Extraction of Phenological Parameters 
	Trend Analysis of SOS 
	Analyzing Annual Mean SOS Correlation with Temperature-Derived Variables 

	Results and Discussion 
	General Patterns of SOS, EOS Dates, and LOS 
	Trends of SOS, EOS, and LOS 
	Correlations with Temperature-Derived Variables 
	An Earlier Spring and Prolonging Season: What Do These Mean? 
	Limitations of the Study 

	Conclusions 
	References

