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Abstract: In this work, a facile method was adopted to prepare TiO2-WO3 loaded onto a wood
surface by a two-step hydrothermal method. The as-prepared wood composite material can be
used as a photocatalyst under UV irradiation for the photodegradation of formaldehyde. Related
tests showed that TiO2-WO3 nano-architectonic materials with spherical particles loaded onto the
wood substratewere mainly caused by self-photodegradation of formaldehyde. The TiO2-WO3

nanostructured material firmly adheres to the wood substrate through electrostatic and hydrogen
bonding interactions. Meanwhile, the appearance of the new chemical bond Ti-O-W indicates the
successful loading of TiO2-WO3 onto the wood surface. The photodegradation rate was measured
and it was confirmed that the highest photodegradation performance of the modified wood was
achieved at a molar ratio of 5:1 of TiO2 to WO3. This work provides a new strategy for the preparing
of novel photocatalysts based on wood substrate. Moreover, the wood loaded with TiO2-WO3 is a
promising candidate for indoor formaldehyde treatment in practical applications.

Keywords: wood substrate; TiO2; WO3; photocatalytic activity; formaldehyde

1. Introduction

Adhesives with formaldehyde as the main component are widely used in producing
house decoration materials and furniture. In addition, they will release formaldehyde
into the air, affecting human health [1,2]. With the improvement in people’s concept of
health and environmental protection, increasingly more people are aware of the harm of
formaldehyde. Therefore, the removal of indoor formaldehyde has important practical
significance. The commonly used methods for the elimination of formaldehyde mainly
include plasma catalytic degradation, electrocatalytic oxidation degradation, physical
absorption treatment, plant purification, and photocatalytic degradation [3–6]. It includes
not only the physical method but also the chemical method. The photocatalytic degradation
materials developed in recent years have shown great potential in the degradation of free
formaldehyde in indoor air [7–9]. However, recycling these powdery semiconductor
photocatalysts has become an essential issue in the practical application process.

The material most closely related to the human living environment is wood. It has a
high strength-to-weight ratio, low density, easy processing, an excellent thermal-electrical
insulation, but also outstanding acoustic properties and other advantages [10–13]. In
addition, wood is also a superior biomass carrier and has a naturally porous structure. In
interior decoration and furniture-making materials, wood is also an inevitable consumable.
Photocatalytic technology only needs to be illuminated in nature or indoors to cause
chemical changes, and it is harmless to humans and the environment, which is a “green”
process [14]. Therefore, it is feasible to carry out composite modification on wood and
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apply it to the photocatalytic degradation of formaldehyde. The composite modification
of wood and inorganic nanomaterials makes it recyclable and formaldehyde degradable,
becoming a research hotspot in this field in recent years [15–17].

The TiO2 semiconductor with a band gap of 3.2 eV is a promising photocatalyst.
Because of its non-toxic, harmless, corrosion resistance, environmental protection, strong
photocatalytic oxidation ability, and high stability, it is widely used in the photodegradation
of water or gaseous toxic organic pollutants [18–20]. In the photodegradation of toxic
pollutants by TiO2, the whole process is simple and environmentally friendly. It takes place
at normal temperature and pressure, and the reaction products are usually CO2 and water.
Since Fujishima et al. [21] invented photocatalytic decomposition on TiO2 single crystal
electrodes in 1972, they have attracted extensive attention from many researchers. It has
attracted scientists from different research fields to carry out significant research on TiO2
preparation and photocatalytic performance. However, TiO2 has a large band gap, which
makes the solar energy utilization rate low. The photocatalytic performance of TiO2 can
be improved by using methods such as doping metal oxides, doping non-metal oxides,
co-doping metal and non-metal oxides, semiconductor compounding, and photocatalyst
photosensitization [22–26]. Related studies showed that the photocatalytic efficiency of
TiO2-WO3 composite nanomaterials prepared by the sol-gel method and temperature-
controlled calcination method could reach 94.8% for acid red B [27]. WO3 has a narrower
band gap, a wider light absorption range, and a more efficient use of sunlight [28]. Therefore,
compounding TiO2 and WO3 to improve the photocatalytic degradation efficiency of
formaldehyde has aroused extensive research in the academic community.

As one of the best photocatalysts, WO3 has a small band gap and a large light absorp-
tion range. Making more efficient use of visible light accounts for nearly half of the sun’s
radiation [29,30]. However, it is difficult to obtain stable photocatalytic performance of
pure WO3 due to its defects, such as easy photo corrosion. Moreover, TiO2 is a catalyst
with many advantages, but its small absorption range is the main application limitation.
WO3 can improve this limitation, so materials doped with WO3 have also become a current
research hotspot [31,32]. On the other hand, wood is an outstanding carrier, which has a
natural porous structure, a large number of capillaries inside, and a large specific surface
area. Therefore, it is of great significance to explore a simple and effective method to
obtain a composite catalyst with a better catalytic effect on the surface of TiO2 and WO3
composite wood.

In this study, wood surfaces loaded with TiO2-WO3 composites with different com-
posite proportions were prepared by a two-step low temperature hydrothermal method.
Meanwhile, the crystallinity and morphology characteristics were discussed, and its growth
on the wood surface was studied. Furthermore, the photocatalytic mechanism of formalde-
hyde degradation was discussed by studying its photocatalytic performance. The properties
of photocatalytic formaldehyde were also studied. The purpose of this study was to obtain
wood loaded with TiO2-WO3 composites with high photocatalytic performance and to
investigate their application to degrade the free formaldehyde released indoors.

2. Materials and Methods
2.1. Materials

Poplar wood samples (Populus sp., 8 × 8 × 2 mm3, length × width × high, moisture
content was 10.33%) were supplied by Dehua Bunny Decoration New Materials Co., Ltd.
(Huzhou, China), which was sapwood with eight annual rings. Ammonium hexafluoroti-
tanate(IV) ((NH4)2TiF6, ≥99%), boric acid (H3BO3), and tungsten(VI) chloride (WCl6·6H2O,
≥99.9%) were purchased from Shanghai Boyle Chemical Co., Ltd. (Shanghai, China).
Ethanol absolute (C2H5OH, ≥99.9%), and hydrochloric acid (HCl, ≥99.9%) were bought
from Nanjing Lisheng Chemical Company (Nanjing, China). All reagents are analytical
pure grade and can be used directly without secondary purification. Moreover, deionized
water was used in all experiments.
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2.2. Preparation of TiO2 Loaded onto Wood

Briefly, (NH4)2TiF6 (0.989 g) and H3BO3 (0.927 g) were mixed with a deionized water
solution (600 mL) and stirred for two h at room temperature. After that, adjusted the pH
value to 3 with 0.3 mol/L HCl solution. Subsequently, the mixed solution was placed in a
reaction kettle, and five wood samples were respectively placed and reacted at 70 ◦C for
5 h. Then, the wood samples were removed and cleaned with deionized water three times
(10 min each time). Finally, the samples were placed in a vacuum oven and dried at 45 ◦C
for 24 h. Thus, the samples of TiO2 loaded onto wood were prepared. In addition, each set
of experiments was repeated three times to ensure the accuracy of the experiment.

2.3. Preparation of TiO2-WO3 Loaded onto Wood

The schematic illustration of the preparation of TiO2-WO3 loaded onto wood is shown
in Figure 1. Four of the above wood samples and one unreacted wood sample were
obtained and sonicated with ethanol. Then, a certain amount of WCl6·6H2O was dissolved
in 100 mL of ethanol solution, placed in the wood sample and stirred magnetically for 2 h
at room temperature. Subsequently, after standing and impregnating at room temperature
for 24 h, the wood samples were removed and placed in a vacuum-drying oven for 24 h to
obtain TiO2-WO3 loaded onto wood. The changed amounts of WO3 in TiO2-WO3 can be
obtained by controlling the molar ratio of WCl6·6H2O in the mixed solution. The molar
ratios of WO3 and TiO2 were set as 1:0, 1:1, 1:3, and 1:5. The as-prepared wood samples
with the molar ratio of WO3 and TiO2 (1:0, 1:1, 1:3, and 1:5) were labeled as TW1, TW2,
TW3, and TW4, respectively (the specific formulation is shown in Table 1). Moreover, the
unmodified blank control sample was named TW0.
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Figure 1. Schematic illustration of the preparation of TiO2-WO3 loaded onto wood.

Table 1. The molar ratio of WO3 and TiO2 in as-prepared wood samples.

Molar Ratio
Samples

TW0 TW1 TW2 TW3 TW4

WO3:TiO2 0:0 1:0 1:1 1:3 1:5

2.4. Characterization

The surface morphology of the wood substrate before and after being loaded by TiO2-
WO3 was investigated by scanning electron microscopy (SEM, Quant 200, FEI Company,
Hillsboro, OR, USA). The crystalline structures of the samples were measured by X-ray
diffraction (XRD, D/MAX 2200, Rigaku, Japan). The XRD was conducted with Cu-Kα

radiation at 40 kV and 30 mA with a step rate of 4◦/min ranging from 10◦ to 80◦. The
chemical functional groups change of the samples was carried out using a attenuated total
reflection Fourier Transformed Infrared Spectrometer (ATR-FTIR, Magna-IR 560, Nicolet
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Bankshares, Inc., Green Bay, WI, USA), which was conducted in the range of 400~4000 cm−1

with a resolution of 4 cm−1. All spectra were recorded at room temperature and there
was a drying system which could prevent atmospheric moisture from interfering with
the spectrum.

2.5. Formaldehyde Degradation Performance Test

The photocatalytic formaldehyde degradation performance of the as-prepared samples
was tested at room temperature, and the schematic diagram of the device is shown in
Figure 2. Moreover, three samples were made of each type of TW1–TW4 and all samples
were studied in the photocatalytic degradation experiment. The average of the three test
results was obtained as the final test result. The whole tests were carried out in a cylindrical
glass caulk with an expanded volume of 0.1 m3. The LED light (λ max = 458 nm, emission
intensity of approximately 3.6 mW/cm2) was fixed at the center of the opening and used
to simulate visible light. The desired dose of formaldehyde was added to the tamponade,
and the fan was maintained for 30 min to obtain an adsorption and desorption balance.
After the adsorption equilibrium, the initial concentration of formaldehyde in the obturator
can be determined by Formaldemeter (LB-HD05, China). Subsequently, the LED light was
turned on to illuminate the sample, and each set of degradation experiments was continued
under the LED light for 6 h. The degradation efficiency of formaldehyde was estimated by
the following formula:

D(%) =
C0 − C

C0
× 100% (1)

where C0 is the initial concentration of the formaldehyde, and C represents the measured
formaldehyde concentration.
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Figure 2. Schematic diagram of the experimental setup for photocatalytic degradation of formalde-
hyde. (1) Speedometer; (2) LED light; (3) wood sample; (4) support cantilever; (5) fan; (6) variable
frequency suction fan; (7) formal wind speed.

3. Results and Discussion
3.1. Morphological Characterizations

Figure 3 displays the SEM images of the as-prepared wood samples loaded with
different proportions of TiO2-WO3. Figure 3a presents the microtopography of the surface
of the TW1 samples; it can be clearly seen from the figure that tiny particles grow on
the surface of the modified wood sample and cover the surface. These tiny particles are
roughly spherical with many edges and corners. Figure 3b,c are the surface morphologies
of TW2 and TW3. As shown in the figures, the surface of the samples is covered with
small spherical particles, and some of them are agglomerated together. Moreover, the
agglomeration phenomenon on the surface of the sample was more severe than that of
the TW1 sample, and the particle size also increased. Figure 3d displays the SEM image
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of TW4, and the growth conditions of the nanoparticles on the surface are also similar to
those in Figure 3a–c, but the particles are denser. However, the particle size is smaller than
that in Figure 3a–c. Based on the above analysis, it can be inferred that the average particle
size of TiO2 particles on the wood surface increases gradually with the increase in WO3
content. Furthermore, the agglomeration effect will also increase, but the addition of WO3
has little effect on the morphology of the product. The successful loading of TiO2-WO3
nanoparticles on the wood sample makes the wood surface form a dense metal oxide film
structure, which is beneficial to improve the photocatalytic formaldehyde degradation
performance of wood. More importantly, the surface microstructure of the wood did not
change significantly after irradiation, suggesting that the surface-loaded nanoparticles only
acted as catalysts.
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3.2. XRD Analysis

The crystal structure of the wood sample before and after the modification can be
analyzed by XRD patterns, as shown in Figure 4. The diffraction peaks present at 16◦

and 22.5◦ belong to the (101) and (002) crystal surfaces of the cellulose in the wood [33].
The diffraction peaks of the wood composite loaded with TiO2-WO3 at 25.3◦, 38.0◦, 47.6◦,
54.3◦, and 64.5◦ are consistent with the (101), (004), (200), (105), and (204) crystal surfaces
in TiO2 [34,35], respectively. Therefore, the TiO2 loaded onto the surface of the wood
samples corresponds to rutile phase TiO2 and anatase phase TiO2. Meanwhile, the results
also showed that TiO2 was successfully loaded onto the wood surface. Moreover, the
modified wood samples showed diffraction characteristic peaks at 2 θ of 22.6◦, 25.8◦, 30◦,
and 34.5◦, which matched with the (001), (110), (200), and (201) crystal planes in WO3,
respectively. It is consistent with the WO3 triclinic phase (JCPDS No. 32-1295), which
indicates that WO3 particles were successfully loaded onto the surface of the samples [36].
In the XRD spectra of samples TW1, TW2, TW3, and TW4, some obvious TiO2 and WO3
characteristic diffraction peaks also appeared. With the increase in the concentration of
TiO2 in TiO3-WO3, the characteristic peak of TiO2 in the composite sample is also enhanced.
This indicates that different ratios of TiO2 and WO3 can be successfully loaded onto the
surface of wood samples.
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3.3. ATR-FTIR Analysis

ATR-FTIR is a conventional test method for analyzing the functional groups, chemical
structures, and binding mechanisms of samples. Figure 5 shows the spectra of the wood
modified by TiO2-WO3. It can be clearly seen from Figure 5a that the vibrational absorption
peak at 3398 cm−1 is caused by the hydrogen bond of the hydroxyl group (-OH) in wood or
the stretching vibration of O-H in water [37]. This peak was enhanced after the modification,
which may result from the hydrogen bond generated from the reaction of TiO2 or WO3
with the hydroxyl group on the wood surface. The absorption peak at a wavelength
of 2927 cm−1 is caused by the asymmetric stretching vibration of the C-H bond in the
long-chain group -CH3 in the wood [38]. The characteristic absorption peaks occurring
at 1060 cm−1 and 1629 cm−1 are caused by C-O and C=O stretching vibrations in wood,
respectively. The appearance of the above characteristic peaks showed that the wood did
not destroy its unique structure of wood during the experiment [39]. Moreover, it can be
seen from Figure 5b that TW1, TW2, TW3, and TW4 have W-O stretching vibration peaks at
820 cm−1 and 890 cm−1, which were not found in the TW0 absorption curve of the samples.
Meanwhile, the Ti-O vibration peak appeared at the wavenumber of 641 cm−1, but it was
not found in the spectrum of TW0. The spectrum indicated that the composite products of
TiO2-WO3 appeared in TW1, TW2, TW3, and TW4, and were well loaded onto the wood
surface. Meanwhile, the spectra of the irradiated wood did not change.
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3.4. Photocatalytic Degradation Performance

In order to explore the effect of wood samples modified with different TiO2-WO3
molar ratios on the performance of the photocatalytic degradation of formaldehyde, the
degradation performance of all samples under UV light was tested, and the results are
shown in Figure 6a. The concentration of formaldehyde was set to 2.5 mg/m3 during the
test. The photocatalytic degradation efficiency of formaldehyde in untreated wood samples
was close to zero, indicating that there was almost no degradation of formaldehyde. The
photocatalytic efficiency of the TW1 sample under visible light irradiation was low, which
was about 37.03%, while the samples of TW2, TW3 and TW4 showed higher photocatalytic
degradation performance, and the photocatalytic efficiency of TW2, TW3, and TW4 was
73.13%, 92.10%, and 97.86%, respectively. The results showed that the photocatalytic
properties of the as-prepared wood products improved rapidly with the increasing amount
of TiO2. Compared with other samples, TW4 had the best photocatalytic performance with
a degradation rate of about 98%. There may be several reasons for the above phenomenon.
Firstly, TiO2 can deposit the WO3 band with a higher donor value than the initial value on
the wood substrate, which improves the absorption efficiency of visible light irradiation [40].
With increasing TiO2 content, the distance between the donor level and the valence band
becomes greater. Therefore, a large number of electrons are generated under visible light
excitation, which is conducive to enhancing photocatalytic degradation. Secondly, when the
content of TiO2 is lower than its proper molar ratio, TiO2 mainly occurs on the surface area
of the sample to hunt and convert electrons and holes, which will inhibit the recombination
of photoexcited holes and electrons. The photoexcited electrons and holes of the modified
wood samples will photodegrade formaldehyde into CO2 and H2O.
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In addition, the reusability of TW4 samples as typical representatives was studied, as
shown in Figure 6b. In order to evaluate the recyclability of the as-prepared wood sample,
10 recycling tests were carried out on the degradation of formaldehyde. Obviously, the TW4
sample can still maintain excellent photocatalytic performance after 10 photocatalytic cycles,
with an efficiency of more than 85%. The decrease in degradation rate was mainly due to
the slight leaching of TiO2-WO3 nanoparticles in each recovery experiment. Therefore, the
wood surface-loaded TiO2-WO3 composite material has a certain application potential as a
photocatalyst in the removal of indoor formaldehyde pollutants.

3.5. Mechanism of Photocatalytic Degradation of Formaldehyde

Based on the above photocatalytic results, we constructed the potential energy dia-
gram and formaldehyde degradation mechanism diagram of the wood surface loaded with
TiO2-WO3 composite material, as shown in Figure 7. When the treated wood is irradiated
by ultraviolet light, the conduction bands (CB) of TiO2 and WO3 both generate excited elec-
trons. Due to the potential difference, the photogenerated electrons in WO3 can easily move
to the CB of TiO2. Therefore, electron transfer will reduce the chance of recombination with
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the holes formed in the valence bands (VB) of the TiO2 and WO3. The holes migrate directly
from TiO2 to WO3 and then to the wood substrate interface. Thus, reduced recombination
results in enhanced photoactivity. According to the previous references [41,42], Figure 7
and Equations (2)–(8) showed the photocatalytic degradation reaction of formaldehyde,
where hv, h+, e−, •OH, and•O2

− represent light energy, holes, electron, hydroxyl radicals,
and superoxide radicals.

TiO2 + hv→ TiO2(h
+ + e−

)
(2)

WO3 + hv→WO3(h+ + e−) (3)

h+ + H2O→ •OH + H+ (4)

Ti4+ + e− → Ti3+ (5)

Ti3+ + O2 → Ti4+ + •O−2 (6)

HCHO + •OH → •CHO + H2O (7)
•CHO + •OH → HCOOH (8)
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Obviously, the electrons in the VB of TiO2 are excited to the CB of TiO2 under UV
irradiation. It shifted from the CB of TiO2 to WO3 due to the lower CB of WO3. The holes
left in the VB of WO3 can move to the valence electrons of TiO2, which is beneficial to the
electron/hole separation. Therefore, the photocatalytic degradation efficiency of the sample
was improved. The free radicals (•OH and •O2

−) produced by catalysis can efficiently
degrade formaldehyde to produce carbon dioxide and water.

4. Conclusions

In this work, we have presented TiO2-WO3 loaded onto a wood substrate fabricated
by a two-step hydrothermal method. The wood served as biomass substrates to prepare
the TiO2-WO3 photocatalysts with nano-architectonic spherical particles. The wood loaded
with TiO2-WO3 composite material was characterized via various techniques and the pho-
tocatalytic degradation property was tested by degrading formaldehyde. The as-prepared
wood sample exhibits higher potential for application as a photocatalyst for the degrada-
tion of formaldehyde, and the photocatalytic degradation efficiency can reach 98%. These
studies indicated that TiO2-WO3 successfully loaded onto the wood surface concern only
the surface, which could provide more active sites for photocatalysis. Furthermore, the
as-prepared wood can still maintain more than 80% formaldehyde photodegradation effi-
ciency after 10 times of recycling. Additionally, the photocatalytic degradation mechanism
of formaldehyde shows that the loaded TiO2-WO3 reduces the recombination probability
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of photoexcited carriers and increases the transport of charges. This work will provide a
new strategy for preparing novel wood-based photocatalysts with photocatalytic formalde-
hyde degradation performance. Moreover, it has practical significance to apply it to the
degradation of indoor formaldehyde.
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