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Abstract: Forest canopy height is defined as the distance between the highest point of the tree canopy
and the ground, which is considered to be a key factor in calculating above-ground biomass, leaf area
index, and carbon stock. Large-scale forest canopy height monitoring can provide scientific informa-
tion on deforestation and forest degradation to policymakers. The Ice, Cloud, and Land Elevation
Satellite-2 (ICESat-2) was launched in 2018, with the Advanced Topographic Laser Altimeter System
(ATLAS) instrument taking on the task of mapping and transmitting data as a photon-counting
LiDAR, which offers an opportunity to obtain global forest canopy height. To generate a high-
resolution forest canopy height map of Jiangxi Province, we integrated ICESat-2 and multi-source
remote sensing imagery, including Sentinel-1, Sentinel-2, the Shuttle Radar Topography Mission,
and forest age data of Jiangxi Province. Meanwhile, we develop four canopy height extrapolation
models by random forest (RF), Support Vector Machine (SVM), K-nearest neighbor (KNN), Gradient
Boosting Decision Tree (GBDT) to link canopy height in ICESat-2, and spatial feature information
in multi-source remote sensing imagery. The results show that: (1) Forest canopy height is moder-
ately correlated with forest age, making it a potential predictor for forest canopy height mapping.
(2) Compared with GBDT, SVM, and KNN, RF showed the best predictive performance with a
coefficient of determination (R?) of 0.61 and a root mean square error (RMSE) of 5.29 m. (3) Elevation,
slope, and the red-edge band (band 5) derived from Sentinel-2 were significantly dependent variables
in the canopy height extrapolation model. Apart from that, Forest age was one of the variables that
the RF moderately relied on. In contrast, backscatter coefficients and texture features derived from
Sentinel-1 were not sensitive to canopy height. (4) There is a significant correlation between forest
canopy height predicted by RF and forest canopy height measured by field measurements (R? = 0.69,
RMSE = 4.02 m). In a nutshell, the results indicate that the method utilized in this work can reliably
map the spatial distribution of forest canopy height at high resolution.

Keywords: forest canopy height; ICESat-2; Sentinel-1; Sentinel-2; topographic information; forest
age; machine learning

1. Introduction

Forest ecosystems, as an integral component of terrestrial ecosystems, play a vital
role in global climate change and carbon sinks [1]. Forest canopy height is defined as the
distance between the highest point of the tree canopy and the ground, which is used to
calculate above-ground biomass, leaf area index, and carbon stocks [2—4]. In addition,
large-scale forest canopy height monitoring can provide scientific information regarding
deforestation and forest degradation to policymakers [5,6].

Remote sensing technology is regarded as a useful technique for global and regional
forest canopy height mapping [7,8]. Traditional optical remote sensing for forest canopy
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height mapping is based on reflectance information, which has limitations such as quick
signal saturation and sensitivity to meteorological conditions, such as clouds and rain [9,10].
In contrast, a microwave radar can operate in any weather condition, regardless of clouds or
rain. However, in areas with varied terrain, microwave radar emissions can be influenced by
signal saturation, which dramatically reduced the accuracy of canopy height estimates [11].
Light Detection and Ranging (LiDAR), in contrast to the preceding two types of technology,
measures targets by producing pulsed lasers that can penetrate dense forest surfaces to
acquire information regarding both the understory and surface. As a result, LiDAR is
regarded as one of the most precise methods for the measurement of forest structure
parameters [6,12].

The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and Land
Elevation Satellite (ICESat) was operated by NASA in 2010, which was the first satellite-
based LiDAR to be used to observe ice cap and forest structure parameters [13]. A series
of researchers have undertaken research regarding the integration of the GLAS and other
optical data for large-scale forest canopy height mapping [14-16]. For example, in 2010,
Lefsky [15] mapped the first global 500 m resolution forest canopy height map by combining
GLAS and MODIS (NASA). Simard et al. [16] used random forest (RF) to map 1 km of
global resolution forest canopy height based on the GLAS and seven remote sensing images.
In addition, in 2016, Wang et al. [17] used the GLAS and 13 auxiliary variables to globally
map forest canopy height at a 500 m resolution using the balanced random forest algorithm.
However, the GLAS has a low spot density and a big spot size, resulting in low accuracy
and resolution in forest canopy height mapping products [18]. In 2018, the Ice, Cloud, and
Land Elevation Satellite-2 (ICESat-2) was launched by NASA at Vandenberg Air Force
Base, which carried the Advanced Topographic Laser Altimeter System (ATLAS) [19,20].
The ATLAS instrument employs multi-beam, micropulse, and photon-counting LiDAR
technology. Multiple beams can map more information at the same time compared with a
single beam. Meanwhile, the micropulse increases the emission frequency and thus the spot
density, which can greatly improve measurement accuracy [19]. The ATLAS instrument
is not primarily charged with studying vegetation, but the ATL0O8 data packages for both
land and vegetation provide more opportunities for large-scale forest investigations. On
the other hand, ATL08 data can only offer a footprint rather than continuous forest canopy
height information at regional and global scales [20—22]. Furthermore, the Global Ecosystem
Dynamics Investigation (GEDI) is another high-resolution laser ranging system operated
by NASA [23]. The GEDI is designed to observe the forest areas between 51.6° N and
S. Meanwhile, the basic metric of the GEDI are wave-forms related to the density profile of
canopy height for 25 m footprints [24]. To date, the GEDI has been widely used for global
and regional forest canopy height mapping. In 2019, Potapov et al. [25] integrated the GEDI
and Landsat data to create a global, 30 m resolution map of forest canopy height.

To overcome the spatial discontinuity of LIDAR measurements [21,26], several studies
have shown that integrating multi-source continuous remote sensing data with LiDAR
data could extrapolate forest canopy height from the footprint scale to the regional scale,
resulting in wall-to-wall forest canopy height maps [14,16,18,27]. Furthermore, it was found
that the large-scale spatial feature information provided by optical remote sensing data
such as Landsat (NASA), Sentinel (ESA), and MODIS correlated well with the vegetation
structure information acquired from LiDAR [6,7,16,21]. Wu et al. [28] constructed an eco-
logical zoning random forest algorithm based on ATLAS and Landsat for 30 m resolution
forest height mapping in China. Compared with the optical satellite data, Sentinel-2’s
red-edge bands were shown to provide more accurate information regarding vegetation
growth [29]. Zhang et al. [30] fused ATLAS, Landsat, and Sentinel to map boreal forest
canopy height via RF. In contrast, this study demonstrated that the red-edge band (band
5) and the NDRE derived from band 5 in Sentinel-2 are significantly dependent features
in RFE. In addition, Sentinel-1 SAR data, topographic information, textural features, and
climatic data were used to map global and regional forest canopy height maps [1,7,18]. In
the Himalayan Foothills of India, Nandy et al. [1] mapped forest canopy height by inte-
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grating ICESat-2 and Sentinel-1 data using the RF algorithm. Meanwhile, Sothe et al. [31]
mapped forest canopy height in Canada by combining GEDI and ICESat-2 with PALSAR
and Sentinel in 2020, which demonstrated the potential of the L-band for forest canopy
height prediction.

Machine learning models, as statistical predictive models, have many advantages,
including lower computational complexity, less need for parameter tuning, stronger classi-
fication and regression capabilities, and higher performance in integrating multi-source
data [5,32]. Machine learning models such as RF, the Support Vector Machine (SVM),
K-nearest neighbor (KNN), Gradient Boosting Decision Tree (GBDT), and Mixed Logistic
Regression (MLR) have been frequently employed for forest canopy height extrapola-
tion [5,6,21,27,33]. For example, Zhu et al. [14] generated a forest canopy height map with a
spatial resolution of 30 m, utilizing Multiple Altimeter Beam Experimental Lidar (MABEL)
and Landsat 8 OLL Jiang et al. [6] successfully developed a stacking algorithm consisting
of MLR, RF, SVM, and KNN to map the forest canopy height in northern China. Compared
with the single algorithm, it was shown that the stacking algorithm effectively improved
the extrapolation accuracy. Xi et al. [5] developed machine learning models for different
forest types by integrating ICESat-2, Sentinel, and topographic information. This study
demonstrated the better performance of machine learning models developed based on
different forest types relative to the whole forest.

Although numerous studies have successfully mapped continuous forest canopy
height by fusing satellite-based LiDAR data and remotely sensed images, few have consid-
ered the relationship between forest-related indicators and canopy height when conducting
forest canopy height mapping [34]. Previous research has demonstrated that forest age and
forest canopy height are closely related [35]. Several methods for combining forest canopy
height information to map forest age have been proposed [36-38]. Furthermore, no relevant
studies have explored the potential of forest age in forest canopy height mapping. In
addition, the spatial and temporal inconsistency of remote sensing and validation datasets
is another challenge in mapping regional forest canopy height [39].

The goal of this research was to create a high-resolution forest canopy height map
for Jiangxi Province in southeastern China by utilizing machine learning models that
incorporate ICESat-2, Sentinel, and forest age, and then to assess the forest canopy height
map using time-consistent validation data. To achieve this goal, four specific objectives
were proposed: (1) investigating the relationship between forest age and forest canopy
height at the sample scale and providing insight into the key drivers of canopy height
extrapolation models in the region, (2) developing four forest canopy height extrapolation
models based on machine learning models to explore significant predictors that relate to
forest canopy height, (3) generating a Jiangxi Province forest canopy height map based on
the best-performing model, and (4) validating the forest canopy height map using field
measurements and comparing it with existing forest canopy height maps.

2. Materials and Methods
2.1. Study Area

The study was conducted in Jiangxi Province, which is located in southeastern China
and has an area of about 166,900 km? (Figure 1). The research area’s topography is complex
and diversified, dominated by hills and mountains, and it features wide basins and valleys
with an average elevation above sea level of 245.6 m. Jiangxi Province is abundant in water
resources, with a thick network of rivers connecting to the Yangtze River via Poyang Lake,
China’s largest freshwater lake. The climate is a humid subtropical monsoon climate with
an annual temperature range of 16.3 to 19.5 °C. Furthermore, the region has a frost-free
period of 240-307 days and an annual precipitation average of 1341-1943 mm.
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Figure 1. (a) Location of the study area in China. (b) Land cover, including forest, water, and
non-forest, in the study area.

Jiangxi Province is rich in forest resources, with a forest coverage rate of 63.35%,
ranking second in China. Broad-leaved evergreen forests are the zonal vegetation of
Jiangxi Province. Due to the region’s broad geographical span from north to south,
the southern section is influenced by the southern subtropical climate and flora com-
ponents, and the vegetation features exhibit some southern subtropical characteristics. In
the north, there are more tropical flora components, and some warm temperate flora com-
ponents are increasingly mixed. The dominant tree species in the region are Masson’s pine
(Pinus massoniana Lamb), Chinese fir (Cunninghamia lanceolata), and slash pine (Pinus elliottii).

2.2. Data Acquisition and Processing

In this study, the following data were used to accomplish the objectives: (1) ATLO08
data collected using ICESat-2, (2) SAR data collected using Sentinel-1, (3) optical image
data collected using Sentinel-2, (4) topographic data collected from the Shuttle Radar
Topography Mission (SRTM), (5) forest age data in Jiangxi Province calculated using a
time-series change monitoring algorithm, (6) the Land Use Cover and Change product
collected using GlobeLand30, and (7) validation data provided by the 7th Jiangxi Province
Forest Resources Second Class Survey. Canopy height information from the ICESat-2 point
and 33 predictors (Table 1) corresponding to the geographical location were obtained from
the data sources listed above and were used in subsequent machine learning modeling.

2.2.1. ATLO8 Data

The ATLAS instrument uses green (532 nm) laser light and single-photon sensitive
detection to measure the time of flight and, subsequently, surface height along each of its
six beams [19]. ATLAS data are distributed as Hierarchical Data Format Version 5 (HDF-5)
through the National Snow and Ice Data Center (NSIDC, https:/ /nsidc.org/data/icesat-2
(accessed on 10 January 2022)), which is divided into 4 levels (ATL01-ATL21, without
ATLO05) [40]. ATLOS is a product that was developed in response to one of ICESat-2’s
scientific tasks: measuring vegetation canopy height as a basis for estimating large-scale
biomass and biomass change, and it provides us with several parameters such as surface
elevation, absolute canopy height, relative canopy height, and so on. Each metric is
derived from photons classified as ground or canopy within a 100-m segment. The primary
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canopy height parameter in the data product, hmnopy, is defined as 98% canopy height in
100 m segments [20]. In addition, as a parameter used to describe the terrain elevation,
h_te_best_fit is defined as the best-fit terrain elevation at the mid-point location of each
100 m segment [20].

The ATLO0S8 data (580876 ICESat-2 points) from 2020 were utilized in this study to ensure
the chronological validity of the verified data and the coverage of the research area. As
noise points are always present, we used several methods to filter out potentially erroneous
ICESat-2 points. ICESat-2 points with hicpopy less than 2 m or greater than 50 m were filtered
out based on forest structure information in the research area. Furthermore, SRTM was
utilized as terrain calibration data, and if the discrepancy between the h_te_best_fit and
SRTM was greater than 20 m, it was assumed that the point was impacted by clouds or the
atmosphere [18]. At the same time, strong beam data recorded at night was used in the
study as it was shown to have the highest performance in canopy height retrieval [41]. In
summary, 5777 filtered ICESat-2 points (Figure 2a) based on the method described above
were used for subsequent machine modeling.
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Figure 2. (a) Distribution of ICESat-2 points and field measurements in Sentinel-2 RGB composite
images. (b) Forest age of Jiangxi Province.

2.2.2. Forest Age

Forest age data were used in this study as key input data in models to estimate forest
canopy height, which were created by the contributing author last year. The data showed
that the secondary forest age ranged from 0 to 34 years annually, and the stable forest
with no changes in the time series was defined as having an age of 35. It was mapped
using multiple change detection algorithms with dense Landsat time series and inventory
data, which presents the first map of forest age (Figure 2b) in 2020 at a 30 m resolution in
Jiangxi Province. Meanwhile, we used 160 field measurements to validate the forest age
map for Jiangxi Province. The variable from the forest age product was reliable to establish
the relationship with forest canopy height due to the high accuracy of the coefficient of
determination (R?) = 0.87; root mean square error (RMSE) = 3.17 years.
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2.2.3. Sentinel Data

Sentinel-1 is a polar-orbiting binary constellation with the ability to provide daily,
day/night, and all-weather medium-resolution observations for the continuation and
improvement of SAR operational services and applications, which can provide single (HH
and VV) or dual polarization modes (HH + HV and VV + VH) [42]. Sentinel-2 provides
high-resolution multispectral image acquisition on a global scale through the Multi-Spectral
Instrument (MSI), which carries 13 spectral bands from the visible and near-infrared to the
short-wave infrared [43]. In addition, the red-edge band obtained using the MSI is widely
used to monitor vegetation because it is sensitive to vegetation growth [44].

In this study, Sentinel data regarding the vegetation growing season (2020) were
acquired and processed in Google Earth Engine (GEE, https://earthengine.google.com/
(accessed on 28 April 2022)). The backscatter coefficients, VV and VH, of Sentinel-1 were
obtained from Sentinel-1 SAR GRD products. Sentinel-2 images from “Level-2A” data were
cloud-masked using the s2cloudless algorithm [45]. Considering the spatial consistency
and availability of data, both Sentinel-1 and Sentinel-2 data (Figure 2a) were resampled
to a 30 m resolution and processed using a median image composition. Additionally,
composite images were used to generate eighteen texture features and three vegetation
indices as the base image. In general, features contained in the gray-level co-occurrence
matrix (GLCM) in Table 1 are used to characterize the texture; the features include Mean,
Variance, Homogeneity, Contrast, Dissimilarity, Entroy, Angular Second Moment, and
Correlation [46]. Texture features are calculated using a GLCM with third-order kernels
based on the backward scattering coefficient. The three normalized (NDRE_BANDYS,
NDRE_BANDS6, and NDRE_BAND?) red-edge indices are calculated based on the three
red-edge bands and the infrared band [47]. The formula for NDRE is as follows:

NIR — RedEdge

DRE = ——————<—
N NIR + RedEdge

)

where NIR represents the near-infrared band (band 8), and RedEdge represents the three
red-edge bands of band 5, 6, and 7 in Sentinel-2.

Table 1. Predictors obtained by multi-source data.

Data Source Predictors Description References
Forest Age FOREST_AGE 30 m-resolution forest age map in Jiangxi Province -
Vv VV band extracted from Sentinel-1 [(42]
VH VH band extracted from Sentinel-1
VV_MEAN Mean Value calculated by GLCM based on VV
VV_VAR Variance calculated by GLCM based on VV
VV_HOM Homogeneity calculated by GLCM based on VV
VV_CON Contrast calculated by GLCM based on VV
VV_DISS Dissimilarity calculated by GLCM based on VV
VV_ENT Entropy calculated by GLCM based on VV
Sentinel-1 VV_SEC Angular Second Moment calculated by GLCM based on VV
VV_COR Correlation calculated by GLCM based on VV [46]
VH_MEAN Mean Value calculated by GLCM based on VH
VH_VAR Variance calculated by GLCM based on VH
VH_HOM Homogeneity calculated by GLCM based on VH
VH_CON Contrast calculated by GLCM based on VH
VH_DISS Dissimilarity calculated by GLCM based on VH
VH_ENT Entropy calculated by GLCM based on VH
VH_SEC Angular Second Moment calculated by GLCM based on VH

VH_COR Correlation calculated by GLCM based on VH
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Table 1. Cont.
Data Source Predictors Description References
S2_BAND2 Blue band extracted from Sentinel-2
S2_BAND3 Green band extracted from Sentinel-2
S2_BAND4 Red band extracted from Sentinel-2
Sentinel-2 S2_BANDS5 Vegetat%on Red Edge band extracted from Sent?nel—Z (705 nm) [43]
S2_BANDS6 Vegetation Red Edge band extracted from Sentinel-2 (740 nm)
S2_BAND? Vegetation Red Edge band extracted from Sentinel-2 (782 nm)
S2_BANDS NIR band extracted from Sentinel-2
S2_BANDA Narrow NIR band extracted from Sentinel-2
Normalized difference red-edge vegetation index based on
NDRE_BANDS S2_BANDS5 and S2_BANDS
Normalized difference red-edge vegetation index based on
NDRE_BAND6 S2_BANDSG6 and S2_BANDS 1471
Normalized difference red-edge vegetation index based on
NDRE_BAND?7 S2_BAND? and S2_BANDS
ELEVATION Elevation extracted from SRTM
SRTM SLOPE Slope extracted from SRTM [48]
ASPECT Aspect extracted from SRTM

2.2.4. Auxiliary Data

The SRTM uses one-way interferometry to acquire topographic data. The SRTM
collects radar data for 80% of the Earth’s surface between 60° N and 56° S, which is used to
construct a global digital elevation model. In this study, the SRTM was called and processed
using GEE to obtain the elevation, slope, and aspect of the study area [48].

GlobeLand30 2020, a 30 m resolution global land cover data product, is the latest
version developed in China. It includes 10 land cover classifications, including forests.
The product has an overall accuracy of 85.72% [49]. GlobeLand30 2020 was used for the
study area in this study, which effectively helped us to distinguish between forested and
non-forested areas.

The 7th Jiangxi Province Forest Resources Second Class Survey was completed in
Jiangxi Province in 2019-2020, which established a database of forest resources in Jiangxi
Province consisting of irregular blocks [6]. Each block consists of the same forest species
and contains geographic coordinates, forest type, forest canopy height, forest age, etc.
Meanwhile, the forest canopy height represents the average height of the forest canopy
within the whole block. In this study, 380 field measurement points (Figure 2a) converted
from the center of gravity of blocks were used to validate the forest canopy height maps
generated by the machine learning model. The coordinates of the field measurement points
were used as a reference, and cell values at locations were extracted from one raster and
recorded in the attribute table of the point.

Previous research has generated forest canopy height maps of China at 30 m reso-
lutions using various methodologies [18,50]. Zhu [18] produced a 30 m resolution forest
altitude map of China (R? = 0.38; RMSE = 2.67 m) using a random forest model in collab-
oration with data from satellite-based LiDAR (GEDI and ICESat-2) and optical imagery
(Landsat-8 and Sentinel). Meanwhile, Liu et al. [50] developed a deep learning interpolation
model by integrating the GEDI and ICESat-2 to map another 30 m resolution forest canopy
height map of the Chinese region (R? = 0.6; RMSE = 4.88 m). In addition, the Global Forest
Canopy Height (GFCH) mapped based on the GEDI and Landsat by Potapov et al. [25] in
2019 is also open access (https://glad.umd.edu/dataset/gedi/ (accessed on 11 February
2023)). We gathered the forest canopy height in Jiangxi Province from three data [18,25,50]
using the Jiangxi Province boundary mask to assess the correctness of the forest canopy
height map in this study.
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2.3. Methods

In this study, correlation analysis was used to understand the relationship between
canopy height and predictors, and in addition, machine learning models were used to
link canopy height and predictors and perform continuous forest canopy height mapping.
Meanwhile, SPSS Statistics software (version 25) was used for correlation analysis, and R
(version 4.2.1) was used for machine learning modeling. A workflow (Figure 3) was created
to summarize the main steps of the implemented methodology in the study.
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Figure 3. Workflow of integration of ICESat-2 and multi-source data for forest canopy height mapping
in Jiangxi Province.

2.3.1. Correlation Analysis

Correlation analysis is the examination of two or more variables that may be correlated,
and it often uses the correlation coefficient to determine the degree of correlation between
two variables. The correlation coefficient is between —1 and 1. The more connected the
variables are, the closer it gets to the extreme value [51]. In this study, the Spearman
correlation coefficient (rs) was utilized to link the forest canopy height and the relevant
predictors at ICESat-2 sites based on the distribution features of the data. To reduce the
dimensionality of the predictors, a p-value < 0.01 and an |rs| > 0.2 were used for model
development. The formula of 7; is as follows:

6y d?

:1—7
s n(n?—1)

@)
where 7, represents the Spearman correlation coefficient; d; represents the difference in the
place value of the data pair; and n represents the number of observation samples.

2.3.2. Model Development and Hyperparameter Optimization

Four machine learning models (RF, GBDT, SVM, and KNN) were utilized to construct
canopy height extrapolation models for the proper estimation of forest canopy height in
Jiangxi Province. RF is a bagging integration algorithm that builds a robust model by
integrating multiple decision trees and has better generalization performance and less
possible overfitting compared with a single decision tree [52]. GBDT, similar to RF, is an
integrated model based on decision trees that uses a boosting algorithm to concatenate
the decision trees and eventually approximate the true value by minimizing the model’s
bias [53]. The basic principle of an SVM is to discover a hyperplane that minimizes the
distance between it and all of the data. Although the SVM technique is best suited for
classification issues, it can also perform well in regression [6]. The final method, KNN,
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solves the regression problem by looking for comparable K samples based on spectral
distance and making predictions using the mean of the samples [54].

In this study, 80% of the samples (n = 4621) served as a training set, while 20% of
the data (n = 1156) served as a testing set. The RandomForest (version 4.7.1) package was
used for the RF algorithm [52], the gbm (version 2.1.8.1) package was used for the GBDT
algorithm [53], the 1071 (version 1.7.11) package was used for the SVM algorithm [55], and
the Caret (version 6.0.92) package was used for the KNN algorithm [56]. To improve the
model’s performance, the parameters were modified by running the “train” function in the
Caret package several times. The hyperparameter optimization approach was developed
using a grid search and 10-fold cross-validation [56]. The Ntree and Mtry parameters had
to be input to the RF algorithm. The “randomforest” function was also used to test the
value of the Ntree. After determining the optimal Ntree, a hyperparameter optimization
approach was utilized to determine the best Mtry. The GBDT algorithm required the input
of four parameters: Trees, Depth, Minobsinnodehe, and Shrinkage, which were divided
into two groups for the implementation of the hyperparameter optimization algorithm.
The linear function was used as the kernel function in the SVM algorithm, and the only
parameter that needed to be changed was the cost value (C). A range was established based
on various changes to determine the best-performing cost value. Simultaneously, for the
KNN algorithm, the Euclidean distance was set to the spectral distance, and the optimal
number of neighborhood points (K) was found using a hyperparametric optimization
algorithm. All the parameters are shown in Table 2, which presents the parameters and
descriptions of them in the machine learning models. The RMSE was used as an evaluation
tool for hyperparametric optimization algorithms, and the parameters with the lowest
RMSE were used to develop the canopy height extrapolation model.

Table 2. Parameters and descriptions in machine learning models.

Model Parameter Description
RE Ntree Number of decision trees
Mtry Number of features in each decision tree
SVM Cost Penalty factor
KNN K Number of neighboring points
Trees Number of iterative regression trees
GBDT Depth Maximum depth of decision tree

The minimum number of observations in the
terminal nodes of the decision tree
Shrinkage Learning rate or step reduction

Minobsinnode

2.3.3. Continuous Forest Canopy Height Mapping and Validation

Once all of the parameters were optimized, four canopy height extrapolation models
were created, with the canopy height in the training set serving as the dependent variable
and other remote sensing data serving as the predictors. The canopy heights of the testing
set were assessed using R? and RMSE. Furthermore, the best-performing model was used
to map the forest canopy height in Jiangxi Province. Finally, all the forest canopy height
maps were evaluated using field measurements. The formulas for R? and RMSE are
as follows:

n 2

R2 — 1 Zim1(xi — i) 3)
Y (i — )

RMSE = % Y (i — i) 4)

i=1
where n represents the number of observations; x; represents the i-th observation;
y; represents the i-th predicted value; i represents the average of the predicted values.
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3. Results
3.1. Correlation between Canopy Height and Predictors

For each ICESat-2 point, the Spearman correlation coefficient was used to investigate
the relationship between canopy height and 33 predictors. The statistical results (Table 3)
showed that 26 variables were significantly correlated with canopy height, and 7 variables
were not significantly correlated. Among the 26 significantly correlated variables, the
ts ranged from 0.08 to 0.62.

Table 3. r; of predictors and canopy height at sample scale.

Predictors Ts Predictors s Predictors Ts
FOREST_AGE 0415 ** VV_COR 0.007 NDRE_BAND5 0.454 **
VH_DISS 0.313 ** VV_DISS 0.326 ** NDRE_BAND6 0.361 **
VH_ENT 0.316 ** VV_HOM —0.316 ** NDRE_BAND7 0.007
VH_CON 0.310 ** VV_MEAN 0.147 ** S2_BAND2 —0.278 **
VH_COR 0.011 VV_SEC —0.327 ** S2_BAND3 —0.409 **
VH_HOM —0.302 ** VV_VAR 0.326 ** S2_BAND4 —0.411 **
VH_MEAM 0.191 ** SLOPE 0.548 ** S2_BAND5 —0.436 **
VH_SEC —0.315 ** ELEVATION 0.620 ** S2_BAND6 —0.078 **
VH_VAR 0.309 ** ASPECT 0.031* S2_BAND7 0.018
VV_ENT 0.327 ** \AY% 0.163 ** S2_BANDS 0.016
VV_CON 0.322 ** VH 0.128 ** S2_BANDSA 0.034 *

— represents negative correlation, * represents p-value < 0.05, ** represents p-value < 0.01.

It is worth noting that elevation (s = 0.62) and slope (75 = 0.55) were strongly connected
with canopy height among all the statistically correlated variables. Sentinel-2 characteristics
such as NDRE_BANDS (7; = 0.45) and S2_BANDS (r; = 0.44) were also moderately linked
with canopy height. Sentinel-1-derived information was less correlated (rs from 0.13 to 0.32),
reflecting the limited penetration of Sentinel-1’s C-band into the forest [27]. Furthermore,
forest age showed a link with canopy height (r; = 0.42), implying that it may contribute
to canopy height extrapolation modeling. The correlation analysis and variable selection
method were utilized to choose 21 variables (Figure 4) for models development.

Correlation Analysis
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Figure 4. Correlation analysis of the 21 characteristic variables used in the model with canopy height.
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3.2. Hyperparameter Optimization for Canopy Height Extrapolation Models

Ntree was initially set to 300 for the RF model, and the OOB error was steady after
Ntree exceeded 150, whereupon it was set to 150 (Figure 5a). Furthermore, in the hyper-
parametric method, the ideal Ntree was used to obtain the Mtry, and Figure 5b shows that
the RMSE was lowest when Mtry was 9. In contrast to RF, in this study, the KNN and SVM
models required the development of a parameter. When K was set to 16 (Figure 5¢) in KNN
and cost was set to 0.3 (Figure 5d) in the SVM, the smallest RMSE was attained. Searching
the mesh for all parameters at the same time in a model with several parameters may have
resulted in computational complexity. Hence, for a four-parameter GBDT model, as shown
in Figure 5ef, the four parameters were divided into two groups and searched in the grid,
and the best parameters were shown to be a combination of the two searches.

(b)

Y
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: 5.4 My =9
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Figure 5. Parameters in the machine learning model selected based on cross-validation. (a) Ntree in
the RF, (b) Mtry in the RF, (c) K in the KNN, (d) cost in the SVM, (e) Minobsinnode and Shrinkage in
the GBDT, (f) Depth and Trees in the GBDT.

3.3. Comparison of Canopy Height Extrapolation Models

Once the optimal parameters in the model were determined, four machine learning
models were utilized to establish the relationship between canopy height and predictors
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Predicted Height Canopy by RF(m)

Predicted Height Canopy by SVM(m)

for the ICESat-2 point. The models were validated using the testing set to further verify
their correctness and compare their performance using R?> and RMSE metrics. In Figure 6,
the R? for all models ranged from 0.47 to 0.61, and the RMSE ranged from 5.29 to 6.18 m.
The best-fitting model was determined to be RF (R? = 0.61 and RMSE = 5.29 m). Figure 6a,b
indicate that the two integrated models obtained from the decision tree, GBDT and RF,
produced relatively similar results. Additionally, the mean coefficient of determination
(R? = 0.55) and mean root mean square error (RMSE = 5.64 m) were calculated, indicating
that all four models could extrapolate the sample plot scale to the regional scale. Lastly,
Figure 6 shows all the model-predicted and actual canopy height values were significantly
correlated (p-value < 0.01).

Predicted Height Canopy by GBDT(m)

Predicted Height Canopy by KNN(m)

ATLO8 Height Canopy(m) ATLO8 Height Canopy(m)

Figure 6. Comparison of accuracy of four machine learning models: (a) RF, (b) GBDT, (c) SVM,
(d) KNN.

In Table 3, the Spearman coefficient was used to measure the linear relationship be-
tween the canopy height and predictors. However, the canopy height and predictors
are not generally linearly related in environmentally complex forests [6]. To further ex-
plore the key drivers in the extrapolation process of forest canopy height, the importance
evaluation in the random forest model (Figure 7) was used to analyze the degree of
contribution of the variables in the canopy height extrapolation model. The results of
Figure 7 show that the random forest model significantly depended on elevation, slope,
52_BANDS5, and NDRE_BANDS5, with elevation being the variable that contributed the
most to the model. Meanwhile, Figure 7 suggests the backward scattering coefficient and
texture features derived from Sentinel-1 were shown to have relatively low contributions to
the model.

3.4. Mapping Wall-to-Wall Map of Forest Canopy Height

Continuous spatial feature information and canopy height extrapolation models pro-
vide the possibility of mapping forest canopy height in wall-to-wall areas. In Figure 8a, a
30-m resolution forest canopy height map for Jiangxi Province was generated based on
the RF model and 21 consecutive remote sensing images. The heights of the predictions
(Figure 8a) in the area ranged from 4.88 to 35.55 m, with an average height of 23.8 m. In
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general, the forest canopy height was higher in the mountains and lower in the plains
and hills. Figure 8b shows that forest heights recorded in the field ranged from 2.7 m to
31.1 m, while samples were utilized to validate the forest canopy height map. The vali-
dation (Figure 8c) reveals that the canopy height extrapolation model we created could
effectively map the forest canopy height in the research area (R? = 0.69; RMSE = 4.02 m).

Variables Importance
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NDRE_Band5
Forest_age O
$2_Band3 .4
S§2_Band4 o
WV_Var o
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VH_Hom .
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NDRE_Band6 &
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Figure 7. Importance assessment based on %IncMse in the RF model.
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Figure 8. (a) A 30 m resolution forest canopy height map of Jiangxi Province based on the RF model.
(b) The counts of field-measured height and predicted tree height. (c) Validation of forest canopy
height map produced using RF model.

3.5. Comparison of Forest Canopy Height Maps

In Figure 8a, the validation shows that our method can produce reliable forest canopy
height maps. Nonetheless, for a more comprehensive analysis of the accuracy of the forest
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canopy height maps, one global [25] and two Chinese [18,50] forest canopy height maps
were processed using Jiangxi masks and validated using the same field measurements.
Figure 9 shows that the R? of the validation ranged from 0.24 to 0.39, while the RMSE
ranged from 4.11 to 5.48 m. The results show that the forest canopy height map of the
Jiangxi Province produced in this study had higher accuracy.
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Height of field measurements (m)

Figure 9. Validation of the forest height of Jiangxi Province generated by (a) Zhu [18], (b) NNGI [50],
(c) GFCH [25].

4. Discussion
4.1. Key Drivers in the Extrapolation of Forest Canopy Height

Predictors derived from remote sensing data such as optical images can be efficiently
integrated with ICESat-2 or MABEL modeling data to produce continuous forest canopy
height maps [1,5-7,14]. However, few studies have discussed the role of other forest
structures in forest canopy height mapping. Several studies have already shown a potential
correlation between forest age and forest canopy height [36-38]. In this study, we explored
continuous forest canopy height mapping using high-resolution forest age maps generated
using a continuous change detection technique as predictors, along with other optical
remote sensing data. The results in Table 3 indicate that there is a moderate correlation
between forest age and forest canopy height at the sample scale.

Meanwhile, the importance ratings of the predictors (Figure 7) generated by the RF
showed that forest age was one of the variables that the RF moderately relied on. These
facts stated above imply that forest age has the potential to predict forest canopy height.
From another perspective, the results in Figure 7 show that S2_BAND5 and NDRE_BANDS5
are significantly dependent variables for forest canopy height prediction. Notably, this
result has similarity with the results of Zhang et al. [30] and implies that the red-edge
band can characterize vegetation growth to some extent, as demonstrated in previous
studies [44,47]. In addition, Figure 7 shows that forest canopy height is also significantly
affected by elevation and slope. One obvious reason for this is that changes in elevation
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and slope impact climate, temperature, and sunlight, all of which have an indirect effect on
forest growth [57,58]. On the other hand, the impact of human activities on a forest will
vary with elevation and slope.

4.2. Accuracy of Canopy Height Extrapolation Model and Forest Canopy Height

In Figure 6, all models overestimate low forests and underestimate forests with high
heights. In fact, this bias appeared in previous studies that integrated ICESat-2 and different
predictor variables using RF [5-7,18,28,30,31], KNN [6], SVM [6], GBDT [5], MLR [6], and a
deep learning model [7] for continuous forest height mapping. However, the reason for
this bias in the prediction of forest height maps via machine learning models is not clear.
In addition, RMSE has been frequently used in the assessment and comparison of canopy
height extrapolation models [5,6,31], and other metrics such as mean absolute error (MAE)
and RMSE% should also be considered in subsequent studies to reduce uncertainty.

The results of Figures 8c and 9 reveal that the forest canopy height map generated in
this study was more accurate. It is worth noting that the difference in accuracy between the
current study and previous results may be attributable to a temporal mismatch between
the validation data and ICESat-2 [28]. From another perspective, for global and national
forest canopy height mapping, there are more complex elements to consider compared with
regional studies. Both global and national data have achieved good accuracy [18,25,50,59];
however, part of the data may have lower accuracy due to geographical heterogeneity.
Hence, forest canopy height mapping studies are important for forest resource management
in the region.

4.3. Limitations and Prospects

In this study, 33 predictors were used to build a machine learning model to map wall-
to-wall forest canopy height, including optical images and terrain features, as well as forest
age, among others. Furthermore, a high-resolution forest canopy height map of the study
area was mapped with a canopy height extrapolation model, which was developed using
machine learning models. To investigate the potential of these variables in the estimation
of forest canopy height, as seen in Figure 7, the feature variables in this study could be
effectively linked to the canopy height in ICESat-2 points, with forest age performing
particularly well as a new variable. Therefore, continuous forest canopy height maps can
be used as predictors to map continuous forest structure parameters such as above-ground
biomass and leaf area index in the future. Furthermore, due to latitudinal and longitudinal
variances, environmental parameters such as precipitation and temperature should be
incorporated as predictors for national or global forest canopy height mapping [50,58]. In
terms of data, multicollinearity may have an impact on the ranking of importance in RF,
and this issue should be taken into account in subsequent studies. In addition, several trials
require additional consideration. ICESat-2 provides us with strip samples [19], which will
leave many gaps that the GEDI [41] can fill in the study area. In terms of data, the number
of vegetation signal photons in the ATLO8 product is very low, and the vertical sampling
error may underestimate the canopy height at the ICESat-2 point [20]. From another point
of view, distinct forest species may have different canopy height extrapolation models [5].
Given the diverse biodiversity in the study area, canopy height extrapolation models for
different tree species should be built once an appropriate categorization of the tree species
is obtained.

5. Conclusions

In this study, we integrated ICESat-2, Sentinel, SRTM, and forest age data from Jiangxi
Province, proposed a new method for variable selection, and developed four canopy height
extrapolation models via RF, GBDT, KNN, and the SVM to link canopy height and spatial
feature information. The model (RF) with the best-performance was used to map the
forest canopy height in Jiangxi Province. Based on the results of this study, the following
conclusions can be drawn: (1) Forest canopy height is moderately correlated with for-
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est age, meaning it has the potential to be a predictor for forest canopy height mapping.
(2) RF has the best-performance of the four canopy height extrapolation models, although
it still underestimates higher forests and overestimates lower forests. Nonetheless, the
use of multiple models can produce more robust results than the use of a single model.
(3) Elevation, slope, and the red-edge band (band 5) derived from Sentinel-2 were signif-
icantly dependent variables in the canopy height extrapolation model. Apart from that,
forest age was one of the variables that the RF moderately relied on. In contrast, backscatter
coefficients and texture features derived from Sentinel-1 were not sensitive to canopy height.
(4) There was a significant correlation between forest canopy height predicted using RF
and forest canopy height measured using field measurements (R? = 0.69; RMSE = 4.02 m).
In a nutshell, the results show that the method utilized in this work can reliably map the
spatial distribution of forest canopy height.
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