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Abstract: The accurate habitat suitability evaluation of forest species is vital for forest resource
management and conservation. Therefore, the previously published thresholds of soil organic carbon
(SOC) contents for the six main forest species were used to screen sample points in this study; the
maximum entropy modeling (MaxEnt) was applied to predict the potential distribution of those
species in Lvliang Mountain, Shanxi Province, China. The following results were derived: (1) the area
under the curve (AUC) value of the MaxEnt model was 0.905, indicating the model results had high
accuracy; (2) the main environmental factors affecting the woodlands were mean diurnal temperature
range, solar radiation, population density and slope; (3) the model accurately depicted the most
suitable areas for those species, namely Populus davidiana Dode (Malpighiales: Salicaceae), Betula
platyphylla Sukaczev (Fagales: Betulaceae), Quercus wutaishanica Mayr (Fagales: Fagaceae), Platycladus
orientalis (L.) Franco (Pinales: Cupressaceae), Larix gmelinii (Rupr.) Kuzen. (Pinales: Pinaceae) and
Pinus tabuliformis Carrière (Pinales: Pinaceae). This study has improved the representativeness of the
samples based on prior knowledge to enhance the biological meaning and accuracy of the prediction
results. Its findings provide a theoretical basis for the forest resource protection, management
measures alongside the reconstruction of low-yield and low-efficiency forests.

Keywords: MaxEnt model; habitat suitability; soil organic carbon; Grain-for-Green Program; Lvliang
Mountain

1. Introduction

Forest ecosystems are the mainstay of terrestrial ecosystems, covering approximately
4.1 × 107 km2 of the global land area [1], having the largest land carbon reservoir, account-
ing for approximately 2/3 of the total carbon sequestered in terrestrial ecosystems [2].
Thus, forest ecosystems play an important role in regulating the ecosystem carbon cycle,
regulating the global climate and slowing down the increases in atmospheric CO2 and other
concentrations [3,4]. Since the 1970s, global problems such as forest fires, the conversion
of natural vegetation to arable land and continued environmental degradation caused by
overgrazing have emerged as human population has increased [5]. Thereafter, people have
gradually realized the significance of forests in relation to sustainable development. The
increase in forest cover area is conducive to the accumulation of biomass and soil carbon [6],
and forest ecological restoration is necessary [7]. For this reason, the Grain-for-Green Pro-
gram (GGP) was launched in China in 1999 to increase the land area covered by forests [8].
After long-term management, the program has achieved remarkable results, but it still
confronts many difficulties. The key problem is that the survival rates and the preservation
rates of forest trees are low, causing poor vegetation stability, and weak ability to withstand
disasters [9]; in this way, many low-yield forests and low-efficiency forests have formed [10].
How to improve the survival rate and preservation rate of forest trees is a new concern
related to afforestation. By analyzing the relationship between forestland and the ecological
environment, the habitat suitability of forestland and its spatial distribution pattern can be
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judged, which is of great practical significance to the sustainable development of human
society and construction of forest ecological civilization. Therefore, research on the habitat
suitability of forest species is essential to improve low-yield forest and low-efficiency forest.

Previous studies have often used empirical models [11,12], regression models [13] and
machine learning [14] to carry out research on species habitat suitability. Among them,
the empirical models identify key environmental variables for modeling predictions based
on field observations of species or expert experience, but there is a strong subjectivity in
the ranking and weighting of habitat factors [15]. Regression models, such as generalized
linear models and generalized additive models [16–18], are sometimes difficult to use
to analyze habitat suitability since nonexistence species point data (that is, species are
not distributed at the point) are hard to obtain [19]. However, machine learning models,
such as artificial neural networks, genetic algorithm for rule-set prediction and maximum
entropy modeling (MaxEnt), are more flexible when the relationships between the species
distribution and relevant environmental conditions are complex [20–22]. The MaxEnt uses
species distribution information and environmental variables to analyze and predict the
potential suitability distribution of species. It requires only a small number of presence
points, and has stability and expansibility [23]. Since the model can use both continuous
and discrete data to make the evaluation factors of tree species suitability analysis more
diverse, it can be applied to this study to obtain better results [14,24]. The Jackknife
method in the MaxEnt can reflect the importance of each environmental variable in the
model more truthfully [25]. In this paper, it can help us to accurately understand the
environmental characteristics of different forest species, which can provide support for
researchers and decision makers to propose decisions that are beneficial to tree species
conservation and rational siting of forest species. Apart from this, the model can generate
receiver operating characteristic (ROC) curves to verify the prediction results of the model.
However, most previous studies on ecological niche models have focused on the process of
sample collection and model calibration [26,27], and few studies have considered improving
the representativeness of the samples to enhance the biological meaning and accuracy of the
prediction results [28,29]. For the reasons mentioned, this paper presents a new framework
to explore how to improve the accuracy of habitat suitability evaluation method for different
forest species by combing the Prior knowledge (e.g., soil properties) in forests into the
ecological niche models. As an important index of soil quality, soil organic carbon (SOC)
is of great significance in the healthy growth of forest trees. Therefore, combining the
representative samples obtained by using forest SOC content with the MaxEnt model may
be an effective method to identify habitat suitability accurately.

The objective of this study was to test the feasibility of adopting SOC contents in forests
as a prior knowledge and integrating this information into the MaxEnt modeling process.
It is expected that it will effectively predict the suitable habitat area of different forest
species and may provide a more biologically meaningful decision-making reference for the
reconstruction of low-yield and low-efficiency forests and forest scientific management.

2. Materials and Methods
2.1. Study Area

Lvliang Mountain is located at 35◦67′–40◦30′ N, 110◦38′–113◦48′ E (Figure 1) in the
western part of Shanxi Province on the east bank of the Yellow River, and it extends approx-
imately 500 km from north to south and 230 km from east to west. The region has a warm
temperate and semiarid continental monsoon climate, with a large diurnal temperature
range of 10–25 ◦C, an annual average temperature of 5–13 ◦C and an annual precipitation of
330–500 mm [30]. The terrain is mainly mountainous and hilly, with undulating topography
and altitudes ranging from 543 to 2763 m. The main dominant species of forest vegetation
are Betula platyphylla Sukaczev (Fagales: Betulaceae), Quercus wutaishanica Mayr (Fagales:
Fagaceae), Platycladus orientalis (L.) Franco (Pinales: Cupressaceae), Populus davidiana Dode
(Malpighiales: Salicaceae), Larix gmelinii (Rupr.) Kuzen. (Pinales: Pinaceae), Pinus tabuli-
formis Carrière (Pinales: Pinaceae). Among them, P. tabuliformis and L. gmelinii are suitable
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for light, and have high cold resistance and strong wind resistance, which are often used as
the main afforestation species in northern areas; B. platyphylla is suitable for moist soil and
slopes facing south, with high economic value; Q. wutaishanica is suitable for a warm and
humid climate, and is an excellent tree species for water conservation and fire protection
forest; P. orientalis is a pioneer tree for afforestation, with a wide range of adaptability
to soil PH; P. davidiana is a highly adaptable species that requires full sunlight and can
survive in dry and infertile soils [31,32]. These tree species are important for preventing
soil erosion and improving the ecological environment of Lvliang Mountains.
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Figure 1. Study area and distribution of sample sites adopted in the Maxent modeling.

2.2. Data Collection and Preprocessing

According to the principle of representativeness, soil samples were collected in the
woodland representing the vegetation, topography and soil characteristics of the study area
from 2007 to 2008, and the geographical coordinates of the sample sites were recorded via
Global Positioning System (GPS). After removing the litter from the surface, a soil drill was
used to extract the soil samples at a depth of 0–40 cm, and the plant roots and gravel were
removed. The content of soil organic matter was measured by the dry combustion method
with a TOC analyzer, and the value was then multiplied by the Bemmelen conversion
coefficient (0.58) to obtain the SOC content [33].

As previous research results have found [34], the minimum SOC content of different
forest species (P. davidiana, B. platyphylla, Q. wutaishanica, P. orientalis, L. gmelinii and P.
tabuliformis) in different soil layers (0–10 cm, 10–20 cm, 20–30 cm and 30–50 cm) was
obtained as prior knowledge [35]. The minimum SOC content at 0–50 cm in the different
forest species was obtained by the weighted average method based on prior knowledge
(Table 1). Woodland sample sites with SOC contents higher than 4.99 g/kg were considered
as the points-of-existence (POE) that were suitable for forest planting. A total of 65 POE
was screened out to construct the woodland suitability model (Figure 1). The output results
of the MaxEnt model represent the probability of woodland existence or occurrence, and
the greater the probability is, the higher the suitability of woodland habitat is. Because the
POE of a single forest species was screened only by its corresponding SOC content range,
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when the MaxEnt model was established for the different forest species, the actual planted
forest species at these points could not be determined; therefore, in this study, the MaxEnt
model results of a single forest species represented the marginal probability that an area
was suitable for planting this forest species.

Table 1. Minimum SOC contents in different forest species based on a prior knowledge.

Soil Layer Weight
Organic Carbon Content of Different Forest Species (g/kg)

Populus
davidiana

Betula
platyphylla

Quercus wu-
taishanica

Platycladus
orientalis

Larix
gmelinii

Pinus tabu-
liformis

1©: 0–10 cm 0.2 18.34 35.09 12.09 14.07 31.02 14.86
2©: 10–20 cm 0.2 5.13 16.81 5.95 2.54 11.13 7.93
3©: 20–30 cm 0.2 3.28 11.8 3.22 1.34 5.02 4.35
4©: 30–50 cm 0.4 2.94 7.82 1.85 4.08 5.68 5.18

0–50 cm 0.2 × 1© + 0.2 × 2© +
0.2 × 3© + 0.4 × 4© 6.53 15.87 4.99 5.22 11.71 7.50

2.3. Environmental Variables

In this paper, a total of 27 environmental variables were selected from the aspects of
climatic, topographic and social as auxiliary variables to construct the model. Climate variables
include water vapor pressure, solar radiation and 19 commonly used bioclimatic factors in
WorldClim dataset (version 2.1), namely Bio1 to Bio19 (https://www.worldclim.org, accessed
on 16 August 2022) [36]. The aspect, slope and topographic wetland index values were
extracted from ASTER GDEM 30 m resolution digital elevation data (https://www.nasa.gov,
accessed on 16 August 2022). Social data included population density from WorldPop (http:
//www.worldpop.org.uk/, accessed on 17 August 2022) [37] and Per Capita Gross Domestic
Product (GDP) data collected from the local statistics bureau [38] (Table 2).

Table 2. Environmental variables.

Variable Description Type

BIO1 Annual mean air temperature/◦C Climatic
BIO2 Mean diurnal temperature range/◦C Climatic
BIO3 Isothermality/◦C Climatic
BIO4 Temperature seasonality Climatic
BIO5 Maximum temperature of warmest month Climatic
BIO6 Min Temperature of Coldest Month/◦C Climatic
BIO7 Temperature annual range/◦C Climatic
BIO8 Mean temperature of wettest quarter/◦C Climatic
BIO9 Mean temperature of driest quarter/◦C Climatic
BIO10 Mean temperature of warmest quarter/◦C Climatic
BIO11 Mean temperature of coldest quarter/◦C Climatic
BIO12 Annual precipitation/mm Climatic
BIO13 Precipitation of wettest month/mm Climatic
BIO14 Precipitation of driest month/mm Climatic
BIO15 Precipitation seasonality Climatic
BIO16 Precipitation of wettest quarter/mm Climatic
BIO17 Precipitation of driest quarter/mm Climatic
BIO18 Precipitation of Warmest Quarter/mm Climatic
BIO19 Precipitation of coldest quarter/mm Climatic

VAPOR water vapor pressure/Pa Climatic
SRAD Solar radiation/(W/m2) Climatic
DEM Elevation/m Topographic

ASPECT Aspect Topographic
SLOPE Slope/◦ Topographic

PD Population density Social
TWI Topographic wetness index Topographic
GDP Per Capita GDP/(yuan/person) Social

https://www.worldclim.org
https://www.nasa.gov
http://www.worldpop.org.uk/
http://www.worldpop.org.uk/
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To avoid model over-fitting caused by high spatial collinearity between variables [39],
ENMTools were used to analyze the correlations among the 27 environmental variables [40].
Meanwhile, the jackknife tool was used to analyze the contribution of environmental factors
in the prediction of the model, and the environmental variables with lower contribution
and correlation coefficients |r| ≥ 0.8 were removed (Figure 2). Finally, ten environmental
variables that had an important influence on the distribution of woodland suitability
were selected: mean diurnal temperature range (BIO2), slope (SLOPE), elevation (DEM),
solar radiation (SRAD), isothermality (BIO3), population density (PD), min temperature
of coldest month (BIO6), topographic wetness index (TWI), precipitation of warmest
quarter (BIO18) and Per Capita GDP (GDP). The above data were all resampled to a spatial
resolution of 30 m × 30 m, and converted to ASCII files, which were used to construct the
woodland suitability model.

Forests 2023, 14, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. Correlations among 27 variables in Table 2. The red color stands for positive correlations 
and the blue color stands for negative correlations. The stronger the correlation between variables, 
the darker the color and the higher the saturation and the larger the size of the circle, the greater the 
correlation between variables. The red fonts represent the selected variables. 

2.4. Model Construction and Evaluation 
MaxEnt is one of the most accurate distribution models for simulated results [41]. A 

successful prediction of the MaxEnt distribution requires the selection of accurate and ap-
propriate sample distribution data, environmental factor data that accurately reflect the 
ecological characteristics of species, and optimal model parameters [23]. The POE data 
and the ASCII files of the ten selected environmental variables were inputted into the 
MaxEnt software. Among these, 75% of the POE data were randomly selected as the 
model training set, and the 25% remained were used as the test set. The optimal feature 
parameters and regularization multiplier (0.5) were selected by ENMTools, and the 100-
times bootstrap method was used to evaluate the habitat suitability [42–44]. The model 
performance was evaluated by the AUC (area under the curve) bounded by the ROC (re-
ceiver operating characteristic) curve and the horizontal and vertical coordinate axes [45]. 
An AUC range of 0.5–0.6 indicates a very poor performance; a range of 0.6–0.7 indicates a 
poor performance; a range of 0.7–0.8 indicates a general performance; a range of 0.8–0.9 
indicates a good performance, and a range of 0.9–1 indicates an excellent performance 
[46]. 

Figure 2. Correlations among 27 variables in Table 2. The red color stands for positive correlations
and the blue color stands for negative correlations. The stronger the correlation between variables,
the darker the color and the higher the saturation and the larger the size of the circle, the greater the
correlation between variables. The red fonts represent the selected variables.

2.4. Model Construction and Evaluation

MaxEnt is one of the most accurate distribution models for simulated results [41].
A successful prediction of the MaxEnt distribution requires the selection of accurate and
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appropriate sample distribution data, environmental factor data that accurately reflect the
ecological characteristics of species, and optimal model parameters [23]. The POE data and
the ASCII files of the ten selected environmental variables were inputted into the MaxEnt
software. Among these, 75% of the POE data were randomly selected as the model training
set, and the 25% remained were used as the test set. The optimal feature parameters and
regularization multiplier (0.5) were selected by ENMTools, and the 100-times bootstrap
method was used to evaluate the habitat suitability [42–44]. The model performance was
evaluated by the AUC (area under the curve) bounded by the ROC (receiver operating
characteristic) curve and the horizontal and vertical coordinate axes [45]. An AUC range of
0.5–0.6 indicates a very poor performance; a range of 0.6–0.7 indicates a poor performance;
a range of 0.7–0.8 indicates a general performance; a range of 0.8–0.9 indicates a good
performance, and a range of 0.9–1 indicates an excellent performance [46].

3. Results
3.1. Model Accuracy

According to the evaluation results of the ROC curve (Figure 3), the average AUC
of the model was 0.905, indicating that the model had excellent prediction results and
high reliability and can be used to evaluate the habitat suitability of the forest in Lvliang
Mountain.
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3.2. Identified Main Environmental Factors

The environmental variable contributions (Table 3) and the results of jackknife gain
test (Figure 4) showed that [47] the cumulative contributions of the classified environ-
mental variables affecting the suitability of woodland habitat were ranked in the order
of climatic (55%) > topographic (25.5%) > social (19.5%). The environmental variables
with the contributions larger than 10.0% were the average temperature range of day and
night (18.4%) > solar radiation (16.2%) > population density (14.8%) > slope (14.3%). The
cumulative contributions of the above four environmental variables were 63.7% and could
be identified as the main environmental factors in this study. Thus, it could be concluded
that the climate factors were the most important environmental factors, among which
the average diurnal temperature range had the greatest influence on the suitability of
woodland habitat.
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Table 3. Environmental variables adopted in the model.

Variable Description Type Contribution

BIO2 Mean diurnal temperature range Climatic 18.4%
SRAD Solar radiation Climatic 16.2%

PD Population density Social 14.8%
SLOPE Slope Topographic 14.3%
BIO18 Aspect Climatic 9.4%
DEM Elevation Topographic 7.3%
BIO3 Isothermality Climatic 6.9%
GDP Per Capita GDP Social 4.7%
BIO6 Precipitation of wettest quarter Climatic 4.1%
TWI Topographic wetness index Topographic 3.9%
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(DEM), solar radiation (SRAD), isothermality (BIO3), population density (PD), min temperature of
coldest month (BIO6), topographic wetness index (TWI), precipitation of warmest quarter (BIO18)
and Per Capita GDP (GDP).

Figure 5 shows the response curves of the main environmental factors to the habitat
suitability of woodland. The average diurnal temperature range had the most significant
effect on the habitat suitability of woodland. The habitat suitability of woodland showed an
increasing trend with an increase in the average diurnal temperature range. It reached max-
imum when the average diurnal temperature range value was 10.2 ◦C and then decreased
gradually with further increases in the average diurnal temperature range value. When
the solar radiation increased, the woodland habitat suitability increased rapidly, reached
maximum when the solar radiation was 15,425 W/m2, and then decreased gradually. Forest
species preferred to grow in less populated areas and decreased gradually with increasing
population density. The habitat suitability of woodland increased rapidly with increasing
slope, increased slowly between 10◦ and 27◦, and then decreased gradually. To summarize,
the ranges of the main environmental factors for woodland with very high suitability
were as follows: mean diurnal temperature range (10.2 ◦C–12.3 ◦C), solar radiation range
(15,367–15,912 W/m2) and slope range (10◦–29◦).
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3.3. Suitable Habitats for Forest in Lvliang Mountain

The Natural Breaks (Jenks) have been used in many previous studies. The method is
based on the natural clustering of the logical output value of the model, which can provide
information on the habitat suitability ranking of species, compared to other methods.
Therefore, this study could obtain a more reasonable and ecologically significant estimate
by applying this method [48,49]. As shown in Figure 6, the geographical distribution of
the habitat suitability of woodland considering SOC contents was divided into five levels
based on natural break point method (Jenks): very low (0%–14%), low (15%–27%), medium
(27%–42%), high (44%–59%) and very high (59%–100%). The area of very high suitability
was 4771 km2, which accounted for only 6.65% of the total area of Lvliang Mountain, and
the area of high suitability, medium suitability, low suitability and very low suitability
was 7014 km2, 9089 km2, 13,071 km2, 37,729 km2, respectively. The suitable woodland
areas were mainly distributed in the soil-rock mountain areas in the middle and south of
the study area. The very highly suitable areas were mainly concentrated in Zhongyang
and Jiaokou County, Lvliang City, Shanxi Province and Pu, Xi and Ji County, Linfen City,
Shanxi Province. The very low suitability areas were mainly in the loess hilly regions in
the western Lvliang Mountain, which are Pianguan, Hequ, Houde and Wuzhai County in
northwestern Xinzhou city; Xingxian, Linxian, Liulin and Shilou County in western Lvliang
city; Yonghe County in western Linfen city; and Huairen, Ying and Shanyin County in
northeastern Shuozhou city.
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3.4. Suitable Habitats for Different Forest Species in Lvliang Mountain

The Lvliang Mountain area has rich forest resources and diverse vegetation types.
According to the SOC contents of the different dominant forest species (Table 1), the POE
data were screened into six representative POEs of the different forest species (P. davidiana, B.
platyphylla, Q. wutaishanica, P. orientalis, L. gmelinii and P. tabuliformis). The marginal habitat
suitability of the different forest species is shown in Figure 7, and the same classification
method for habitat suitability as that in Figure 6 was used. The classified very highly
suitable area of B. platyphylla was concentrated in the middle area of Lvliang Mountain
with an altitude greater than 2000 m, i.e., in Ningwu County, Xinzhou city and the junction
of Taiyuan city and Lvliang city. The average temperature difference between the day and
night in these areas is small, the solar radiation is low and the precipitation is high. The most
suitable areas for Q. wutaishanica and P. orientalis were concentrated in the southern part of
the Lvliang Mountains. The lowest solar radiation was approximately 15,000 W/m2 in the
southernmost Linfen city, which was the area with the lowest mean diurnal temperature
range value of only 10 ◦C. In this study, the most suitable area for Q. wutaishanica, the
landmark plant in the Lvliang Mountain Nature Reserve, was the largest. Both the range of
the SOC content of P. davidiana, L. gmelinii and P. tabuliformis and their suitability distributions
were similar, but there were still some differences. The most suitable areas for P. davidiana
and P. tabuliformis were in Youyu County, Shuozhou city, in the northernmost part of Lvliang
Mountain, and the average temperature difference between the day and night in the study
area was the largest, which comes up to more than 15 ◦C.



Forests 2023, 14, 438 10 of 15Forests 2023, 14, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Marginal probability of different forest species that meet the SOC content requirements. 
(a) P. davidiana, (b) B. platyphylla, (c) Q. wutaishanica, (d) P. orientalis, (e) L. gmelinii, (f) P. tabuliformis. 

4. Discussion 
Based on climatic, topographic and social factors, MaxEnt model was used in this 

study to simulate and analyze the potential suitability of forest plantations in Lvliang 
Mountain that met the conditions of SOC content. The results showed that the mean di-
urnal temperature range was the most important environmental variable affecting the dis-
tribution of habitat suitability, indicating that the forest was highly sensitive to the tem-
perature variation. In fact, the loess accumulation on the west slope of Lvliang Mountain, 
the steep mountain slope on the east side, the overall crisscrossed nature of ravines and 
gullies, the unique landform features and the obvious elevation changes lead to the tem-
perature variation characteristics in Lvliang Mountain. Although the temperature differ-
ence between the day and night can regulate the production and accumulation of organic 
matters in plants, an excessive temperature difference will lead to burns or frost cracks in 
plant branches. Therefore, the mean diurnal temperature range in the suitable woodland 
area of Lvliang Mountain was 10.2 °C–12.3 °C. The results of this study were consistent 
with those of previous studies on the prediction of suitable areas for different plants, such 
as Corylus mandshurica Maxim. (Fagales: Betulaceae) and Quercus fabrei Hance (Fagales: 
Fagaceae) in which the mean diurnal temperature range was a key environmental factor 
[50–52]. However, the relevant study areas were mostly located in southern China [53], 
and there have been few studies on the relationship between forest trees, organic carbon 
and mean diurnal temperature range in northern China. Secondly, woodland is highly 
sensitive to solar radiation, which reflects the intensity of solar heating on the land surface 
and significantly affects vegetation growth. For different slopes receiving different 
amounts of solar radiation, the high solar radiation on sunny slopes can promote the de-
composition of microorganisms and reduce the content of organic carbon, while the low 
solar radiation on shady slopes benefits the accumulation of organic carbon [54]. It was 
found that the content of SOC in mountain forest decreased when solar radiation in-
creased [55], and it was thereby concluded that the growth of forest vegetation was af-
fected by both SOC and solar radiation, which verified the necessity to explore woodland 
suitability distributions based on SOC content. Thirdly, the slope reflects the intensity of 

Figure 7. Marginal probability of different forest species that meet the SOC content requirements.
(a) P. davidiana, (b) B. platyphylla, (c) Q. wutaishanica, (d) P. orientalis, (e) L. gmelinii, (f) P. tabuliformis.

4. Discussion

Based on climatic, topographic and social factors, MaxEnt model was used in this
study to simulate and analyze the potential suitability of forest plantations in Lvliang
Mountain that met the conditions of SOC content. The results showed that the mean diurnal
temperature range was the most important environmental variable affecting the distribution
of habitat suitability, indicating that the forest was highly sensitive to the temperature
variation. In fact, the loess accumulation on the west slope of Lvliang Mountain, the steep
mountain slope on the east side, the overall crisscrossed nature of ravines and gullies,
the unique landform features and the obvious elevation changes lead to the temperature
variation characteristics in Lvliang Mountain. Although the temperature difference between
the day and night can regulate the production and accumulation of organic matters in
plants, an excessive temperature difference will lead to burns or frost cracks in plant
branches. Therefore, the mean diurnal temperature range in the suitable woodland area of
Lvliang Mountain was 10.2 ◦C–12.3 ◦C. The results of this study were consistent with those
of previous studies on the prediction of suitable areas for different plants, such as Corylus
mandshurica Maxim. (Fagales: Betulaceae) and Quercus fabrei Hance (Fagales: Fagaceae)
in which the mean diurnal temperature range was a key environmental factor [50–52].
However, the relevant study areas were mostly located in southern China [53], and there
have been few studies on the relationship between forest trees, organic carbon and mean
diurnal temperature range in northern China. Secondly, woodland is highly sensitive
to solar radiation, which reflects the intensity of solar heating on the land surface and
significantly affects vegetation growth. For different slopes receiving different amounts of
solar radiation, the high solar radiation on sunny slopes can promote the decomposition of
microorganisms and reduce the content of organic carbon, while the low solar radiation
on shady slopes benefits the accumulation of organic carbon [54]. It was found that the
content of SOC in mountain forest decreased when solar radiation increased [55], and it was
thereby concluded that the growth of forest vegetation was affected by both SOC and solar
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radiation, which verified the necessity to explore woodland suitability distributions based
on SOC content. Thirdly, the slope reflects the intensity of topographic relief, which in turn
affects the land use mode. The suitability of woodland in Lvliang Mountain firstly rose and
then decreased with the increase of slope. It went up gently to the maximum within the
slope range of 20◦ to 27◦ and then dropped down below the very high suitability threshold
after 29◦. In the standard for returning farmland to forest, sloping land with a slope larger
than 25◦ is included [56]. Therefore, sloping land ranging from 25◦ to 29◦ can be selected to
plant woodland to improve the survival rate of trees. Finally, human activities are important
factors affecting forest distribution [57]; social activities are greater in populated areas than
in other areas, and areas affected by humans have scarce vegetation and greater soil nutrient
losses. Population density represents the intervention degree of human activities on forests;
therefore, it is negatively correlated with soil carbon content and forest vegetation [58,59].
It is therefore inferred that the highly suitable areas of woodland are mainly concentrated
in sparsely populated areas, and the adaptability of woodland is low in social urban areas
with developed economies. In general, the effects of the main environment factors and
the corresponding ranges for highly suitable woodland habitat, which were identified in
this study, can provide a specific and useful reference for the rational implementation of
scientific forestry policies.

Forest habitat suitability could be effectively and accurately predicted by screening
woodland samples through prior organic carbon conditions. The very highly suitable areas
of woodland considering SOC content were located mainly in the southern and the soil-rock
mountain areas in the central mountainous areas of Lvliang Mountain, and a small amount
of woodland was distributed in the northernmost high-altitude area. The optimum area
for P. orientalis and Q. wutaishanica was the largest, P. orientalis was suitable in high-slope
areas with a greater light intensity, and Q. wutaishanica was suitable for middle-altitude and
middle-slope areas. The most suitable area of P. tabuliformis was located in the high-altitude
area with a low slope and weak light, and both were distributed in Xinzhou city in the
middle of Lvliang Mountain and east of Lvliang city. The distribution of P. davidiana shows
a direction from northeast to southwest [60], which is more suitable for planting in high
altitude areas compared with the other two forest species in the Lvliang Mountain in
Figure 7. Higher altitudes have more abundant solar radiation, which is the main ecological
factor for transpiration and photosynthesis in sagebrush forests [61]. Therefore, the habitat
suitability of P. davidiana was more affected by solar radiation compared with P. tabuliformis
and L. gmelinii, which was also verified by the model results. Betula platyphylla and L.
gmelinii were suitable for high-altitude areas with large slopes and low temperatures, and
the optimum planting area of B. platyphylla considering the SOC content was the smallest
and was concentrated in Xinzhou city, Taiyuan city and Lvliang city. L. gmelinii is more
affected by the precipitation of warmest quarter, which was consistent with the results of
previous studies [62]. The precipitation of warmest quarter is lower in the north and south,
and higher in the middle in Lvliang Mountain. The suitable probability of larch increased
with the increasing precipitation of the warmest quarter. Therefore, the northernmost area
of Lvliang Mountain is less suitable for L. gmelinii, which is different from P. davidiana and
P. tabuliformis. The habitat analysis of suitable areas was similar to the results of Wang,
who studied the suitable habitats of different forests in the southern section of Shanxi
Province [63]. More importantly, the prediction results in this paper are rather close to those
of the Eighth National Forest Resources Inventory (2009–2013) [64]. For example, some
natural woodlands are located in Youyu County in northern Shuozhou city, along with a
large variety of shrubs planted under the special provisions of the state; these results proved
and supported the reliability and feasibility of this study, which therefore can support the
implementation of the Grain-for-Green Program and afforestation projects across China.

Moreover, the identification of areas with low habitat suitability for woodland can
provide a guidance for reducing the failure rate of good seed cultivation and reforming
low-yield forests and low-efficiency forests. The very low-suitability areas were mainly
distributed in Pianguan, Hequ, Houde and Wuzhai County in Xinzhou city; Xing, Linxian,
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Liulin and Shilou County in Lvliang city; and Yonghe County in Linfen city. These areas
are located on the west of Lvliang Mountain and are on the east bank of the Yellow River
basin. The area is approximately 300 km long from the Great Wall in the north to the Yumen
Estuary in the south of the Loess Plateau, and these areas have the most serious soil and
water erosion [65]. Huairen city, Ying County and Shanyin County in the northeast of
Shuozhou city, which are located in the northernmost part of the Lvliang Mountains, are
also low suitability areas. They are located in the loess hilly areas in the east of the Lvliang
Mountains and the Fenhe River basin in the east, and these sites have a loose soil structure,
scarce natural vegetation and serious soil and water erosion. They are the main source of
sediment in the upper reaches of the Fenhe River [36,66]. In other words, measures other
than afforestation may be taken in these places to prevent the wasting of resources in the
process of afforestation and improve the efficiency of soil and water conservation.

5. Conclusions

In this study, the MaxEnt model was used to simulate the distribution of habitat
suitability in the forest in Lvliang mountain, and the simulation results were highly accu-
rate. The distribution and main ecological characteristics of the suitable habitat were also
analyzed. It was found that within the range of woodland organic carbon content, the four
main environmental factors affecting the habitat suitability of woodland planting were:
solar radiation, average temperature difference between day and night, population density
and slope. In addition, the marginal probabilities for different forest species that meet the
SOC content requirements were predicted and analyzed, which can provide more accurate
advice for forest planting and ecological protection in Lvliang Mountain.

The species distribution models can be accurately and reasonably constructed to
predict the habitat suitability of species by using the results of previous studies as prior
knowledge to assist in the screening of sample data. In the future, the suitability distribution
of different forest species, such as broad-leaved forest, coniferous forest and shrub forest,
can be studied in combination with different actual ecological characteristics, such as soil
properties, to provide a theoretical basis for the development of detailed forest management
and afforestation plans in Lvliang Mountain and many other areas in China. Moreover, with
the development of ecology and other related disciplines, corresponding prior knowledge
for many species (including small range distributed species and rare species) can be found
incorporated into ecological niche models to obtain more biologically significant prediction
results, which can help us acquire better understanding of the distribution law of species.
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